
Soft Matter

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
A

ug
us

t 2
01

4.
 D

ow
nl

oa
de

d 
on

 1
/1

8/
20

26
 1

:5
1:

15
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
On the jamming
Department of Chemistry, Philipps-Univer

35032 Marburg, Germany. E-mail: tallare

28-27065; Tel: +49-6421-28-25727

Cite this: Soft Matter, 2014, 10, 7838

Received 2nd July 2014
Accepted 4th August 2014

DOI: 10.1039/c4sm01439a

www.rsc.org/softmatter

7838 | Soft Matter, 2014, 10, 7838–784
phase diagram for frictionless
hard-sphere packings

Vasili Baranau and Ulrich Tallarek*

We computer-generated monodisperse and polydisperse frictionless hard-sphere packings of 104 particles

with log-normal particle diameter distributions in a wide range of packing densities 4 (for monodisperse

packings 4 ¼ 0.46–0.72). We equilibrated these packings and searched for their inherent structures,

which for hard spheres we refer to as closest jammed configurations. We found that the closest jamming

densities 4J for equilibrated packings with initial densities 4 # 0.52 are located near the random close

packing limit 4RCP; the available phase space is dominated by basins of attraction that we associate with

liquid. 4RCP depends on the polydispersity and is �0.64 for monodisperse packings. For 4 > 0.52, 4J

increases with 4; the available phase space is dominated by basins of attraction that we associate with

glass. When 4 reaches the ideal glass transition density 4g, 4J reaches the ideal glass density (the glass

close packing limit) 4GCP, so that the available phase space is dominated at 4g by the basin of attraction

of the ideal glass. For packings with sphere diameter standard deviation s ¼ 0.1, 4GCP z 0.655 and 4g z

0.59. For monodisperse and slightly polydisperse packings, crystallization is superimposed on these

processes: it starts at the melting transition density 4m and ends at the crystallization offset density 4off.

For monodisperse packings, 4m z 0.54 and 4off z 0.61. We verified that the results for polydisperse

packings are independent of the generation protocol for 4 # 4g.
I. Introduction

Frictionless hard-sphere packings represent a useful model for
atomic systems, liquids, glasses, and crystals,1 aside from being
a system directly utilized in materials science and chemical
engineering.2,3 This simple yet powerful model exhibits a range
of diverse phenomena, including melting and freezing transi-
tions,1,4–9 the ideal glass transition,1,7,10–13 the ideal glass or the
glass close packing (GCP) limit,1,14 as well as the random close
packing (RCP) limit.1,14–16

There are several attempts to merge the multitude of these
effects into a single picture.1,10 It is a difficult task, as signicant
debate on some of the concepts above is underway. The rst big
challenge is the denition and determination of the RCP limit.
For monodisperse particles, there exist at least three estimates
for the RCP limit, with distinct densities 4: (i) 4 ¼ 0.634–
0.636;2,16–18 (ii) 4 z 0.64;15,19–21 and (iii) 4 z 0.65.22–29 In our
previous studies,14,30 we suggested that 4 z 0.64 and 4 z 0.65
refer to different phenomena and represent the RCP limit 4RCP

(in the sense of the J-point15) and a lower bound of the GCP limit
4GCP,1 respectively. It implies that random jammed packings
can systematically be produced at any density in the range
[4RCP, 4GCP].1,10,31 The denition and determination of the GCP
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limit and the corresponding ideal glass transition represent the
second actively discussed topic,1,10,32 stemming from research
on glasses and colloids. It is debated whether the ideal glass
exists and if so, what is the density of the ideal glass transition.
It is unclear if there are multiple glassy states and what is the
lowest glass transition density.

We believe that the RCP and GCP limits shall be studied
together, as a part of the systematic investigation of the phase
space structure for hard spheres. At each packing density 4, the
phase space has areas corresponding to valid packing congu-
rations. These areas comprise basins of attractions of jammed
congurations.33–35 Some of these basins dominate the available
phase space. Thus, one of the characteristics of the phase space
at a given 4 is the jamming density of these dominant basins of
attraction, 4J. The main objective of this paper is to build a map
from 4 to 4J for a wide range of initial densities 4.

With this intention to study the structure of the phase space
for hard spheres from rst principles, we computer-generated
monodisperse and polydisperse frictionless hard-sphere pack-
ings of 104 particles (cf. Fig. 1) over a wide range of densities 4
(for monodisperse packings 4 ¼ 0.46–0.72). Polydisperse
particles have log-normal diameter distribution with diameter
standard deviation s from 0.05 to 0.3 in steps of 0.05. Then, we
equilibrated these packings to let packing congurations arrive
at the basins of attraction of inherent structures33–35 that
dominate the phase space at given densities. Finally, we
searched for the inherent structures of these equilibrated
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Closest jammed configuration at a density 4 ¼ 0.662 for a
random packing of 104 polydisperse spheres. The sphere radii distri-
bution is log-normal and has a standard deviation s ¼ 0.3. The initial
unjammed packingwas generated with the force-biased algorithm at a
density 4 ¼ 0.613.
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congurations. In this paper, we use for hard spheres the term
“closest jammed congurations” instead of “inherent struc-
tures”. An inherent structure for an arbitrary conguration of
hard spheres is a jammed conguration that is the closest one
to the initial conguration, hence the term closest jammed
conguration.14

