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We study the buckling of elastic spherical shells under osmotic pressure with the osmolyte concentration of

the exterior solution as a control parameter. We compare our results for the bifurcation behavior with

results for buckling under mechanical pressure control, that is, with an empty capsule interior. We find

striking differences for the buckling states between osmotic and mechanical buckling. Mechanical

pressure control always leads to fully collapsed states with opposite sides in contact, whereas

uncollapsed states with a single finite dimple are generic for osmotic pressure control. For sufficiently

large interior osmolyte concentrations, osmotic pressure control is qualitatively similar to buckling under

volume control with the volume prescribed by the osmolyte concentrations inside and outside the shell.

We present a quantitative theory which also captures the influence of shell elasticity on the relationship

between osmotic pressure and volume. These findings are relevant for the control of buckled shapes in

applications. We show how the osmolyte concentration can be used to control the volume of buckled

shells. An accurate analytical formula is derived for the relationship between the osmotic pressure, the

elastic moduli and the volume of buckled capsules. This also allows use of elastic capsules as osmotic

pressure sensors or deduction of elastic properties and the internal osmolyte concentration from shape

changes in response to osmotic pressure changes. We apply our findings to published experimental data

on polyelectrolyte capsules.
1 Introduction

Elastic capsules consist of an elastic spherical shell enclosing a
uid phase. They are commonly found in nature, prominent
examples exhibiting elastic properties similar to elastic shells
are red blood cells,1 virus capsules,2 and pollen grains.3 Articial
capsules can be fabricated by various methods,4–6 for example
by interfacial polymerization of liquid droplets7 or by multilayer
deposition of polyelectrolytes,8 and have numerous applications
as delivery systems. Capsules are easily deformed by mechan-
ical forces and their deformation behavior exhibits buckling
instabilities upon decreasing the interior pressure or the
enclosed volume.5,9–15 These deformation modes can potentially
be used to infer material properties of the enclosing shell
material6,16–18 or to control the shapes of capsules for
applications.14

Theoretically, the buckling instability of a spherical shell can
be described within classical shell theory,19–24 which identies a
critical pressure where the spherical shape becomes unstable
with respect to decreasing volume and develops a nite dimple.
Beyond the critical mechanical pressure buckled shapes with a
small dimple remain unstable with respect to further sponta-
neous growth of the dimple20,22 until opposite sides get into
contact, and the shells snap-through into a fully collapsed
state.16
sics, 44221 Dortmund, Germany. E-mail:

9

Despite this theoretical prediction of a spontaneous snap-
through into a collapsed state for buckling under mechanical
pressure, buckled shapes with a nite dimple, i.e., without
contact of opposite capsule sides, are usually observed in
microcapsule experiments performed under osmotic pres-
sure control.5,9,14,15 Buckling by osmotic pressure is inti-
mately related to buckling by controlled volume reduction
because an applied external osmotic pressure denes an
osmotically preferred volume. The capsule volume can also
be considered as xed when it is lled with an incompress-
ible uid that cannot leave the capsule, or leaves the capsule
on a very slow time scale like in dissolving or drying mech-
anisms.10–13,25,26 In such volume controlled experiments,
buckled shapes with nite dimples are also stable congu-
rations. This raises the questions to what extent buckling
under osmotic pressure control with the osmolyte concen-
tration of the exterior solution as a control parameter differs
from buckling under mechanical pressure control, where we
assume an “empty” capsule interior, and to what extent it
differs from buckling under volume control with the volume
prescribed by the conditions of equal interior and exterior
osmolyte concentrations. A precise theoretical answer to
these questions is highly relevant for the control and analysis
of buckled shapes in applications. Eventually, the shape of
osmotically buckled capsules can also be used to sense the
osmotic pressure and to deduce elastic material parameters
based on quantitative theoretical modeling.
This journal is © The Royal Society of Chemistry 2014
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2 Model for axisymmetric shells

We analyze axisymmetric shapes by the use of non-linear shell
theory27,28 from which we can derive axisymmetric shape equa-
tions.16 Solutions of these equations can represent stable,
metastable, or even unstable capsules shapes. Shape transitions
or bifurcations between different axisymmetric solution
branches can be investigated using general results from bifur-
cation theory.29 If a spherical shell develops a dimple, we naively
expect relevant shapes to be axisymmetric. However, non-
axisymmetric shapes are relevant both at the onset of the
buckling instability21,22 and for heavily deated thin shells that
undergo a secondary buckling transition.13,30–33 Here, we aim for
a classication of the transition from the spherical to the
axisymmetric buckled shape under osmotic pressure, under
mechanical pressure, and under volume control. Our analysis
will reveal important differences in the resulting buckling
pathway between these three types of control.

