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On the jamming phase diagram for frictionless
hard-sphere packings
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We computer-generated monodisperse and polydisperse frictionless hard-sphere packings of 10* particles
with log-normal particle diameter distributions in a wide range of packing densities ¢ (for monodisperse
packings ¢ = 0.46-0.72). We equilibrated these packings and searched for their inherent structures,
which for hard spheres we refer to as closest jammed configurations. We found that the closest jamming

densities ¢, for equilibrated packings with initial densities ¢ =< 0.52 are located near the random close

packing limit grcp; the available phase space is dominated by basins of attraction that we associate with

liquid. @rcp depends on the polydispersity and is ~0.64 for monodisperse packings. For ¢ > 0.52, ¢,

increases with ¢; the available phase space is dominated by basins of attraction that we associate with

glass. When ¢ reaches the ideal glass transition density ¢q, @5 reaches the ideal glass density (the glass

close packing limit) pccp, SO that the available phase space is dominated at ¢4 by the basin of attraction

of the ideal glass. For packings with sphere diameter standard deviation ¢ = 0.1, pgcp = 0.655 and ¢4 =
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0.59. For monodisperse and slightly polydisperse packings, crystallization is superimposed on these

processes: it starts at the melting transition density ¢,, and ends at the crystallization offset density ¢os.
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. Introduction

Frictionless hard-sphere packings represent a useful model for
atomic systems, liquids, glasses, and crystals,* aside from being
a system directly utilized in materials science and chemical
engineering.>* This simple yet powerful model exhibits a range
of diverse phenomena, including melting and freezing transi-
tions,** the ideal glass transition,“”'*** the ideal glass or the
glass close packing (GCP) limit,"** as well as the random close
packing (RCP) limit.***®

There are several attempts to merge the multitude of these
effects into a single picture."'* It is a difficult task, as significant
debate on some of the concepts above is underway. The first big
challenge is the definition and determination of the RCP limit.
For monodisperse particles, there exist at least three estimates
for the RCP limit, with distinct densities ¢: (i) ¢ = 0.634-
0.636;>'*® (ii) ¢ = 0.64;'>'**' and (iii) ¢ = 0.65.**° In our
previous studies,'**® we suggested that ¢ = 0.64 and ¢ = 0.65
refer to different phenomena and represent the RCP limit ¢gcp
(in the sense of the J-point**) and a lower bound of the GCP limit
¢cep,' respectively. It implies that random jammed packings
can systematically be produced at any density in the range
[orcps @aep)- ' The definition and determination of the GCP
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For monodisperse packings, ¢, = 0.54 and ¢o =
packings are independent of the generation protocol for ¢ = ¢g.

0.61. We verified that the results for polydisperse

limit and the corresponding ideal glass transition represent the
second actively discussed topic,"'*** stemming from research
on glasses and colloids. It is debated whether the ideal glass
exists and if so, what is the density of the ideal glass transition.
It is unclear if there are multiple glassy states and what is the
lowest glass transition density.

We believe that the RCP and GCP limits shall be studied
together, as a part of the systematic investigation of the phase
space structure for hard spheres. At each packing density ¢, the
phase space has areas corresponding to valid packing configu-
rations. These areas comprise basins of attractions of jammed
configurations.**** Some of these basins dominate the available
phase space. Thus, one of the characteristics of the phase space
at a given ¢ is the jamming density of these dominant basins of
attraction, ¢;. The main objective of this paper is to build a map
from ¢ to ¢; for a wide range of initial densities ¢.

With this intention to study the structure of the phase space
for hard spheres from first principles, we computer-generated
monodisperse and polydisperse frictionless hard-sphere pack-
ings of 10* particles (¢f. Fig. 1) over a wide range of densities ¢
(for monodisperse packings ¢ = 0.46-0.72). Polydisperse
particles have log-normal diameter distribution with diameter
standard deviation ¢ from 0.05 to 0.3 in steps of 0.05. Then, we
equilibrated these packings to let packing configurations arrive
at the basins of attraction of inherent structures*-** that
dominate the phase space at given densities. Finally, we
searched for the inherent structures of these equilibrated

This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Closest jammed configuration at a density ¢ = 0.662 for a
random packing of 104 polydisperse spheres. The sphere radii distri-
bution is log-normal and has a standard deviation ¢ = 0.3. The initial
unjammed packing was generated with the force-biased algorithm at a
density ¢ = 0.613.

configurations. In this paper, we use for hard spheres the term
“closest jammed configurations” instead of “inherent struc-
tures”. An inherent structure for an arbitrary configuration of
hard spheres is a jammed configuration that is the closest one
to the initial configuration, hence the term closest jammed
configuration.**

The paper is structured as follows. Before we present any
experimental results, we use Section II to start with definitions
that are relevant for the subsequent discussion. These include
closest jammed configuration, basin of attraction of a closest
jammed configuration, bounding region, bounding surface,
and others. We describe the methods that we use to generate
packings, to conduct equilibration, and to search for the closest
jammed configurations in Section III. Section IV contains the
results of packing generation, subsequent equilibration, and
searching for the closest jammed configurations. We discuss
these results in the same section. Section V presents a summary
and conclusions.

[I. Definitions

In this section, we briefly provide definitions needed for the rest
of the paper. A more elaborate discussion and precise mathe-
matical definitions of most of them can be found in our
previous paper.**

We rely on the phase space packing description introduced
by Salsburg and Wood®® and therefore use the terms “limiting
polytope”, “hypersurface”, and “hypercylinder” from their
paper. Particle velocities are not included in the phase space.
Under jamming, we understand collective jamming in packings
of frictionless particles.’’** A packing is called jammed if at
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least a subset of its particles is jammed; other particles are
referred to as rattlers. In this paper, we do not exclude rattler
particles from packings, when calculating packing densities.