The paper is structured as follows. Before we present any
experimental results, we use Section II to start with denitions
that are relevant for the subsequent discussion. These include
closest jammed conguration, basin of attraction of a closest
jammed conguration, bounding region, bounding surface,
and others. We describe the methods that we use to generate
packings, to conduct equilibration, and to search for the closest
jammed congurations in Section III. Section IV contains the
results of packing generation, subsequent equilibration, and
searching for the closest jammed congurations. We discuss
these results in the same section. Section V presents a summary
and conclusions.
II. Definitions

In this section, we briey provide denitions needed for the rest
of the paper. A more elaborate discussion and precise mathe-
matical denitions of most of them can be found in our
previous paper.14

We rely on the phase space packing description introduced
by Salsburg and Wood36 and therefore use the terms “limiting
polytope”, “hypersurface”, and “hypercylinder” from their
paper. Particle velocities are not included in the phase space.
Under jamming, we understand collective jamming in packings
of frictionless particles.37–40 A packing is called jammed if at
This journal is © The Royal Society of Chemistry 2014
least a subset of its particles is jammed; other particles are
referred to as rattlers. In this paper, we do not exclude rattler
particles from packings, when calculating packing densities.

We utilize the concept of inherent structures, initially
introduced by Stillinger for packings of particles with so
potential.33–35 Inherent structures for such systems are local
potential energy minima in the phase space. The potential
energy in hard-sphere packings is replaced by the maximum
density that a packing can have at a given phase space point,
taken with the minus sign. The maximum density is calculated
by xing particle coordinates and inating particle radii until
the rst contact between particles occurs. Inherent structures
for hard-sphere packings correspond to jammed congura-
tions.14 To emphasize that we are investigating hard particles,
not particles with so potential, we use below in this paper the
term “closest jammed conguration” instead of “inherent
structure”.

Each potential energy minimum can be associated with a
corresponding basin of attraction, i.e., the energy minimum of a
given basin of attraction is the termination point of energy
minimization—the steepest descent procedure—for any
conguration in this basin of attraction. The bounding region
of a given jammed conguration at a given density is by de-
nition the intersection of this conguration's basin of attraction
with the available phase space (when contact hypercylinders for
the given density are excluded from the phase space). We dene
bounding surfaces as surfaces of bounding regions. A bounding
region is closed if the bounding surface is fully formed by
hypercylinder surfaces.

We dene the GCP limit (4GCP) for sufficiently polydisperse
packings as the highest possible jamming density of these
packings.14 For monodisperse and slightly polydisperse pack-
ings, it is the highest jamming density that can be achieved if
crystallization is articially suppressed.14 If crystallization is
allowed, the GCP limit is revealed by an entropy minimum.22,30

We dene the RCP limit 4RCP as the upper bound of the J-
segment.15,41,42 Similarly, the lowest typical (LT) jamming
density 4LT is the lower bound of the J-segment.

We distinguish between typical basins of attraction and
untypical ones. Basins of attraction with jamming densities in
the range [4LT, 4RCP] are typical by denition; the others are
untypical. With increasing number of particles in the packings,
4RCP is almost unchanged and 4LT increases.15 Thus, we may
estimate 4RCP in the thermodynamic limit by the upper
boundary of the J-segment for sufficiently large nite packings.
In the present paper, we assume that the J-segment converges in
the thermodynamic limit to a single value 4RCP,15 though this
question is still discussed.41 Let 4max be the highest possible
packing density for a given sphere diameter distribution: it is
the crystalline density (�0.74) for monodisperse packings and
4GCP for sufficiently polydisperse packings. Then, untypical
basins of attraction have jamming densities in the range [4L,
4LT) W (4RCP, 4max], where 4L is the lowest jamming density,
which for monodisperse packings equals at least
ffiffiffi

2
p

p=9z 0:49365 (the density of tunneled crystals).34,43–46

Typical and untypical basins of attraction have just been
dened for Poisson packings, i.e., when the entire phase space
Soft Matter, 2014, 10, 7838–7848 | 7839

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4sm01439a


Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
A

ug
us

t 2
01

4.
 D

ow
nl

oa
de

d 
on

 1
/1

8/
20

26
 1

:5
1:

15
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
is available or, in other words, when initial packing densities are
zero. Under typical closest jamming densities for non-zero
initial packing densities we understand the closest jamming
densities that will be almost always found for packings created
at a given density using a given algorithm, if it starts generation
at a Poisson conguration. If the jamming density of a bound-
ing region lies in the range [4LT, 4RCP], we refer to this region
and all the congurations in this region as liquid. Earlier, we
talked about the part of the phase space that is available at a
given density. Parts of the available phase space may be
completely separated with contact hypercylinders and may have
different properties. Thus, it is important to talk about the part
of the phase space that is achievable from a given type of
conguration. If a bounding region covers almost the entire
part of the phase space that is achievable from a given type of
conguration (at a given density), we call this region dominant.
Liquid, typical, and dominant basins of attraction coincide for
zero initial packing density.