2.1 The elastic energy functional

We start with an elastic shell that is spherical in its relaxed state,
with a radius R0. This shape can be parametrized in polar
cylindrical coordinates (r0, z0) by

r0ðs0Þ ¼
�
r0ðs0Þ
z0ðs0Þ

�
¼

�
R0 sinðs0=R0Þ
�R0 cosðs0=R0Þ

�
(1)

with an arc-length coordinate s0. The shell is deformed by a
normal pressure difference p h pin � pex, which is spatially
constant across the whole shell. The sign convention is such
that p < 0 if the shell is being deated.

Nonlinear shell theory can be used to calculate the param-
etrization r(s0) of the deformed shape from which the strains
and stresses in the shell can be deduced. Appropriate shape
equations have been introduced in ref. 16, to which the reader is
referred for the full mathematical treatment.

For the stability discussion that will be presented in the next
sections, the essential feature of the shape equations is that
they can be derived from an energy functional by the calculus of
variations. The elastic energy that is stored in the deformed
shell depends on the meridional and circumferential stretches
ls and l4 and the bending strains Ks¼ lsks� 1/R0 and K4¼ l4k4

� 1/R0 whichmeasure the change of curvature in themeridional
and circumferential direction, with ks and k4 being the prin-
cipal curvatures of the deformed midsurface.16,28 They can be
calculated from the parametrizations r0(s0) and r(s0) of the
reference shape and deformed shape, respectively.

The surface energy density wS measures the elastic energy
per undeformed area,16,28

wS ¼ 1

2

E2D

1� n2

�
½ls � 1�2 þ 2n ls � 1½ � l4 � 1½ � þ ½l4 � 1�2

�

þ 1

2
EB

�
Ks

2 þ 2nKsK4 þ K4
2
�

(2)

with the two-dimensional Young modulus E2D, the two-dimen-
sional Poisson ratio n and the bending stiffness EB. For a shell
consisting of a thin sheet of an isotropic material, these mate-
rial constants are related to the bulk moduli by E2D ¼ EH0,
This journal is © The Royal Society of Chemistry 2014
n ¼ n3D and EB ¼ EH0
3/(12(1 � n2)), where H0 is the shell

thickness, E is the (three-dimensional) Young modulus and n3D

is the (three-dimensional) Poisson ratio.
The elastic energy functional can now be written as the

integral of the energy density over the undeformed shape with
surface element dA0 ¼ 2pr0ds0.

U
�
r
� ¼ ð

2pr0wS ds0: (3)

2.2 Mechanical pressure control and volume control

In order to describe the deation of the shell, additional terms
must be incorporated in the energy functional that account for
the external loads. When there is a prescribed mechanical
pressure difference p between the inside and the outside, the
appropriate load potential is �pV[r] where the volume

V ¼
ð
pr2ðs0Þz0ðs0Þds0 is a functional of the shape.16,28 Then the

shape equations follow from minimizing the enthalpy func-
tional H[r] ¼ U[r] � pV[r] for given p, which means that the rst
variation must vanish.

dH ¼ dU � pdV ¼ 0, (4)

see ref. 16 for the resulting Euler–Lagrange equations.
This minimization can be interpreted in two ways: either as

an unconstrainedminimization of the enthalpy functionalH or,
alternatively, as a minimization of the functional U under the
constraint that the functional V[r] equals some given volume.
The pressure p is then merely a Lagrange multiplier to control
the shell volume. These two cases, termed (mechanical) pressure
control and volume control, respectively, produce the same
shapes as solutions of the shape equations. However, the
shapes show very different stability properties in the two cases:
while buckling under volume control will start with relatively
small (but nite) dimples and the size of the dimple is precisely
controlled by the prescribed volume; buckling under mechan-
ical pressure control will lead to a complete collapse of the shell,
so that opposite sides are in contact with each other.16 A
detailed discussion follows below. Both cases are idealized and
hard to achieve in actual experiments: as long as capsules are
lled with some internal medium, there is feedback between
the volume change and the internal pressure, so that the pres-
sure difference p is not xed but varies with the capsule volume,
which is in conict with our notion of pressure control. Also in a
typical volume control experiment, e.g., when an enclosed
incompressible liquid evaporates, volume control is only an
approximation whose quality depends on how large the time
scale for evaporation is in comparison to the time scale for
elastic shape relaxation.
2.3 Osmotic pressure control