We utilize the concept of inherent structures, initially
introduced by Stillinger for packings of particles with soft
potential.**** Inherent structures for such systems are local
potential energy minima in the phase space. The potential
energy in hard-sphere packings is replaced by the maximum
density that a packing can have at a given phase space point,
taken with the minus sign. The maximum density is calculated
by fixing particle coordinates and inflating particle radii until
the first contact between particles occurs. Inherent structures
for hard-sphere packings correspond to jammed configura-
tions.** To emphasize that we are investigating hard particles,
not particles with soft potential, we use below in this paper the
term “closest jammed configuration” instead of “inherent
structure”.

Each potential energy minimum can be associated with a
corresponding basin of attraction, i.e., the energy minimum of a
given basin of attraction is the termination point of energy
minimization—the steepest descent procedure—for any
configuration in this basin of attraction. The bounding region
of a given jammed configuration at a given density is by defi-
nition the intersection of this configuration’s basin of attraction
with the available phase space (wWhen contact hypercylinders for
the given density are excluded from the phase space). We define
bounding surfaces as surfaces of bounding regions. A bounding
region is closed if the bounding surface is fully formed by
hypercylinder surfaces.

We define the GCP limit (¢gcp) for sufficiently polydisperse
packings as the highest possible jamming density of these
packings." For monodisperse and slightly polydisperse pack-
ings, it is the highest jamming density that can be achieved if
crystallization is artificially suppressed." If crystallization is
allowed, the GCP limit is revealed by an entropy minimum.>**°
We define the RCP limit ¢gcp as the upper bound of the J-
segment.*>*>* Similarly, the lowest typical (LT) jamming
density ¢y is the lower bound of the J-segment.

We distinguish between typical basins of attraction and
untypical ones. Basins of attraction with jamming densities in
the range [¢rr, ¢rcp] are typical by definition; the others are
untypical. With increasing number of particles in the packings,
¢rcp 1S almost unchanged and ¢y increases.” Thus, we may
estimate ¢@gcp in the thermodynamic limit by the upper
boundary of the J-segment for sufficiently large finite packings.
In the present paper, we assume that the J-segment converges in
the thermodynamic limit to a single value ggrcp," though this
question is still discussed.** Let ¢nax be the highest possible
packing density for a given sphere diameter distribution: it is
the crystalline density (~0.74) for monodisperse packings and
¢occp for sufficiently polydisperse packings. Then, untypical
basins of attraction have jamming densities in the range [¢y,
orr) U (¢repy Pmax), Where ¢y, is the lowest jamming density,
which for monodisperse packings equals at least
V27/9 = 0.49365 (the density of tunneled crystals).?»*-4

Typical and untypical basins of attraction have just been
defined for Poisson packings, i.e., when the entire phase space
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is available or, in other words, when initial packing densities are
zero. Under typical closest jamming densities for non-zero
initial packing densities we understand the closest jamming
densities that will be almost always found for packings created
at a given density using a given algorithm, if it starts generation
at a Poisson configuration. If the jamming density of a bound-
ing region lies in the range [¢yr, ¢rcp), We refer to this region
and all the configurations in this region as liquid. Earlier, we
talked about the part of the phase space that is available at a
given density. Parts of the available phase space may be
completely separated with contact hypercylinders and may have
different properties. Thus, it is important to talk about the part
of the phase space that is achievable from a given type of
configuration. If a bounding region covers almost the entire
part of the phase space that is achievable from a given type of
configuration (at a given density), we call this region dominant.
Liquid, typical, and dominant basins of attraction coincide for
zero initial packing density.

[1l. Methods

A. Packing generation

Particles in our polydisperse packings have log-normal radii
distributions with standard deviations ¢ from 0.05 to 0.3 in
steps of 0.05 (the particle mean diameter is normalized to
unity). All packings are generated in a fully periodic cubic box
and contain 10" particles (¢f. Fig. 1). Packings are created in a
wide range of compression rates using the force-biased (FB)
protocol.””** This protocol is a modification of the Jodrey-Tory
algorithm.***® The FB algorithm starts from a random distri-
bution of particle centers in a simulation box. Each particle is
supplied with an inner diameter chosen to be proportional to
the desired particle diameter and to make particles in the
closest pair touch each other with their inner diameter shells.
Alternatively, a single inner diameter ratio can be specified for
the entire packing as the ratio of inner diameters to the desired
particle diameters. Similarly, a packing is supplied with an
outer diameter ratio, initially larger than unity. The initial outer
diameter ratio is chosen to ensure that the total volume of the
particles equals the box volume. Particles are also supplied with
elastic potential of the third order by overlap distance,*® which
is cut-off at the outer particle shell. It is now possible to
compute the forces between each pair of particles, as well as the
net forces for each particle. The algorithm is iterative and each
iteration proceeds as follows: (i) determine a net force for each
particle; (ii) displace all the particles by distances proportional
to the particles’ net forces and in the direction of the net forces;
(iii) decrease the outer diameter ratio according to a specified
contraction rate; and (iv) update the inner diameter ratio so that
the inner diameter shells for the pair of closest particles touch
each other. Though the inner diameter ratio may decrease
through the iterations, its value has an increasing trend. The
algorithm terminates when the outer diameter ratio is equal to
the inner diameter ratio. The lower the outer diameter ratio
contraction rate, the denser is the final configuration. The
source code used in this paper is available under the MIT free
software license.*
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B. Packing equilibration