III. Methods
A. Packing generation

Particles in our polydisperse packings have log-normal radii
distributions with standard deviations s from 0.05 to 0.3 in
steps of 0.05 (the particle mean diameter is normalized to
unity). All packings are generated in a fully periodic cubic box
and contain 104 particles (cf. Fig. 1). Packings are created in a
wide range of compression rates using the force-biased (FB)
protocol.47,48 This protocol is a modication of the Jodrey–Tory
algorithm.49,50 The FB algorithm starts from a random distri-
bution of particle centers in a simulation box. Each particle is
supplied with an inner diameter chosen to be proportional to
the desired particle diameter and to make particles in the
closest pair touch each other with their inner diameter shells.
Alternatively, a single inner diameter ratio can be specied for
the entire packing as the ratio of inner diameters to the desired
particle diameters. Similarly, a packing is supplied with an
outer diameter ratio, initially larger than unity. The initial outer
diameter ratio is chosen to ensure that the total volume of the
particles equals the box volume. Particles are also supplied with
elastic potential of the third order by overlap distance,48 which
is cut-off at the outer particle shell. It is now possible to
compute the forces between each pair of particles, as well as the
net forces for each particle. The algorithm is iterative and each
iteration proceeds as follows: (i) determine a net force for each
particle; (ii) displace all the particles by distances proportional
to the particles' net forces and in the direction of the net forces;
(iii) decrease the outer diameter ratio according to a specied
contraction rate; and (iv) update the inner diameter ratio so that
the inner diameter shells for the pair of closest particles touch
each other. Though the inner diameter ratio may decrease
through the iterations, its value has an increasing trend. The
algorithm terminates when the outer diameter ratio is equal to
the inner diameter ratio. The lower the outer diameter ratio
contraction rate, the denser is the nal conguration. The
source code used in this paper is available under the MIT free
soware license.51
7840 | Soft Matter, 2014, 10, 7838–7848
B. Packing equilibration

Salsburg and Wood36 derived an equation of state for hard
spheres, p ¼ 1 + 1/[(4CJ/4)

1/d � 1], where p is the estimated
reduced pressure, 4 is the current packing density, 4CJ is the
(closest) jamming density for the polytope where the given
packing conguration resides, and d is the dimensionality of
the system.4 The derivation of Salsburg and Wood36 assumes
that the pressure is stationary and packings are in equilibrium.
But all the packings produced in computer simulations or
experiments are intrinsically out of equilibrium,30,52 because the
generation process is non-stationary by denition, especially for
fast compressions. The pressure measured in the course of
packing generation should therefore not be used for the esti-
mation of 4CJ or for the tracking of jamming; instead, packings
should be preliminarily equilibrated, i.e., exposed to molecular
dynamics simulation with zero compression rate until the
pressure is stationary. Equilibration moves the packing to
bounding regions that dominate the part of the phase space
achievable from an initial conguration.

We equilibrate the packings by performing sets of 2 � 107

collisions with zero compression rate in a loop until the relative
difference of reduced pressures in the last two sets is less than
10�4, so the pressure can be regarded as stationary. More
precisely, to measure the pressure during 2 � 107 collisions, we
average pressures for 100 sub-sets of 2 � 105 collisions, which
amounts to 20 collisions in a sub-set per particle. We use our
own implementation51 of the Lubachevsky–Stillinger (LS)
packing generation algorithm53,54 to carry out the equilibration.
C. Searching for the closest jammed congurations

To search for the closest jammed congurations, we do
not follow the denition of these congurations through
the steepest descent energy minimization, but modify the LS
algorithm instead. We run the LS algorithm with a high
compression rate of 10, until the non-equilibrium reduced
pressure reaches a conventional high value of 1012, then
decrease the compression rate by a factor of two and run the LS
algorithm again, until the pressure is high enough again (1012).
We repeat this procedure until the compression rate is #10�4.
The Boltzmann constant and masses of all particles are set to
unity; the temperature is set to 0.2. Fast compressions at the
beginning of the search make the initial bounding region
collapse as much as possible and at the same time retain the
conguration point in this bounding region. Slow compres-
sions at the end of the search allow arriving at a truly jammed
conguration. The details and validation of this algorithm are
provided in our previous paper.14 There we ensured that the
distribution of closest jamming densities for packings before
equilibration is independent of a particular set of algorithm
parameters in a wide range of the latter. We did not repeat this
validation for equilibrated packings, as packings before equili-
bration in the previous paper covered the entire range of poly-
dispersities as well as the entire range of initial and nal
packing densities considered in the present paper. Searching
for the closest jammed congurations aer equilibration
produces dominant jamming densities.
This journal is © The Royal Society of Chemistry 2014
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IV. Results and discussion

In this section, we present the results of the packing equili-
bration and of searching for the closest jammed congurations
of the equilibrated packings. We give an overview of the data in
Subsection A (Data overview), analyze the data in Subsection B
(Data analysis), test our conclusions for independence from the
packing generation protocol in Subsection C (Protocol inde-
pendence), and nally provide a schematic diagram with the
phase space structure in Subsection D (Schematic phase space
structure). At the end of the section, in Subsection E (Applica-
bility of liquid equations of state), we check if it is possible to
recover the properties of the phase space through comparison
of the reduced pressure to predictions from liquid equations of
state. To ease the reading of this section, we provide with Table
1 an overview of the symbols used below. Some of them have
already been introduced, others will be dened later.
A. Data overview

The dependence of initial packing densities 4 on the inverse
compression rate g�1 for packings produced with the FB algo-
rithm is shown in Fig. 2a. Even before equilibration, we
searched for the closest jamming densities 4CJ for these pack-
ings, as described in Section III C; Fig. 2b depicts for these
packings the closest jamming densities 4CJ vs. initial packing
densities 4. Then, we equilibrated the initial packings in Fig. 2a
and calculated closest jamming density estimates 4JE from the
equation of state by Salsburg andWood, as described in Section
III B. Closest jamming density estimates aer equilibration 4JE

vs. initial packing densities 4 are shown in Fig. 2c. Finally, we
searched for the actual closest jammed congurations of the
equilibrated packings (dominant jammed congurations).
Dominant jamming densities 4J vs. initial packing densities 4
Table 1 Important symbols used in the text

Symbol Brief description

s Standard deviation of the log-normal particle radii distributi
g Compression rate for initial packing generation
4 Initial packing density aer force-biased generation