Many deformation experiments with microcapsules are based
on osmosis.5,9,14,15 In osmotic buckling, the solvent diffuses
through the semi-permeable capsule membrane because of an
osmolyte concentration gradient between the inside and
Soft Matter, 2014, 10, 8358–8369 | 8359
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outside. Osmosis tends to decrease the concentration gradient
and deation of the capsule stops when the concentrations in
the inside and outside are sufficiently matched. This is an
important difference to mechanical pressure control with an
“empty” interior, where the deation only stops when the
opposite sides of the capsule are in contact and the capsule
volume is virtually zero.

Ideal dilute solutions of osmotically active particles can be
treated like ideal gases.34 The appropriate energy functional that
is to be minimized in the case of osmosis must take into
account the osmotic free energy of the inner and outer
solutions,35

Fos ¼ �kBTNin ln

"
e

lB
3

V

Nin

#
� kBTNex ln

"
e

lB
3

Vex � V

Nex

#
: (5)

In this expression, kB is the Boltzmann constant, T the
temperature of the solutions, and lB ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p
is the

thermal de Broglie wavelength with Planck constant h and
particle mass m. Nin and Nex are the number of osmotically
active particles inside and outside the shell, respectively, V is
the volume inside the shell and Vex � V is the outside volume.
The osmotically active particles cannot diffuse through the
shell wall, such that Nin is xed during the deation; the
experimental control parameter for osmotic pressure
control is the number Nex of osmotically active molecules in
the outside solution via their concentration Nex/(Vex � V) z
Nex/Vex (assuming V � Vex). Furthermore, the temperature
T is considered to affect only the ideal solutions; we do
not incorporate thermal uctuations in the elastic shell,
which is a good approximation unless shells are extremely
thin.36

For V � Vex, the second logarithm in Fos can be expanded
and simplies to

Fos ¼ � kBTNin ln V þ kBTNex

Vex

V þ const: (6)

Constant terms not depending on V are xed when weminimize
the total energy functional with respect to the shape of the shell,
which only has an inuence on V in eqn (6). The osmotic
pressure difference can be derived from this equation by

pos ¼ �vFos/vV ¼ kBT(Nin/V � Nex/Vex) h pin � pex. (7)

The rst term represents the internal osmotic pressure pin
and the second term represents the external osmotic pressure
pex, which also occurs in eqn (6) as the prefactor of the term
linear in V. The external pressure pex is proportional to the
external concentration of osmotically active particles, and thus
it is the experimentally controlled pressure component. The
osmotic free energy Fos in eqn (6) is minimized by volume V ¼
NinVex/Nex indicating that the preferred state of the system has
equal concentrations of osmotically active particles inside and
outside the capsule.

The total energy functional accounts for the elastic energy of
the deformed shell and the free energies of the solutions, and
reads
8360 | Soft Matter, 2014, 10, 8358–8369
G[r] ¼ U[r] � kBTNin ln V[r] + pexV[r]. (8)

In this functional, U and V depend on the shape of the shell, and
their variation is dG ¼ dU + (vFos/vV)dV ¼ dU � posdV. Thus, in
comparison with mechanical pressure control as described by
eqn (4) and according to eqn (7), the same shape equations are
obtained with a pressure difference p ¼ pos ¼ pin � pex exerted
on the shell.

Also for the experimental situation of a shell containing an
ideal gas, the same energy functional (8) is obtained. The
internal gas has a free energy Fgas ¼ �kBTNin ln V, where Nin is
the number of gas atoms. According to the ideal gas equation
pV ¼ NkBT, the prefactor can also be written as kBTNin ¼ pinV
with an internal gas pressure pin. For isothermal processes, the
le-hand side of the equation is constant during the deation,
and we may choose the initial state as the reference, where the
shell volume is V0 and the internal pressure equals some
ambient pressure pa, and so we have Fgas ¼ �paV0 ln V. For
the applied external pressure pex, an energy contribution
pexV must be included. The total energy functional is thus
G¼ U� paV0 ln V + pexV, which is of the same form as in eqn (8).
Note that in the undeformed conguration, the force balance
requires pex ¼ pa. The buckling of spherical shells with an
internal ideal gas has in part been studied numerically in
ref. 37.
3 Bifurcation diagrams, stability
discussion, and capsule collapse (snap-
through)

The shape equations are solved numerically as described in
ref. 16 with the mechanical pressure p as the control
parameter. For the numerical analysis, it is convenient to
choose a length unit R0 and a tension unit E2D. The shape
equations then depend only on the dimensionless pressure
pR0/E2D, the Poisson ratio n and the dimensionless bending
stiffness

~EB ¼ EB

R0
2E2D

¼ H0
2

12ð1� n2ÞR0
2
¼ 1

gFvK

(9)

which equals the inverse of the Föppl–von-Kármán-number
gFvK.