Salsburg and Wood*® derived an equation of state for hard
spheres, p = 1 + 1/[(¢cj/9)"'? — 1], where p is the estimated
reduced pressure, ¢ is the current packing density, ¢y is the
(closest) jamming density for the polytope where the given
packing configuration resides, and d is the dimensionality of
the system.* The derivation of Salsburg and Wood*® assumes
that the pressure is stationary and packings are in equilibrium.
But all the packings produced in computer simulations or
experiments are intrinsically out of equilibrium,**** because the
generation process is non-stationary by definition, especially for
fast compressions. The pressure measured in the course of
packing generation should therefore not be used for the esti-
mation of ¢¢; or for the tracking of jamming; instead, packings
should be preliminarily equilibrated, i.e., exposed to molecular
dynamics simulation with zero compression rate until the
pressure is stationary. Equilibration moves the packing to
bounding regions that dominate the part of the phase space
achievable from an initial configuration.

We equilibrate the packings by performing sets of 2 x 10’
collisions with zero compression rate in a loop until the relative
difference of reduced pressures in the last two sets is less than
107, so the pressure can be regarded as stationary. More
precisely, to measure the pressure during 2 x 10’ collisions, we
average pressures for 100 sub-sets of 2 x 10° collisions, which
amounts to 20 collisions in a sub-set per particle. We use our
own implementation®* of the Lubachevsky-Stillinger (LS)
packing generation algorithm®** to carry out the equilibration.

C. Searching for the closest jammed configurations

To search for the closest jammed configurations, we do
not follow the definition of these configurations through
the steepest descent energy minimization, but modify the LS
algorithm instead. We run the LS algorithm with a high
compression rate of 10, until the non-equilibrium reduced
pressure reaches a conventional high value of 10", then
decrease the compression rate by a factor of two and run the LS
algorithm again, until the pressure is high enough again (10'?).
We repeat this procedure until the compression rate is <107,
The Boltzmann constant and masses of all particles are set to
unity; the temperature is set to 0.2. Fast compressions at the
beginning of the search make the initial bounding region
collapse as much as possible and at the same time retain the
configuration point in this bounding region. Slow compres-
sions at the end of the search allow arriving at a truly jammed
configuration. The details and validation of this algorithm are
provided in our previous paper.** There we ensured that the
distribution of closest jamming densities for packings before
equilibration is independent of a particular set of algorithm
parameters in a wide range of the latter. We did not repeat this
validation for equilibrated packings, as packings before equili-
bration in the previous paper covered the entire range of poly-
dispersities as well as the entire range of initial and final
packing densities considered in the present paper. Searching
for the closest jammed configurations after equilibration
produces dominant jamming densities.

This journal is © The Royal Society of Chemistry 2014
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V. Results and discussion

In this section, we present the results of the packing equili-
bration and of searching for the closest jammed configurations
of the equilibrated packings. We give an overview of the data in
Subsection A (Data overview), analyze the data in Subsection B
(Data analysis), test our conclusions for independence from the
packing generation protocol in Subsection C (Protocol inde-
pendence), and finally provide a schematic diagram with the
phase space structure in Subsection D (Schematic phase space
structure). At the end of the section, in Subsection E (Applica-
bility of liquid equations of state), we check if it is possible to
recover the properties of the phase space through comparison
of the reduced pressure to predictions from liquid equations of
state. To ease the reading of this section, we provide with Table
1 an overview of the symbols used below. Some of them have
already been introduced, others will be defined later.

A. Data overview

The dependence of initial packing densities ¢ on the inverse
compression rate v~ ' for packings produced with the FB algo-
rithm is shown in Fig. 2a. Even before equilibration, we
searched for the closest jamming densities ¢¢; for these pack-
ings, as described in Section III C; Fig. 2b depicts for these
packings the closest jamming densities ¢¢y vs. initial packing
densities ¢. Then, we equilibrated the initial packings in Fig. 2a
and calculated closest jamming density estimates ¢z from the
equation of state by Salsburg and Wood, as described in Section
III B. Closest jamming density estimates after equilibration ¢;
vs. initial packing densities ¢ are shown in Fig. 2c. Finally, we
searched for the actual closest jammed configurations of the
equilibrated packings (dominant jammed configurations).
Dominant jamming densities ¢; vs. initial packing densities ¢
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are shown in Fig. 2d. The same four plots, built vs. y*, can be
found in the Appendix.

We did not average the data in Fig. 2; each point in these
figures corresponds to a single packing. To guide the eye,
points have been connected by straight lines. Averaging
assumes that fluctuations in the data will disappear in the
thermodynamic limit. This question is still unresolved.*>** If
fluctuations disappear for infinite packings, averaging also
assumes that the noise stemming from finite-size effects is
symmetrical around the true value. This is not the case for the
closest jamming densities of Poisson packings: the J-segment
decreases with the increase of the number of particles, but its
upper boundary ¢grcp is almost unchanged, only the lower
boundary ¢y is moving upwards." Thus, averaging would not
produce meaningful results; taking the upper boundary of the
J-segment instead will give a better estimate of ¢rcp in the
thermodynamic limit. Additionally, averaging would remove
the information about the exact boundaries of jamming
intervals for finite packings.