4CJ Closest jamming density of a packing
4J Dominant jamming density of a packing
4LT Lowest typical jamming density
4RCP Random-close packing limit (J-point15)
4GCP Glass close packing limit

4HCP Crystalline packing density for monodisperse packings (FCC
4max Highest packing density: 4HCP for monodisperse packings, 4

polydisperse packings
4L Lowest possible jamming density, at least 2/3�4HCP for mon

(density of tunnelled crystals43)
4m Melting transition density (onset of crystallization)
4off Offset of crystallization
4f Freezing transition density
4g Ideal glass transition density. 4J(4g) ¼ 4GCP

4MCT Density at which available phase space becomes relatively dis

This journal is © The Royal Society of Chemistry 2014
are shown in Fig. 2d. The same four plots, built vs. g�1, can be
found in the Appendix.

We did not average the data in Fig. 2; each point in these
gures corresponds to a single packing. To guide the eye,
points have been connected by straight lines. Averaging
assumes that uctuations in the data will disappear in the
thermodynamic limit. This question is still unresolved.15,41 If
uctuations disappear for innite packings, averaging also
assumes that the noise stemming from nite-size effects is
symmetrical around the true value. This is not the case for the
closest jamming densities of Poisson packings: the J-segment
decreases with the increase of the number of particles, but its
upper boundary 4RCP is almost unchanged, only the lower
boundary 4LT is moving upwards.15 Thus, averaging would not
produce meaningful results; taking the upper boundary of the
J-segment instead will give a better estimate of 4RCP in the
thermodynamic limit. Additionally, averaging would remove
the information about the exact boundaries of jamming
intervals for nite packings.

The RCP densities 4RCP are included as horizontal lines on
the le side of the plots in Fig. 2. Similarly, the GCP densities
4GCP are shown as horizontal lines on the right side of these
plots. We determined the RCP limits as the upper boundaries
of the horizontal parts of the plots in Fig. 2b, because the
horizontal parts of the plots correspond to the closest
jamming densities of Poisson packings.14 We determined the
GCP limits for s$ 0.05 by asymptotically expanding the plots
4(g�1) (Fig. 2a) and 4CJ(g

�1) (Fig. 7b in the Appendix) into
innite generation time or zero compression rate. 4GCP

for monodisperse packings was taken at the value of a
structural transition 4 z 0.65.14,22–30 More details on the
determination of 4RCP and 4GCP can be found in our previous
paper.14
Key gures and tables
Values
for s ¼ 0

ons
X-axis in Fig. 2a and 7
Y-axis in Fig. 2a, X-axis in
Fig. 2b–d
Y-axis in Fig. 2b
Y-axis in Fig. 2d

Le sides of Fig. 2b–d �0.64
Right sides of Fig. 2b–d;
Table 2

�0.65

or HCP crystals) �0.74
GCP for sufficiently �0.74

odisperse packings �0.49

Fig. 2c and d �0.545
Fig. 2c and d �0.61
Fig. 4 �0.494
Fig. 2c and d; Table 2 �0.585

joint. 4J(4 < 4MCT) ¼ 4RCP Fig. 2c and d �0.52

Soft Matter, 2014, 10, 7838–7848 | 7841
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Fig. 2 (a) Initial packing density 4 vs. inverse compression rate g�1. (b) Closest jamming density before equilibration 4CJ vs. initial packing density
4. (c) Closest jamming density estimate after equilibration 4JE vs. initial packing density 4. (d) Closest jamming density after equilibration 4J vs.
initial packing density 4. All the packings were generated with the force-biased (FB) algorithm. Colours for the different standard deviations s of
the log-normal particle radii distributions are depicted in the legends.
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B. Data analysis

The closest jamming densities of initial packings (without
preliminary equilibration), Fig. 2b, belong to the interval [4LT,
4RCP] for 4# 0.61 in the case of monodisperse packings and for
4 # 0.63 for packings with s ¼ 0.3. We may say that for these
initial densities liquid bounding regions are typical for the FB
algorithm. When we talk about available phase space below in
this section, we will always mean available and achievable from
the congurations typical for the FB algorithm (which are liquid
for 4 < [0.61, 0.63], the exact value depending on s). In the
remainder of the paper, we focus on Fig. 2d.

Spontaneous crystallization, estimation of 4m and 4off. For
monodisperse packings, bounding regions of congurations
with crystalline inclusions dominate the available phase space
in the density range 4z 0.54–0.61 (s ¼ 0, red line in Fig. 2d). It
is manifested by a sudden departure of the 4J(4) plot up to
almost crystalline densities. This interval conforms to other
studies of spontaneous crystallization and crystal nucleation.5–8

These studies show that the crystal nucleation rate in mono-
disperse hard sphere packings is negligible for 4 < 0.54, then
grows rapidly at 4 z 0.54 and reaches a plateau, and then
7842 | Soft Matter, 2014, 10, 7838–7848
rapidly decreases at 4z 0.61.5 The density �0.54 is interpreted
as the melting transition density 4m (dedicated studies produce
the value 4m z 0.545 (ref. 1, 4, and 9) for monodisperse pack-
ings). The density 4z 0.61 was earlier interpreted as the (ideal)
glass transition density 4g for monodisperse hard spheres,55

which is usually detected by a rapid decrease of compressibility
or self-diffusivity. Recent accurate studies show that the ideal
glass transition occurs at 4g z 0.585, while at the same time
crystallization is prevented aer 4z 0.61.6–8 Thus, we refer to 4