Solutions for given elastic moduli and over a wide range of
pressures p have been computed. From this dataset, bifur-
cation diagrams can be obtained from which the stability in
the three load cases – mechanical pressure control, volume
control and osmotic pressure control – can be derived. They
contain different solution branches,16 and we concentrate
here on the two most relevant ones: one with uniformly
contracted spherical shapes and one with buckled shapes
with a single dimple. A third solution branch are top-down
symmetric shapes with two dimples; they have been shown to
be less favorable for mechanical pressure control and volume
control,16 and it will be shown in Section 4 that this is also
true for osmotic pressure control.
This journal is © The Royal Society of Chemistry 2014
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The buckled branch with a single dimple develops from the
spherical branch by attening a region around one pole of the
shell, then creating a dimple by inverting the region around the
pole that subsequently grows until it nally leads to self-inter-
secting shapes. We suppress unphysical self-intersecting shapes
Fig. 1 Bifurcation diagrams for buckling bymechanical pressure and volu
of pressure, (c) elastic energy as a function of volume. The dotted blue
represent buckled solution branches A, B, C and C0 according to the labe
and c) show the differences between buckled and spherical branches. In
qualitative behavior has been obtained for all bending stiffness under c
schematic diagrams clarify the qualitative course of the solution branch

This journal is © The Royal Society of Chemistry 2014
by replacing them by shapes with opposite sides in contact, for
which a simplied model has been developed in ref. 16.
However, not all of the calculated shapes are stable. We split the
buckled solution branch with a single dimple into parts A, B, C
and C0, see Fig. 1, according to their stability under pressure and
mecontrol: (a) volume–pressure relationship, (b) enthalpy as a function
line represents the spherical solution branch; the other colored lines
ls and pictograms on the right. The insets in the energy diagrams in (b
all plots, the elastic moduli are ~EB ¼ 10�4 and n ¼ 1/3, and the same
onsideration, from ~EB ¼ 10�6 to 10�2, see also ref. 16. On the right,
es.

Soft Matter, 2014, 10, 8358–8369 | 8361
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volume control as obtained from bifurcation theory. Branches
A, B, and C represent buckled shapes without opposite sides in
contact, branch C0 is the continuation of branch C aer oppo-
site sides make contact.
3.1 Theorems from bifurcation theory

We exploit very general mathematical theorems about the
stability of the solution branches in bifurcation diagrams due to
Maddocks29 in order to characterize the stability of the different
parts of the buckled solution branches. A solution of the shape
equations is only stable when it represents a local minimum of
the energy functional (and not amaximum or saddle point). The
theorems from bifurcation theory allow us to infer stability from
the slope of the volume–pressure relations and can be applied
both to mechanical and osmotic pressure.

For the reader's convenience we will briey summarize the
relevant results of ref. 29 concerning the stability of solution
branches in a bifurcation diagram. The solution branches shall
originate from the variational problem of minimizing a func-
tional F [r, l] with respect to the function r, while l is a bifur-
cation parameter. For our buckling problems, F represents the
total energy functional, i.e., the above functional H for
mechanical pressure control and G for osmotic pressure
control, respectively, and the bifurcation parameter l is the
mechanical pressure p or the external osmotic pressure pex,
respectively. The function r contains the parametrization of the
capsule shape. Specically, we consider the case that the
bifurcation parameter enters the functional linearly in the form
F [r, l] ¼ U [r] � lV[r], which applies both to mechanical and
osmotic pressure, where U is the corresponding energy of the
shape r and V its volume, cf. eqn (4) and (8).

The solution branches r(l) of this minimization problem are
best visualized in the distinguished bifurcation diagram in which
the functional �vlF , evaluated at a solution r(l), is plotted
against the bifurcation parameter l, see Fig. 2. Points of vertical
tangency are called folds, in our example this is the point
between branches B and C.