The RCP densities prcp are included as horizontal lines on
the left side of the plots in Fig. 2. Similarly, the GCP densities
¢ccp are shown as horizontal lines on the right side of these
plots. We determined the RCP limits as the upper boundaries
of the horizontal parts of the plots in Fig. 2b, because the
horizontal parts of the plots correspond to the closest
jamming densities of Poisson packings.'* We determined the
GCP limits for ¢ = 0.05 by asymptotically expanding the plots
o(y™") (Fig. 2a) and ¢¢(y~") (Fig. 7b in the Appendix) into
infinite generation time or zero compression rate. @gcp
for monodisperse packings was taken at the value of a
structural transition ¢ = 0.65.'***73° More details on the
determination of ¢rcp and @gcp can be found in our previous
paper.**

Table 1 Important symbols used in the text

Values
Symbol Brief description Key figures and tables forec =0
a Standard deviation of the log-normal particle radii distributions
Y Compression rate for initial packing generation X-axis in Fig. 2a and 7
@ Initial packing density after force-biased generation Y-axis in Fig. 2a, X-axis in

Fig. 2b-d
@y Closest jamming density of a packing Y-axis in Fig. 2b
@5 Dominant jamming density of a packing Y-axis in Fig. 2d
QLT Lowest typical jamming density
Prcp Random-close packing limit (J-point"®) Left sides of Fig. 2b-d ~0.64
PGep Glass close packing limit Right sides of Fig. 2b-d; ~0.65
Table 2
PHCP Crystalline packing density for monodisperse packings (FCC or HCP crystals) ~0.74
$Pmax Highest packing density: ¢ucp for monodisperse packings, ¢gcp for sufficiently ~0.74
polydisperse packings
oL Lowest possible jamming density, at least 2/3x@ycp for monodisperse packings ~0.49
(density of tunnelled crystals*?)

Pm Melting transition density (onset of crystallization) Fig. 2c and d ~0.545
Pott Offset of crystallization Fig. 2c and d ~0.61
o Freezing transition density Fig. 4 ~0.494
@g Ideal glass transition density. ¢j(¢g) = @acp Fig. 2¢ and d; Table 2 ~0.585
omer Density at which available phase space becomes relatively disjoint. ¢y(¢ < ¢mcr) = @rcp Fig. 2c and d ~0.52

This journal is © The Royal Society of Chemistry 2014

Soft Matter, 2014, 10, 7838-7848 | 7841


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4sm01439a

Open Access Article. Published on 05 August 2014. Downloaded on 10/18/2025 12:06:38 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

0.72 - . .
o o |nitial FB packings

07 L —00 —o02 i
s —041 —025
2 068 | =015 —03 Pocel (*
@ Prcp(0 = 0.3)
3 0.66
=
2
S 0.64
o
£ 0.62
£

0.6

0.58 : : ;

10° 10°* 10° 10° 10

Inverse compression rate, '

0.73
0.72
0.71
0.7
2 0.69
b5
S 0.68
o
: 0.67
& 0.66
& 0.65
£
£ 0.64
© 0.63 B Pee

0.46 0.5 0.55 0.6
Initial packing density, @

(23

ty estimate

in

-1

Fig.2 (a) Initial packing density ¢ vs. inverse compression rate y

View Article Online

Paper
0.69 y T — T
5 —05 Densified
0.68 | ’ | Pocp(0=00.3).
. —01 —025
—015 —03

0.67 | Prep(0=0.3)

N
\ P

H\l

J'm ‘ "
.\“(‘)‘ﬁ“ J\‘/ \:‘.J AN, \"JN‘A‘L/“\,/‘I/\\\V‘IVI'. v A V ‘{J‘V \_/\/WQJW"L M [“,{‘J‘W

Closest jamming density, ¢,
o
D
(2]

0.65 p—
0.64 f 4
o (D)

0.63 " . . .

0.46 0.5 0.55 0.6 0.65 0.7

Initial packing density, @
0.72 — T :
Equilibrated
0.71
and

07T densified
0.69
0.68

0.67 | Prcp(0=0.3)

0.66 £y WSSV, VY
0.65 AN K
oos BRI (d)
565 Puct Pm(0 =0) 90T 03) ,

0.55 0.6 0.65 0.68
Initial packing density, ¢

Dominant jamming density, ¢,

0.46 0.5

. (b) Closest jamming density before equilibration ¢cj vs. initial packing density

@. (c) Closest jamming density estimate after equilibration ¢ vs. initial packing density ¢. (d) Closest jamming density after equilibration ¢; vs.
initial packing density ¢. All the packings were generated with the force-biased (FB) algorithm. Colours for the different standard deviations ¢ of
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B. Data analysis

The closest jamming densities of initial packings (without
preliminary equilibration), Fig. 2b, belong to the interval [¢r,
¢rcp] for ¢ = 0.61 in the case of monodisperse packings and for
¢ = 0.63 for packings with ¢ = 0.3. We may say that for these
initial densities liquid bounding regions are typical for the FB
algorithm. When we talk about available phase space below in
this section, we will always mean available and achievable from
the configurations typical for the FB algorithm (which are liquid
for ¢ < [0.61, 0.63], the exact value depending on ¢). In the
remainder of the paper, we focus on Fig. 2d.

Spontaneous crystallization, estimation of ¢,, and ¢. For
monodisperse packings, bounding regions of configurations
with crystalline inclusions dominate the available phase space
in the density range ¢ = 0.54-0.61 (¢ = 0, red line in Fig. 2d). It
is manifested by a sudden departure of the ¢;(¢) plot up to
almost crystalline densities. This interval conforms to other
studies of spontaneous crystallization and crystal nucleation.>®
These studies show that the crystal nucleation rate in mono-
disperse hard sphere packings is negligible for ¢ < 0.54, then