z 0.61 as the density of the offset of crystallization 4off. The
interval of densities where bounding regions of congurations
with crystalline inclusions dominate the phase space of pack-
ings with s ¼ 0.05 is 4 z 0.56–0.58, which can be seen in a
sudden departure of the dominant jamming densities in the
plot 4J(4) (cyan line in Fig. 2d). This range is also consistent
with other results (4 ¼ 0.56–0.59).7,56 Our data report that
crystallization becomes impossible for a certain s in the range
(0.05, 0.1). Nucleation studies determine that crystallization in
packings with Gaussian diameter distribution becomes impos-
sible for s z 0.07,7,56 which conforms to our results (though
we investigate log-normal sphere diameter distributions, for such
a small polydispersity the two distributions almost coincide).
This journal is © The Royal Society of Chemistry 2014
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Fig. 3 Ideal glass transition density 4g vs. sphere radii standard devi-
ation s of the log-normal radii distributions (B). Values of 4g are
summarized in Table 2. Estimates for 4g from other works are also
presented: 103 particles with uniform distribution (+);12 binary 50 : 50
mixture of 103 particles with diameter ratio 1.4 (�);11 and 2 � 103
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Change in the phase space structure at 4MCT z 0.52. For 4#

0.52, the available phase space is strongly connected and
dominated by liquid bounding regions for all the packing types.
Thus, the closest jamming densities aer equilibration are
always obtained in the range of liquid jamming densities, 4J ˛
[4LT, 4RCP]. Starting from a certain density 4z 0.52, the interval
of dominant jamming densities moves upward, and starting
from a slightly higher characteristic density the dominant
jamming density 4J is always higher than 4RCP. It means that
none of the liquid bounding regions participate in dominating
the available phase space any longer. Packings with slight
polydispersity s ¼ 0.05 clearly demonstrate that the onset of
crystallization does not coincide in general with this charac-
teristic density associated with the changes in the structure of
the phase space. Changes in the phase space at 4 z 0.52,
independent of the particle size distribution, are predicted
under certain assumptions by the mode-coupling theory;7,13

thus, we denote this transition density with 4MCT. We assume
that bounding regions become relatively disjoint at this density
(i.e., the fraction of the “wormholes” in bounding surfaces
becomes low).1 We show later, in Subsection D, that the avail-
able phase space truly splits into disconnected portions and
becomes non-ergodic only at the ideal glass transition density
4g, which for monodisperse packings equals �0.585.

Glass close packing limit, estimation of 4GCP. For packings
with s $ 0.1 and 4 $ 4MCT, the jamming density of the domi-
nant bounding regions increases and reaches maxima at certain
densities depending on s. We associate these maxima in Fig. 2d
with the GCP limits 4GCP (and corresponding packing congu-
rations with the ideal glass), as the GCP limits for packings
where crystallization is impossible are by denition the highest
jamming densities of these packings. For packings with s ¼
0 and s ¼ 0.05 crystallization effects are superimposed on the
4J(4) plots in Fig. 2d. For monodisperse packings crystallization
is no longer possible at 4off z 0.61. To the right of this density
the dominant jamming density 4J is �0.65, which also
conforms to the density of the onset of crystalline inclusions in
jammed packings and the density where the entropy is minimal
4GCP z 0.65.14,22–30 For polydisperse packings with s ¼ 0.05,
crystallization is superimposed on the 4J(4) plot in the range 4

z 0.56–0.58, but it does not cover the local maximum 4J z
0.652 at 4 z 0.586; so we attribute 4J z 0.652 to the GCP limit
of particles with s ¼ 0.05. The estimates of the GCP limits
compare very well with the GCP limit estimates from our
previous paper,14 where we extrapolated the closest jamming
densities of computer-generated packings with s $ 0.05 to
innite generation time. The values from our previous paper14

are displayed as the lines of corresponding color to the right of
Fig. 2d. The differences between the two estimates are <10�3 for
all the packing types.

Ideal glass transition, estimation of 4g. The initial packing
density 4 for which the dominant jamming density reaches its
maximum is called the density of the ideal glass transition 4g.
It is usually measured through the jump in compressibility
and divergent alpha-relaxation time.1,4,7,10 We estimated 4g

from Fig. 2d in the following way: (i) rst, we took the data
This journal is © The Royal Society of Chemistry 2014
points 4J(4) from Fig. 2d in the vicinity of the expected ideal
glass transitions (i.e., in the interval �0.02 around the global
maxima of the 4J(4) plots); (ii) then, we selected local maxima
from these data points (because local maxima represent upper
boundaries of jamming intervals at each 4); and (iii) tted
these local maxima with third-order polynomials and found
the positions of maxima for these polynomials. We consider
these positions of maxima as the estimates for 4g, which are
depicted in Fig. 3. We tted 4g for s$ 0.05 with the third-order
polynomial and display it in Fig. 3 as well. The extrapolation of
this polynomial to monodisperse packings gives a value 4g ¼
0.585. We assume that if crystallization is articially sup-
pressed in monodisperse packings (e.g., by pinning a certain
fraction of particles57), the 4J(4) plot will look similar to those
for polydisperse packings with s $ 0.1, reaching its maximum
value at 4 ¼ 4g z 0.585 with 4J(4g) ¼ 4GCP z 0.65. It would
explain why crystalline inclusions appear in generated pack-
ings (prior to equilibration) only at the initial density 4 ¼ 4GCP

z 0.65:14,22–30 if 4GCP z 0.65 is the highest (jamming) density
for monodisperse packings with suppressed crystallization,
the only way to produce denser packings—for protocols that
try to avoid crystallization as long as possible—is to introduce
crystalline inclusions in the packing structure. We provide the
values for 4g and 4GCP obtained so far in Table 2. Our data
comply well with predictions from the mode-coupling theory,13