A solution branch is called stable when it represents minima
of the functional F . Mathematically, this is related to the
second variation ofF : if it is positive denite in a solution r, i.e.,
has only positive eigenvalues, r is a minimum and, thus, a
stable solution of the minimization problem. We quote two
results from ref. 29 concerning the stability of solution
branches: (i) the slope of a stable solution branch in the
Fig. 2 The distinguished bifurcation diagram with exemplary solution
branches.

8362 | Soft Matter, 2014, 10, 8358–8369
distinguished bifurcation diagram is non-negative, and (ii) the
upper branch of a simple fold opening to the le has one more
negative eigenvalue than the lower branch. In the example of
Fig. 2, branches A and C are candidates for stable branches
according to (i). However, (ii) states that the upper branch
(consisting of A and B) of the fold has one more negative
eigenvalue than C. If C is stable, i.e., has no negative eigen-
values, then A and B are unstable and have precisely one
negative eigenvalue.

Maddocks also discusses the variational problem to mini-
mize the functionalU [r] under the constraint that V[r] ¼ const.
He calls branches that are stable in this constrained problem
c-stable. Stability in the constrained problem is a weaker
condition than stability in the unconstrained problem, because
only variations that leave V constant can give rise to instabilities.
Mathematically speaking, the second variation must be
non-negative on the tangent space to the constraint surface
V(r) ¼ const.29 Maddocks shows that (iii) all stable branches are
also c-stable, and (iv) the branches that are c-stable but not
stable are those with precisely one negative eigenvalue and
negative slope in the distinguished bifurcation diagram. In our
example of Fig. 2, where we assume that A and B have one
negative eigenvalue, this means that branch B is c-stable.

The criteria (i–iv) can now be applied to study stability under
mechanical pressure control or osmotic pressure control and to
study c-stability under volume control.
3.2 Mechanical pressure control

Let us start with the case of mechanical pressure control, which
requires unconstrained minimization of the enthalpy H ¼ U �
pV. This case has already been discussed in ref. 16, we include it
here for completeness. The bifurcation parameter is p, and the
distinguished bifurcation diagram is the V(p) diagram of
Fig. 1(a). Branches A, B, and C/C0 of the V(p) diagram have the
same structure as our example in Fig. 2. The H(p) diagram in
Fig. 1(b) reveals that the branches C and C0 are stable: C0 seems
to be the global enthalpy minimum over a large pressure range,
and if C0 is stable, C must also be stable because the stability
only changes at folds. Thus, branch C/C0 has only positive
eigenvalues in the second variation, and A and B have precisely
one negative eigenvalue, and are therefore unstable under
pressure control.

The bifurcation behavior under mechanical pressure
control can thus be summarized as follows. When spherical
shells are loaded with a negative internal pressure they
remain spherical for small loads because the spherical
branch is the global enthalpy minimum. At a critical pressure
pc, the branch C0 (consisting of buckled shapes with self-
contact) crosses the spherical branch in the H(p) diagram.
Beyond this pressure, branch C0 is the global energy
minimum. Although it is energetically preferable for the shell
to change from the spherical into a fully buckled shape at pc,
this will not happen spontaneously because both branches
are metastable energy minima, and an energy barrier must be
overcome. Spontaneous buckling is possible only at the
classical buckling pressure19
This journal is © The Royal Society of Chemistry 2014
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pcb ¼ �4

ffiffiffiffiffiffi
~EB

q
E2D

.
R0: (10)

Here, the spherical solution branch becomes unstable, and the
shell will “fall” from the spherical branch onto the branch C0

where it is completely collapsed (see pictograms in Fig. 1(b) on the
right). This direct transition into a completely collapsed state is
also called snap-through. Remarkably, the absolute value of pc is
much smaller than that of pcb, for the elastic moduli of Fig. 1
approximately pc ¼ 0.12pcb (below in eqn (17), we will give a more
general analytical estimate for pc). Our numerical studies show
that the complete collapse under pressure control happens on the
whole parameter range under investigation, ~EB ¼ 10�6 to 10�2.
Although we cannot give a strict analytical argument we found no
numerical evidence that the qualitative behavior would change for
even smaller oder larger bending stiffnesses. We always nd that
branch C0 rather than branch C crosses the spherical branch in
the H(p) diagram. This leads us to the conjecture that complete
capsule collapse is generic for buckling under pressure control.
3.3 Volume control