grows rapidly at ¢ = 0.54 and reaches a plateau, and then

7842 | Soft Matter, 2014, 10, 7838-7848

rapidly decreases at ¢ = 0.61.° The density ~0.54 is interpreted
as the melting transition density ¢, (dedicated studies produce
the value ¢,,, = 0.545 (ref. 1, 4, and 9) for monodisperse pack-
ings). The density ¢ = 0.61 was earlier interpreted as the (ideal)
glass transition density ¢, for monodisperse hard spheres,*
which is usually detected by a rapid decrease of compressibility
or self-diffusivity. Recent accurate studies show that the ideal
glass transition occurs at ¢, = 0.585, while at the same time
crystallization is prevented after ¢ = 0.61.°® Thus, we refer to ¢
=~ 0.61 as the density of the offset of crystallization @ The
interval of densities where bounding regions of configurations
with crystalline inclusions dominate the phase space of pack-
ings with ¢ = 0.05 is ¢ = 0.56-0.58, which can be seen in a
sudden departure of the dominant jamming densities in the
plot ¢;(¢) (cyan line in Fig. 2d). This range is also consistent
with other results (¢ = 0.56-0.59).”°® Our data report that
crystallization becomes impossible for a certain ¢ in the range
(0.05, 0.1). Nucleation studies determine that crystallization in
packings with Gaussian diameter distribution becomes impos-
sible for ¢ = 0.07,”*® which conforms to our results (though
we investigate log-normal sphere diameter distributions, for such
a small polydispersity the two distributions almost coincide).

This journal is © The Royal Society of Chemistry 2014
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Change in the phase space structure at ¢pcr = 0.52. For ¢ =
0.52, the available phase space is strongly connected and
dominated by liquid bounding regions for all the packing types.
Thus, the closest jamming densities after equilibration are
always obtained in the range of liquid jamming densities, ¢; €
[@rT, @rep)- Starting from a certain density ¢ = 0.52, the interval
of dominant jamming densities moves upward, and starting
from a slightly higher characteristic density the dominant
jamming density ¢; is always higher than ggrcp. It means that
none of the liquid bounding regions participate in dominating
the available phase space any longer. Packings with slight
polydispersity ¢ = 0.05 clearly demonstrate that the onset of
crystallization does not coincide in general with this charac-
teristic density associated with the changes in the structure of
the phase space. Changes in the phase space at ¢ = 0.52,
independent of the particle size distribution, are predicted
under certain assumptions by the mode-coupling theory;”**
thus, we denote this transition density with ¢ycr. We assume
that bounding regions become relatively disjoint at this density
(i.e., the fraction of the “wormholes” in bounding surfaces
becomes low)."! We show later, in Subsection D, that the avail-
able phase space truly splits into disconnected portions and
becomes non-ergodic only at the ideal glass transition density
@4, which for monodisperse packings equals ~0.585.

Glass close packing limit, estimation of ¢gcp. For packings
with ¢ = 0.1 and ¢ = @ycr, the jamming density of the domi-
nant bounding regions increases and reaches maxima at certain
densities depending on ¢. We associate these maxima in Fig. 2d
with the GCP limits ¢gcp (and corresponding packing configu-
rations with the ideal glass), as the GCP limits for packings
where crystallization is impossible are by definition the highest
jamming densities of these packings. For packings with ¢ =
0 and ¢ = 0.05 crystallization effects are superimposed on the
¢5(¢) plots in Fig. 2d. For monodisperse packings crystallization
is no longer possible at ¢.¢ = 0.61. To the right of this density
the dominant jamming density ¢; is ~0.65, which also
conforms to the density of the onset of crystalline inclusions in
jammed packings and the density where the entropy is minimal
¢cep = 0.65.'*?27° For polydisperse packings with ¢ = 0.05,
crystallization is superimposed on the ¢;(¢) plot in the range ¢
~ 0.56-0.58, but it does not cover the local maximum ¢; =
0.652 at ¢ = 0.586; so we attribute ¢; = 0.652 to the GCP limit
of particles with ¢ = 0.05. The estimates of the GCP limits
compare very well with the GCP limit estimates from our
previous paper,* where we extrapolated the closest jamming
densities of computer-generated packings with ¢ = 0.05 to
infinite generation time. The values from our previous paper**
are displayed as the lines of corresponding color to the right of
Fig. 2d. The differences between the two estimates are <10~> for
all the packing types.

Ideal glass transition, estimation of ¢,. The initial packing
density ¢ for which the dominant jamming density reaches its
maximum is called the density of the ideal glass transition ¢,.
It is usually measured through the jump in compressibility
and divergent alpha-relaxation time."*”'® We estimated ¢g
from Fig. 2d in the following way: (i) first, we took the data
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points ¢j(¢) from Fig. 2d in the vicinity of the expected ideal
glass transitions (i.e., in the interval £0.02 around the global
maxima of the ¢;(¢) plots); (ii) then, we selected local maxima
from these data points (because local maxima represent upper
boundaries of jamming intervals at each ¢); and (iii) fitted
these local maxima with third-order polynomials and found
the positions of maxima for these polynomials. We consider
these positions of maxima as the estimates for ¢4, which are
depicted in Fig. 3. We fitted ¢, for ¢ = 0.05 with the third-order
polynomial and display it in Fig. 3 as well. The extrapolation of
this polynomial to monodisperse packings gives a value ¢, =
0.585. We assume that if crystallization is artificially sup-
pressed in monodisperse packings (e.g., by pinning a certain
fraction of particles®”), the ¢;(¢) plot will look similar to those
for polydisperse packings with ¢ = 0.1, reaching its maximum
value at ¢ = ¢, = 0.585 with ¢j(¢,) = @gcp = 0.65. It would
explain why crystalline inclusions appear in generated pack-
ings (prior to equilibration) only at the initial density ¢ = ¢gcp
= 0.65:"*>3% if pgcp = 0.65 is the highest (jamming) density
for monodisperse packings with suppressed crystallization,
the only way to produce denser packings—for protocols that
try to avoid crystallization as long as possible—is to introduce
crystalline inclusions in the packing structure. We provide the
values for ¢, and ¢gcp obtained so far in Table 2. Our data
comply well with predictions from the mode-coupling theory,**
simulations and experimental observations of divergent
relaxation times: ¢, = 0.582 is reported for packings of 10°
particles with uniform distribution having ¢ = 0.082;"* ¢, =
0.59 is reported for a binary 50 : 50 mixture of 10> particles
with diameter ratio 1.4;" ¢, = 0.585 and 0.586 are reported for
packings of 2 x 10° particles with Gaussian distributions of &
= 0.07 and 0.085, respectively.” We display these values in
Fig. 3 as well. For binary mixtures, ¢ is computed as the
standard deviation of corresponding discrete probabilities of
encountering a specific sphere radius.