simulations and experimental observations of divergent
relaxation times: 4g ¼ 0.582 is reported for packings of 103

particles with uniform distribution having s ¼ 0.082;12 4g ¼
0.59 is reported for a binary 50 : 50 mixture of 103 particles
with diameter ratio 1.4;11 4g ¼ 0.585 and 0.586 are reported for
packings of 2 � 103 particles with Gaussian distributions of s
¼ 0.07 and 0.085, respectively.7 We display these values in
Fig. 3 as well. For binary mixtures, s is computed as the
standard deviation of corresponding discrete probabilities of
encountering a specic sphere radius.
particles with Gaussian distribution (,).7

Soft Matter, 2014, 10, 7838–7848 | 7843

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4sm01439a


Table 2 Ideal glass transition densities 4g and corresponding ideal
glass densities 4GCP for packings of hard frictionless spheres with log-
normal sphere diameter distributions having different diameter stan-
dard deviations s (as indicated). 4g vs. s is plotted in Fig. 3

s

0 0.05 0.1 0.15 0.2 0.25 0.3

4g 0.585 0.586 0.59 0.595 0.602 0.61 0.622
4GCP 0.65 0.6518 0.6549 0.6596 0.6645 0.6711 0.6779

Fig. 4 Closest jamming density after equilibration 4J vs. initial packing
density 4. Colors for the different standard deviations s of the log-
normal particle radii distributions are depicted in the legend. All the
initial packings were created by proportional decrease of the radii of
the densest jammed packings of a corresponding s (represented as the
global maxima of the plots in Fig. 2d).
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We can now call the basins of attraction, the bounding
regions, and all the congurations with 4J ˛ (4RCP, 4GCP] as
glassy, for both monodisperse and polydisperse packings. This
denition conforms to the fact that for s $ 0.1 and 4 > 4MCT

glassy bounding regions dominate the available phase space
instead of liquid bounding regions. For monodisperse packings
it also conforms to the fact that crystalline inclusions appear in
jammed packings only for 4 > 4GCP.22,24–26,29,30 In our previous
paper,14 we referred to the states in closed bounding regions as
glassy (following Parisi and Zamponi1 and Brambilla et al.11)
because for such states there is only one jammed conguration
in the achievable phase space and the congurational entropy is
zero. This denition is unsuitable in the light of the current
results, as the states in closed liquid bounding regions (that
dominate the phase space for 4 # 4MCT) would be called glassy
as well.
C. Protocol independence

To check if our results are protocol-dependent, we did the
following: we (i) took the densest jammed packings obtained in
Fig. 2 (the FCC crystal for monodisperse packings, the densest
partially crystallized packing for s ¼ 0.05, and the ideal glass
packings for s$ 0.1); (ii) proportionally reduced the radii of the
particles in these packings to produce unjammed packings in
the entire range of densities starting from 4 ¼ 0.4 (we call these
packings “diluted densest packings”, they represent a
completely different packing generation protocol); and (iii)
repeated the procedure for Fig. 2d, i.e., we equilibrated these
packings and searched for the closest jammed congurations 4J

for the equilibrated packings. Fig. 4 depicts the plot 4J(4) for
these diluted densest packings. The horizontal lines to the le
and to the right of the gure represent the RCP and GCP limits
from Fig. 2d.

Monodisperse packings exhibit a well-known freezing tran-
sition at 4f z 0.5 (the value obtained in dedicated studies is
�0.494).1,4,9 Polydisperse packings with s ¼ 0.05 exhibit a
freezing transition at 4f z 0.52. For s # 0.05 and 4 > 4f, the
achievable phase space is dominated by the bounding regions
of the densest congurations. For s # 0.05 and 4 # 4f, the
achievable phase space is dominated by liquid basins of
attraction. The plots in Fig. 2d for s# 0.05 differ from Fig. 4 for
4 ˛ [4f, 4m]W [4off, 4max]. For these 4, the bounding regions for
the densest congurations dominate the achievable phase
space in Fig. 4 but are not achievable from the initial congu-
rations in Fig. 2d.
7844 | Soft Matter, 2014, 10, 7838–7848
For polydisperse packings with s$ 0.1 and 4# 4g, the plots
in Fig. 4 are qualitatively and quantitatively similar to the ones
in Fig. 2d (see the RCP and GCP lines from Fig. 2d in Fig. 4). It
means that the conclusions reached in Subsection B (Data
analysis) are protocol-independent for these packings; the
dominant jamming density does not depend on the initial
packing conguration, which determines the achievable
portion of the phase space. Thus, we may draw our conclusions
in Subsection C for s $ 0.1 and 4 # 4g for the entire available
phase space. For 4 > 4g, the plots differ: the dominant jamming
density depends on the initial packing conguration. For
diluted densest packings with s$ 0.1 and 4 > 4g, the achievable
phase space is dominated by the bounding regions of the ideal
glass. It is sometimes argued that the available phase space is
fully connected for 4# 4g and splits into disconnected portions
at 4g.1

These results comply with the general agreement that the
available phase space is ergodic at 4 # 4g.7 For packings that
allow crystallization and for which 4off > 4g, one may assume
that ergodicity breaks at 4off, when the 4J(4) plot becomes
protocol-dependent. It was a general assumption in the
colloidal literature as well, but recent careful studies of diffu-
sion dynamics show that ergodicity for such packings breaks
already at 4g.7
D. Schematic phase space structure