Stability under volume control corresponds to c-stability of
shapes. Since we have seen that branches A and B have precisely
one negative eigenvalue of the second variation and B has a
negative slope vpV < 0, we can conclude that branch B is stable
under volume control, but A is not. C and C0 are, of course, also
stable under volume control. This is in accordance with the U(V)
diagram, from which we see that branch B is the global energy
minimum when the volume is lowered beyond a critical volume
V1st. As in the case of pressure control, buckling at this point
involves overcoming an energy barrier which can be read off
from the inset in Fig. 1(c). This barrier vanishes at the classical
buckling volume32

Vcb

V0

z 1� 6ð1� nÞ
ffiffiffiffiffiffi
~EB

q
for ~EB � 1: (11)

This behavior is analogous to the case of pressure control
but, for volume control, the rst stable shapes aer buckling are
those of branch B, with a medium large dimple, and not the
completely collapsed ones of branch C0 as for pressure control.

Branch B, which contains the buckled shapes with small to
medium sized dimples that are frequently observed in micro-
capsule experiments,5,10,11,13,14 has thus a very interesting property:
it changes from stable to unstable when the mechanical pressure
is controlled instead of the volume. We will see that for osmotic
pressure control parts of branch B will become stabilized again.

Legendre transformations provide a link between the three
bifurcation diagrams in Fig. 1. The function H(p) stems from
the functional H[r, p] ¼ U[r] � pV[r] by inserting the numerical
solutions r(p) of the shape equations for a given pressure p, i.e.,

H(p) ¼ U[r(p)] � pV[r(p)]. (12)

Taking the derivative with respect to p, wemust consider that
the shape changes by drwhen the pressure is changed by dp. We
thus obtain
This journal is © The Royal Society of Chemistry 2014
dH

dp
¼ dU � pdV

dp
� V

�
rðpÞ� ¼ �VðpÞ; (13)

where we use dU � pdV ¼ 0 because the shape equations were
derived from this condition. This result connects the V(p)
diagram, Fig. 1(a), to the H(p) diagram, Fig. 1(b). Now, the
function U(V) is obtained as U ¼ H + pV, or more precisely as

U(V) ¼ H(p(V)) + p(V)V, (14)

where p(V) is the inverse function of V(p). We recognize that the
energy U(V) is the Legendre transform of the enthalpy H(p), just
like in thermodynamics34 from where our notation is adopted.
Consequently, it follows that vU/vV ¼ p and that H is also the
Legendre transform of U.

The Maxwell construction from thermodynamics16,34 can
therefore be applied to the V(p) diagram, in order to construct
the critical pressure pc and volume V1st of the buckling transi-
tion. They are dened as the points in the energy diagrams H(p)
and U(V), respectively, where the buckled solution branch
crosses the spherical one. In the V(p) diagram, the critical
pressure pc thus fullls the condition of equal shaded areas in
Fig. 1(a). The critical volume V1st can be constructed analo-
gously, with equal enclosed areas between the horizontal line
V1st and the spherical and buckled branches.
3.4 Osmotic pressure control

Let us now turn to the stability analysis for osmotically induced
buckling, or buckling under pressure control with an internal
gas. Now, the bifurcation parameter is the external part of the
osmotic pressure pex ¼ kBTNex/Vex, because this quantity can be
controlled in experiments by changing the concentration of
osmotically active particles outside the shell. In order to study
stability under osmotic pressure control we can use the avail-
able solutions of the shape equations for mechanical pressure
control, which have already been used to draw the bifurcation
diagram Fig. 1. For each solution of the shape equations for a
given mechanical pressure p and with a volume V, a corre-
sponding external osmotic pressure can be obtained as pex ¼ pin
� p if a value for kBTNin is chosen.

Fig. 3 shows the resulting bifurcation diagrams: on the le,
the energy diagram G(pex) and, on the right, the reduced volume
V(pex)/V0. The latter one is related to Maddock's distinguished
bifurcation diagram, since �vpex G ¼ �V, and his stability
discussion can be applied to the V(pex) diagram when the minus
sign is kept in mind. From both bifurcation diagrams it is
evident that, compared to pressure control without internal gas,
some of the buckled shapes of branch B are stabilized. To
illustrate this, we use the same color code for the shapes as in
Fig. 1, i.e., a shape corresponding to an orange point in Fig. 1
also gives an orange point in Fig. 3. Fig. 3 immediately shows
that the buckled shape at the critical external pressure is for
osmotic pressure control on a shape on branch B, with a
medium large dimple, rather than a collapsed state with
opposite sides in contact.