0.625 T T T T T
D
s 0% Present work
_72;‘ 0615 O Simulations
. 061  — Polynomial fit 1
g O Fit value forc =0
2 06051 Offset of 1
§ 0.6 crystallization for 0 = 0 Other
2 0.505 | studies |
E) .
= 059} +U‘n|form
g - Binary
0.585( O [J Gaussian
+
0.58 : . : . .
0 0.05 0.1 0.15 0.2 0.25 0.3
Particle radii standard deviation, o
Fig. 3 Ideal glass transition density ¢4 vs. sphere radii standard devi-

ation ¢ of the log-normal radii distributions (O). Values of ¢4 are
summarized in Table 2. Estimates for ¢4 from other works are also
presented: 10 particles with uniform distribution (+);%2 binary 50 : 50
mixture of 10° particles with diameter ratio 1.4 (x);** and 2 x 10°
particles with Gaussian distribution ([1).”
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Table 2 Ideal glass transition densities ¢4 and corresponding ideal
glass densities pgcp for packings of hard frictionless spheres with log-
normal sphere diameter distributions having different diameter stan-
dard deviations ¢ (as indicated). ¢q vs. ¢ is plotted in Fig. 3

4

0 0.05 0.1 0.15 0.2 0.25 0.3
Qg 0.585 0.586 0.59 0.595 0.602 0.61 0.622
¢cep  0.65 0.6518 0.6549 0.6596 0.6645 0.6711 0.6779

We can now call the basins of attraction, the bounding
regions, and all the configurations with ¢; € (¢rcp, @ccp] as
glassy, for both monodisperse and polydisperse packings. This
definition conforms to the fact that for ¢ = 0.1 and ¢ > ¢ycr
glassy bounding regions dominate the available phase space
instead of liquid bounding regions. For monodisperse packings
it also conforms to the fact that crystalline inclusions appear in
jammed packings only for ¢ > @gcp.>>**>****° In our previous
paper,** we referred to the states in closed bounding regions as
glassy (following Parisi and Zamponi' and Brambilla et al'')
because for such states there is only one jammed configuration
in the achievable phase space and the configurational entropy is
zero. This definition is unsuitable in the light of the current
results, as the states in closed liquid bounding regions (that
dominate the phase space for ¢ = ¢ycr) would be called glassy
as well.

C. Protocol independence

To check if our results are protocol-dependent, we did the
following: we (i) took the densest jammed packings obtained in
Fig. 2 (the FCC crystal for monodisperse packings, the densest
partially crystallized packing for ¢ = 0.05, and the ideal glass
packings for ¢ = 0.1); (ii) proportionally reduced the radii of the
particles in these packings to produce unjammed packings in
the entire range of densities starting from ¢ = 0.4 (we call these
packings “diluted densest packings”, they represent a
completely different packing generation protocol); and (iii)
repeated the procedure for Fig. 2d, i.e., we equilibrated these
packings and searched for the closest jammed configurations ¢;
for the equilibrated packings. Fig. 4 depicts the plot ¢;(¢) for
these diluted densest packings. The horizontal lines to the left
and to the right of the figure represent the RCP and GCP limits
from Fig. 2d.

Monodisperse packings exhibit a well-known freezing tran-
sition at ¢y = 0.5 (the value obtained in dedicated studies is
~0.494).*° Polydisperse packings with ¢ = 0.05 exhibit a
freezing transition at ¢y = 0.52. For ¢ = 0.05 and ¢ > ¢y, the
achievable phase space is dominated by the bounding regions
of the densest configurations. For ¢ = 0.05 and ¢ = ¢y, the
achievable phase space is dominated by liquid basins of
attraction. The plots in Fig. 2d for ¢ = 0.05 differ from Fig. 4 for
© € [@f, ®m] U [@ott, Pmax]- For these ¢, the bounding regions for
the densest configurations dominate the achievable phase
space in Fig. 4 but are not achievable from the initial configu-
rations in Fig. 2d.
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Fig. 4 Closest jamming density after equilibration ¢, vs. initial packing
density ¢. Colors for the different standard deviations ¢ of the log-
normal particle radii distributions are depicted in the legend. All the
initial packings were created by proportional decrease of the radii of
the densest jammed packings of a corresponding g (represented as the
global maxima of the plots in Fig. 2d).

For polydisperse packings with ¢ = 0.1 and ¢ = ¢, the plots
in Fig. 4 are qualitatively and quantitatively similar to the ones
in Fig. 2d (see the RCP and GCP lines from Fig. 2d in Fig. 4). It
means that the conclusions reached in Subsection B (Data
analysis) are protocol-independent for these packings; the
dominant jamming density does not depend on the initial
packing configuration, which determines the achievable
portion of the phase space. Thus, we may draw our conclusions
in Subsection C for ¢ = 0.1 and ¢ = g, for the entire available
phase space. For ¢ > ¢y, the plots differ: the dominant jamming
density depends on the initial packing configuration. For
diluted densest packings with ¢ = 0.1 and ¢ > ¢, the achievable
phase space is dominated by the bounding regions of the ideal
glass. It is sometimes argued that the available phase space is
fully connected for ¢ =< ¢, and splits into disconnected portions
at @g."