Finally, we present a schematic image with the phase space
structure, where we incorporate all the results obtained so far
(Fig. 5). We assume that packings that allow crystallization (s#

0.07) are initially generated in liquid bounding regions for 4 ˛
[4f, 4off] (as it occurs in Fig. 2d); thus, melting transition and
crystallization offset are exhibited for such packings, but not a
freezing transition (as it occurs in Fig. 4). Symbols for different
This journal is © The Royal Society of Chemistry 2014
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Fig. 5 Schematic jamming phase diagram for frictionless hard-sphere
packings, depicting dominant jamming density 4J vs. initial packing
density 4. Opaque areas represent jamming densities that do not
dominate the phase space. Red dashed line and red opaque area refer
to packings which allow crystallization. 4L is the lowest jamming
density, 4RCP is the randomclose packing limit (the J-point), 4GCP is the
glass close packing limit, 4max is the highest jamming density, 4MCT is
the density of transition from liquid to glass, 4m is themelting transition
density (onset of crystallization), 4g is the ideal glass transition density
for packings where crystallization is impossible, and 4off is the density
of the offset of crystallization.
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characteristic densities are displayed to the le and below the
image. We provide the corresponding values for monodisperse
packings to the right and above the image. All the characteristic
densities have already been introduced; we only mention that
under 4g for s < 0.05 we understand the ideal glass transition
densities from extrapolating the 4g(s) plot to s < 0.05, as done in
Fig. 3 (which corresponds to divergent alpha-relaxation time). If
crystallization is impossible, the protocol-dependent (non-
ergodic) region for the 4J(4) plot is 4 > 4g (as depicted at the top
of Fig. 5). For packings that allow crystallization and for which
4off > 4g, we follow Zaccarelli et al.7 and assume that ergodicity
and protocol independence break at 4g as well.

We assume in Fig. 5 that in the thermodynamic limit the J-
segment [4LT, 4RCP] converges to a J-point (4RCP);15 we also
assume that the dominant jamming density for any given initial
density converges to a point in the thermodynamic limit as well.
Opaque areas represent the jamming densities that do not
dominate the phase space, but whose basins of attraction are
available. Opaque areas are protocol-independent. The red
dashed line and the red opaque area refer to packings that allow
crystallization.

The procedure that we used to produce Fig. 2d can be
extended to particles with so potential. In that case, it is
necessary to use the particle number density r instead of
volume density 4. For each number density r and tempera-
ture T, one shall sample the phase space according to the
usual equilibrium distribution of states in the canonical
ensemble. For each sampled conguration, one shall perform
the steepest descent in the potential energy landscape
This journal is © The Royal Society of Chemistry 2014
(innitely fast quenching) and track the value of the obtained
potential energy minimum U. Presumably, these values will
be distributed in one or several narrow intervals around some
dominant minima Ũ(r, T). There may be more than one of
them at a given r and T if the phase space is not ergodic.
Particle interactions are usually pair-wise; typical model
potentials for interactions between so particles are
Gaussian core potential58,59 and inverse-power potential.60,61

An example for the rapid quenching of several equilibrated
monodisperse two-dimensional packings with Gaussian core
potential can be found in Stillinger and Weber.59 The poten-
tial energy of interaction between two particles in inverse-
power law systems is 3(D/r)n, where r is the distance between
the two particles and 3, D, and n are parameters of the
potential. Inverse-power law systems have a convenient
scaling property. Specically, it can be shown that all
dimensionless excess thermodynamic properties of these
systems depend only on a dimensionless reduced number
density r* h rDd(3/kT)d/n, where d is the packing dimen-
sionality and k is the Boltzmann constant.61,62 For poly-
disperse packings, D depends on a given particle pair, but it
can be split into a dimensionless pair-dependent part and a
dimensional pair-agnostic part, of which the latter shall be
used for calculating r*. Thus, the plot Ũ(r, T) will be trans-
formed into Ũ*(r*), where Ũ* is a dominant dimensionless
potential energy minimum. We assume that this plot will
resemble Fig. 5, only with inverted Y-axis, as far as for hard
spheres we dened Ũ h �4J. Previous papers on particles
with so potentials typically focused on the distinction
between liquid and crystalline phases.58,60,61 We believe that
nding dominant potential energy minima and building Ũ(r,
T) plots may shed light on other important properties of such
systems, including the ideal glass transition and the
distinction between liquid and glass phases.
E. Applicability of liquid equations of state

At the end of this paper, we investigate for which density ranges
liquid equations of state are applicable to the hard-sphere
packings under study. We compared reduced pressures p(4) in
equilibrated packings (i.e., before densication) from Fig. 4
(diluted densest packings) with values analytically predicted by
equations of state for hard spheres. There are many liquid
equations of state for polydisperse packings.64 We conrm
that eqn (9)–(13) from Ogarko and Luding64 produce very
similar results, as well as eqn (6) from Mansoori et al.65

We use the simplest of these equations of state, the one
of Boublik–Carnahan–Starling–Mansoori (eqn (4) in
Boublik63 or eqn (9) in Ogarko and Luding64):

pcsð4Þ ¼ 1
1� 4

þ O1
34

ð1� 4Þ2 þ O2
42ð3� 4Þ
ð1� 4Þ3 , where O1 ¼ hrihr 2i

hr 3i

and O2 ¼ hr 2i3
hr 3i2; hr

ii is the ith raw moment of the distribution of

particle radii r. We calculated relative differences d between
experimental and theoretically predicted reduced pressures, d¼
|p(4) � pcs(4)|/pcs(4), and present in Fig. 6 the d(4) plots for
different s.
Soft Matter, 2014, 10, 7838–7848 | 7845

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4sm01439a


Fig. 6 Relative difference d between experimental and theoretically
predicted reduced pressures vs. initial packing density 4. d ¼ |p(4) �
pcs(4)|/pcs(4), pcs(4) is the reduced pressure from the Carnahan–
Starling equation of state for polydisperse hard spheres.63,64 Experi-
mental pressures p(4) were measured for equilibrated packings from
Subsection IV C, cf. Fig. 4. Colors for the different standard deviations s
of the log-normal particle radii distributions are depicted in the legend.