As for mechanical pressure control, there are also two critical
external osmotic pressures, pex,c corresponding to the point
Soft Matter, 2014, 10, 8358–8369 | 8363
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Fig. 3 Bifurcation diagrams for osmotically induced buckling or buckling under pressure control with an internal gas. (a) Energy G as a function
of the external osmotic pressure. (b) Volume–pressure relationship. The diagrams were created from the same dataset used for Fig. 1 (with
~EB ¼ 10�4, n ¼ 1/3 and kBTNin ¼ �pcbV0), and the color code of the different branches is also the same. In comparison with Fig. 1(a) and (b) it
should be noted that p and pex have different signs, and that a part of the orange branch B is stable now. The thick gray line in the background of
diagram (b) represents the analytical result (23) derived below.
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where the buckled and spherical branches cross in the energy
diagram, and pex,cb corresponding to the classical buckling
threshold, where the spherical shape becomes unstable and the
buckled branch separates from the spherical one. Again, the
threshold pex,c where buckling becomes energetically favorable
(but is only accessible by overcoming an energy barrier, see the
inset in Fig. 3) is much smaller than the classical threshold
pex,cb where the spherical branch loses its stability. The latter
value can be calculated as

pex,cb ¼ kBTNin/Vcb � pcb ¼ pin(Vcb) � pcb (15)

with Vcb and pcb from eqn (11) and (10), respectively.
How much of branch B becomes stabilized under osmotic

pressure control and whether branch B (as in the example
shown in Fig. 3) or branch C or the snap-through branch C0

cross the spherical branch in the G(pex) diagram depends on the
number of osmotically active particles Nin or the initial internal
osmotic pressure: in the limit Nin / 0, where there are no
osmotically active particles (or gas particles) enclosed in the
shell, the behavior for mechanical pressure control is recovered
in which the whole branch B is unstable and the rst buckled
shape aer the instability is a collapsed snap-through state on
branch C0. For an increasing number Nin, we rst nd buckling
into shapes C and, then, a stabilization of and buckling into
branch B. Further increasing Nin then further extends the
stabilized part of branch B. The bifurcation behavior under
osmotic pressure control becomes qualitatively similar to
buckling under volume control if Nin is sufficiently large such
that the spherical branch exchanges stability with branch B as
in the example shown in Fig. 3.
4 Enthalpy landscape for buckled
shapes: osmotic pressure control and
stabilization of non-collapsed shapes

The stabilizing effect of an internal medium on the non-
collapsed shapes can be shown more explicitly by considering
8364 | Soft Matter, 2014, 10, 8358–8369
the energy landscape during the buckling process. The
“reaction coordinate” that describes the progress of buckling is
DV ¼ V0 � V. An analytical estimate of the elastic energy in a
shell with one dimple has been given by Pogorelov,38

UPog z 2pJmin

�
8

3

�3=4
E2D

ð1� n2Þ1=4
�
~EB

DV

V0

�3=4

R0
2 (16)

where Jmin ¼ 1.15092 is a numerical factor. For mechanical
pressure control, a term �pV ¼ �p(V0 � DV) must be added to
obtain the total energy (or enthalpy) H(DV) ¼ UPog(DV) + pDV +
const. This results in a function H(DV)� DV3/4 � |p|DV (because
p is negative) as plotted in Fig. 4a), blue line. There exists an
energy barrier which has to be overcome, for example by
manually indenting the shell, by imperfections or by thermal
uctuations, but once this is achieved, the shell tends to
maximize DV in order to minimize its energy. This means that,
under pressure control, the shell collapses completely upon
buckling. This model is, of course, over-simplied because it
relies on the Pogorelov model that becomes inaccurate for very
large dimples.30,31,38 The shell cannot reach DV $ V0, and even
before there will be additional terms in the elastic energy
caused by the constraint of no self-intersection.

The global minimum of H(DV) becomes a boundary
minimum at DV¼ V0 for pressure values |p| > |pc|. The criterion
H(0) ¼ H(V0) thus provides an estimate for the critical
pressure pc

pc ¼ � 2� 61=4Jmin

E2D
~EB

3=4

R0ð1� n2Þ1=4
¼ 1

2
� 61=4Jmin

~EB

1=4

ð1� n2Þ1=4
pcb:

(17)

We checked with our numerical results the accuracy of this
estimate over a large range of bending stiffness, from ~EB ¼ 2 �
10�6 to 10�3, and found that also the numerical prefactor is in
reasonable agreement with the numerical results, despite the
simplicity of the enthalpy landscape.