These results comply with the general agreement that the
available phase space is ergodic at ¢ = ¢,.” For packings that
allow crystallization and for which ¢ > ¢4, One may assume
that ergodicity breaks at ¢o, when the ¢;(¢) plot becomes
protocol-dependent. It was a general assumption in the
colloidal literature as well, but recent careful studies of diffu-
sion dynamics show that ergodicity for such packings breaks
already at ¢,.”

D. Schematic phase space structure

Finally, we present a schematic image with the phase space
structure, where we incorporate all the results obtained so far
(Fig. 5). We assume that packings that allow crystallization (¢ =
0.07) are initially generated in liquid bounding regions for ¢ €
[@f, @ofi] (as it occurs in Fig. 2d); thus, melting transition and
crystallization offset are exhibited for such packings, but not a
freezing transition (as it occurs in Fig. 4). Symbols for different

This journal is © The Royal Society of Chemistry 2014
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Fig.5 Schematic jamming phase diagram for frictionless hard-sphere
packings, depicting dominant jamming density ¢; vs. initial packing
density ¢. Opaque areas represent jamming densities that do not
dominate the phase space. Red dashed line and red opaque area refer
to packings which allow crystallization. ¢ is the lowest jamming
density, prcp is the random close packing limit (the J-point), pgcp is the
glass close packing limit, pmax is the highest jamming density, mcT is
the density of transition from liquid to glass, ¢, is the melting transition
density (onset of crystallization), ¢4 is the ideal glass transition density
for packings where crystallization is impossible, and ¢ is the density
of the offset of crystallization.

characteristic densities are displayed to the left and below the
image. We provide the corresponding values for monodisperse
packings to the right and above the image. All the characteristic
densities have already been introduced; we only mention that
under @, for ¢ < 0.05 we understand the ideal glass transition
densities from extrapolating the ¢,(o) plot to ¢ < 0.05, as done in
Fig. 3 (which corresponds to divergent alpha-relaxation time). If
crystallization is impossible, the protocol-dependent (non-
ergodic) region for the ¢;(¢) plot is ¢ > ¢, (as depicted at the top
of Fig. 5). For packings that allow crystallization and for which
Pott > Pg, we follow Zaccarelli et al.” and assume that ergodicity
and protocol independence break at ¢, as well.

We assume in Fig. 5 that in the thermodynamic limit the J-
segment [¢rr, @rcp] converges to a J-point (¢rcp);'® we also
assume that the dominant jamming density for any given initial
density converges to a point in the thermodynamic limit as well.
Opaque areas represent the jamming densities that do not
dominate the phase space, but whose basins of attraction are
available. Opaque areas are protocol-independent. The red
dashed line and the red opaque area refer to packings that allow
crystallization.

The procedure that we used to produce Fig. 2d can be
extended to particles with soft potential. In that case, it is
necessary to use the particle number density p instead of
volume density ¢. For each number density p and tempera-
ture T, one shall sample the phase space according to the
usual equilibrium distribution of states in the canonical
ensemble. For each sampled configuration, one shall perform
the steepest descent in the potential energy landscape

This journal is © The Royal Society of Chemistry 2014
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(infinitely fast quenching) and track the value of the obtained
potential energy minimum U. Presumably, these values will
be distributed in one or several narrow intervals around some
dominant minima U(p, T). There may be more than one of
them at a given p and T if the phase space is not ergodic.
Particle interactions are usually pair-wise; typical model
potentials for interactions between soft particles are
Gaussian core potential®®**® and inverse-power potential.®®*
An example for the rapid quenching of several equilibrated
monodisperse two-dimensional packings with Gaussian core
potential can be found in Stillinger and Weber.>” The poten-
tial energy of interaction between two particles in inverse-
power law systems is ¢(D/r)", where r is the distance between
the two particles and ¢, D, and n are parameters of the
potential. Inverse-power law systems have a convenient
scaling property. Specifically, it can be shown that all
dimensionless excess thermodynamic properties of these
systems depend only on a dimensionless reduced number
density p» = pDY(e/kT)", where d is the packing dimen-
sionality and k is the Boltzmann constant.®>** For poly-
disperse packings, D depends on a given particle pair, but it
can be split into a dimensionless pair-dependent part and a
dimensional pair-agnostic part, of which the latter shall be
used for calculating p+. Thus, the plot U(p, T) will be trans-
formed into Us(p+), where Us is a dominant dimensionless
potential energy minimum. We assume that this plot will
resemble Fig. 5, only with inverted Y-axis, as far as for hard
spheres we defined U = —¢,. Previous papers on particles
with soft potentials typically focused on the distinction
between liquid and crystalline phases.>®*®*** We believe that
finding dominant potential energy minima and building U(p,
T) plots may shed light on other important properties of such
systems, including the ideal glass transition and the
distinction between liquid and glass phases.