Fig. 7 (a) Initial packing densities 4 vs. the inverse compression rate g�1

compression rate g�1. (c) Closest jamming density estimates after equil
densities after equilibration 4J vs. the inverse compression rate g�1. All the
for the different standard deviations s of the log-normal particle radii di

7846 | Soft Matter, 2014, 10, 7838–7848
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Naturally, the reduced pressure in all the equilibrated
packings at low densities is very close to the theoretical
prediction; pressures differ by no more than 1% (d # 0.01).
Pressure in packings that allow crystallization (s < 0.1) starts to
deviate from theoretical predictions at 4f. Later on, we will
discuss only packings with s $ 0.1, because crystallization
effects are not superimposed on their d(4) plots. Surprisingly,
theoretical predictions for p(4) for these packings remain valid
with the same high accuracy d # 0.01 even for 4 > 4MCT, until 4
reaches certain values depending on s (Fig. 6). More precisely, d
is 0.01 at 4 z 0.581, 0.587, 0.591, 0.596, and 0.602 for s ¼ 0.1,
0.15, 0.2, 0.25, and 0.3, respectively. Selecting a different
threshold than d ¼ 0.01 to consider deviations in reduced
pressures as high leads to slightly different results. For example,
d is 0.06 at 4 z 0.588, 0.596, 0.602, 0.612, 0.622, for s ¼ 0.1,
0.15, 0.2, 0.25, and 0.3, respectively (Fig. 6). These values of 4
are very close to 4g from Table 2 for the corresponding s.
We conrm that the reduced pressure for equilibrated
packings from Fig. 2c with s $ 0.1 exposes behavior that is
qualitatively and quantitatively similar to the one in Fig. 6
(data not shown).
. (b) Closest jamming densities before equilibration 4CJ vs. the inverse
ibration 4JE vs. the inverse compression rate g�1. (d) Closest jamming
packings were generated with the force-biased (FB) algorithm. Colours
stributions are depicted in the legend.

This journal is © The Royal Society of Chemistry 2014
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V. Summary and conclusions

We computer-generated monodisperse and polydisperse
frictionless hard-sphere packings of 104 particles with log-
normal particle diameter distributions in a wide range of
densities 4 (for monodisperse packings 4 ¼ 0.46–0.72). Then
we equilibrated these packings and searched for their
closest jammed congurations (inherent structures of hard
spheres).

We found that the available phase space is dominated at 4#

0.52 by liquid bounding regions with jamming densities 4J ˛
[4LT, 4RCP] (4LT z 0.635 and 4RCP z 0.64 for monodisperse
packings). At 4 z 0.52, independent of the particle radii
distribution, the structure of the available phase space changes:
bounding regions become relatively disjoint (i.e., the fraction of
the “wormholes” in bounding surfaces becomes low). The value
for this density, also independent of the particle radii distri-
bution, is predicted under certain assumptions by the mode-
coupling theory. Thus, we refer to this transition density as
4MCT z 0.52.

For 4 > 4MCT, the dominant jamming densities 4J increase
with 4 and the available phase space is dominated by basins
of attraction that we call glassy. When 4 reaches the ideal
glass transition density 4g, 4J reaches the ideal glass density
(the glass close packing limit) 4GCP, so that the available
phase space is dominated at 4g by the basin of attraction of
the ideal glass. 4g and 4GCP depend on the particle size
distribution. For packings with sphere diameter standard
deviation s ¼ 0.1, 4GCP z 0.655 and 4g z 0.59. For mono-
disperse and slightly polydisperse packings, crystallization is
superimposed on these processes: it starts at the melting
transition density 4m and ends at the crystallization offset
density 4off. For monodisperse packings, 4m z 0.54 and 4off

z 0.61. If we extrapolate the ideal glass transition densities
4g for polydisperse packings to s ¼ 0 (monodisperse pack-
ings), we obtain 4g z 0.585, in agreement with experiments
and simulations on divergent alpha-relaxation time and the
jump in compressibility. We veried that the results for
packings with s $ 0.1 and 4 # 4g are independent of a
packing generation protocol.

We also discovered that the reduced pressure in equilibrated
packings complies with liquid equations of state for hard
polydisperse spheres for 4 > 4MCT. Thus, the comparison with
liquid equations of state is not sensitive enough to reveal the
changes in the structure of the available phase space at 4MCT,
which are detected by dominant jamming densities.

VI. Appendix
A. Densities vs. inverse compression rate

In Fig. 7, we provide the same plots as in Fig. 2, but built vs. the
inverse compression rate g�1, not vs. initial packing densities 4
(as done in Fig. 2b–d). Fig. 7b shows the 4CJ(g

�1) plots that we
used to estimate the GCP limits by asymptotic expansion to
innite generation time or zero compression rate. The plots in
Fig. 7b have a structure predicted by Parisi and Zamponi1

(Fig. 2a in that paper).
This journal is © The Royal Society of Chemistry 2014
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