E. Applicability of liquid equations of state

At the end of this paper, we investigate for which density ranges
liquid equations of state are applicable to the hard-sphere
packings under study. We compared reduced pressures p(¢) in
equilibrated packings (i.e., before densification) from Fig. 4
(diluted densest packings) with values analytically predicted by
equations of state for hard spheres. There are many liquid
equations of state for polydisperse packings.®* We confirm
that eqn (9)-(13) from Ogarko and Luding® produce very
similar results, as well as eqn (6) from Mansoori et al.®
We use the simplest of these equations of state, the one
of Boublik-Carnahan-Starling-Mansoori (eqn  (4) in
Boublik® or eqn (9) in Ogarko and Luding®):
2 2

! + 04 3¢ 5+ 02(p S (z),where 0, = r(r®)
1-9¢ 1-9) (1-9) (r?)

2\3
and O, = §r3i2; (r') is the ith raw moment of the distribution of
r
particle radii ». We calculated relative differences 6 between
experimental and theoretically predicted reduced pressures, 6 =
|p(@) — Pes(®)|/pes(e), and present in Fig. 6 the d(¢) plots for
different o.

Des(9) =
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Naturally, the reduced pressure in all the equilibrated
packings at low densities is very close to the theoretical
prediction; pressures differ by no more than 1% (6 =< 0.01).
Pressure in packings that allow crystallization (¢ < 0.1) starts to
deviate from theoretical predictions at ¢r. Later on, we will
discuss only packings with ¢ = 0.1, because crystallization
effects are not superimposed on their 6(¢) plots. Surprisingly,
theoretical predictions for p(¢) for these packings remain valid
with the same high accuracy § = 0.01 even for ¢ > ¢@pcr, until ¢
reaches certain values depending on o (Fig. 6). More precisely, 6
is 0.01 at ¢ = 0.581, 0.587, 0.591, 0.596, and 0.602 for ¢ = 0.1,
0.15, 0.2, 0.25, and 0.3, respectively. Selecting a different
threshold than ¢ = 0.01 to consider deviations in reduced
pressures as high leads to slightly different results. For example,
6 is 0.06 at ¢ = 0.588, 0.596, 0.602, 0.612, 0.622, for ¢ = 0.1,
0.15, 0.2, 0.25, and 0.3, respectively (Fig. 6). These values of ¢
are very close to ¢, from Table 2 for the corresponding o.
We confirm that the reduced pressure for equilibrated
packings from Fig. 2c with ¢ = 0.1 exposes behavior that is
qualitatively and quantitatively similar to the one in Fig. 6
(data not shown).
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Fig. 7 (a) Initial packing densities ¢ vs. the inverse compression rate y . (b) Closest jamming densities before equilibration ¢c; vs. the inverse

compression rate vyt

. (c) Closest jamming density estimates after equilibration @,¢ vs. the inverse compression rate y~*

. (d) Closest jamming

densities after equilibration ¢ vs. the inverse compression rate y 2. All the packings were generated with the force-biased (FB) algorithm. Colours
for the different standard deviations ¢ of the log-normal particle radii distributions are depicted in the legend.
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V. Summary and conclusions

We computer-generated monodisperse and polydisperse
frictionless hard-sphere packings of 10* particles with log-
normal particle diameter distributions in a wide range of
densities ¢ (for monodisperse packings ¢ = 0.46-0.72). Then
we equilibrated these packings and searched for their
closest jammed configurations (inherent structures of hard
spheres).

We found that the available phase space is dominated at ¢ =
0.52 by liquid bounding regions with jamming densities ¢; €
[oLr, @rep] (@ur = 0.635 and ¢grcp = 0.64 for monodisperse
packings). At ¢ = 0.52, independent of the particle radii
distribution, the structure of the available phase space changes:
bounding regions become relatively disjoint (i.e., the fraction of
the “wormbholes” in bounding surfaces becomes low). The value
for this density, also independent of the particle radii distri-
bution, is predicted under certain assumptions by the mode-
coupling theory. Thus, we refer to this transition density as
¢omct = 0.52.

For ¢ > ¢mcr, the dominant jamming densities ¢; increase
with ¢ and the available phase space is dominated by basins
of attraction that we call glassy. When ¢ reaches the ideal
glass transition density ¢, ¢y reaches the ideal glass density
(the glass close packing limit) ¢gcp, so that the available
phase space is dominated at ¢, by the basin of attraction of
the ideal glass. ¢, and @gcp depend on the particle size
distribution. For packings with sphere diameter standard
deviation ¢ = 0.1, ¢gcp = 0.655 and ¢, = 0.59. For mono-
disperse and slightly polydisperse packings, crystallization is
superimposed on these processes: it starts at the melting
transition density ¢, and ends at the crystallization offset
density ¢, For monodisperse packings, ¢, = 0.54 and ¢
=~ 0.61. If we extrapolate the ideal glass transition densities
¢, for polydisperse packings to ¢ = 0 (monodisperse pack-
ings), we obtain ¢, = 0.585, in agreement with experiments
and simulations on divergent alpha-relaxation time and the
jump in compressibility. We verified that the results for
packings with ¢ = 0.1 and ¢ = ¢, are independent of a
packing generation protocol.

We also discovered that the reduced pressure in equilibrated
packings complies with liquid equations of state for hard
polydisperse spheres for ¢ > gypcr. Thus, the comparison with
liquid equations of state is not sensitive enough to reveal the
changes in the structure of the available phase space at ¢ucr,
which are detected by dominant jamming densities.

VI. Appendix
A. Densities vs. inverse compression rate

In Fig. 7, we provide the same plots as in Fig. 2, but built vs. the
inverse compression rate y ', not vs. initial packing densities ¢
(as done in Fig. 2b-d). Fig. 7b shows the ¢;(y~") plots that we
used to estimate the GCP limits by asymptotic expansion to
infinite generation time or zero compression rate. The plots in
Fig. 7b have a structure predicted by Parisi and Zamponi*
(Fig. 2a in that paper).
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