Pogorelov's model also becomes inaccurate for very small
dimples.30,31 For the energy landscape, this has the effect that
This journal is © The Royal Society of Chemistry 2014
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Fig. 4 (a) Enthalpy landscape for the buckling transition under mechanical pressure control (blue line) and osmotic pressure control (red line).
After the enthalpy barrier has been overcome, mechanically pressurized shells can lower their enthalpy on and on by reducing the volume, but
osmotically pressurized shells will end up in the enthalpy minimum at finite DV. (b) Effect of a second dimple in the shape (dashed line): the
enthalpy function is raised, with the effect that the minimum of the function, where the stationary shape resides, is also lifted to higher enthalpy.
(c) Numerical demonstration (for the same parameters as in Fig. 3) that the branchwith two dimples is energetically less favorable than the branch
with one dimple. We plot the enthalpy difference to the spherical branch in order to better resolve the differences in the branches.
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the energy barrier is always present. The height of the energy
barrier is Hbarrier � E2D

4~EB
3/|p|3R0(1 � n2). The barrier is even

present for pressures p exceeding the critical buckling threshold
pcb, where buckling should become spontaneous and a barrier
should be absent. Therefore, one can simply assume that small
barriers Hbarrier � E2D

4~EB
3/|pcb|

3R0(1 � n2) � E2D~EB
3/2R0

2/(1 � n2)
can be overcome spontaneously. For an isotropic shell material,
with E2D ¼ EH0 and ~EB ¼ EH0

3/(12(1 � n2), this barrier height
corresponds to an indentation of the order of the shell thick-
ness H0 at the barrier. This argument is similar to a corre-
sponding argument in ref. 20, where it is assumed that the
buckling threshold pcb can be identied with the necessary
pressure for an indentation of the order of the shell thickness
H0 to grow spontaneously. Apart from this problem for pres-
sures p close to the buckling threshold pcb, the energy landscape
is qualitatively correct for |p| < |pcb|.

When we consider the appropriate energy functional for
osmotic pressure or pressure control with an internal gas, a
term f � ln V must be added to the energy functional. It
penalizes small volumes and, therefore, prevents the shell
volume from approaching DV / V0. The total energy (or free
enthalpy) reads

G(DV) ¼ UPog(DV) � pexDV � kBTNin ln(V0 � DV) (18)

and has the qualitative shape plotted in Fig. 4(a), red line.
There is no boundary minimum at DV ¼ V0 corresponding to
a fully collapsed state with V ¼ 0 but a local energy minimum
at a nite volume, i.e., DV < V0. The volume at this minimum
depends on the elastic moduli, the external pressure pex and
the internal particle number Nin. This qualitatively
explains why an internal gas or internal osmotically active
particles prevent the full collapse of the shell and stabilize
buckled shapes with medium volume reduction (parts of
branch B).

It remains to justify why we concentrated our investigations
on buckled shapes with a single dimple only, and disregarded
all other solution branches that can be obtained from the shape
equations.16 Numerical solutions of the shape equations in ref.
This journal is © The Royal Society of Chemistry 2014
16 have shown that all other solution branches are less favor-
able for volume control and mechanical pressure control. Here
we present an analytical argument, which conrms these nd-
ings and also covers osmotic pressure control. The most
promising candidates that could become energetically favorable
for osmotic buckling are shapes with multiple dimples. We can
consider symmetric shapes with two dimples within the
Pogorelov model and within the axisymmetric shape equations
to show that their free enthalpy is larger than for one dimple.
The volume reduction DV of the shell is divided between the
two dimples which have DV/2 each. According to the
Pogorelov model, the elastic energy of a double buckled shell is
thus UPog 2 (DV) ¼ 2UPog(DV/2) ¼ 21/4UPog(DV), where the last
equation holds because UPog � DV3/4. Thus, for given volume
difference it is energetically unfavorable to create multiple
dimples.16,32

Now we have to clarify how this translates to the free
enthalpy G(pex) for osmotic pressure control where a change of
variables from DV to pex is necessary. The branch with a single
dimple has a free enthalpy

GðpexÞ ¼ min
DV

�
UPogðDVÞ � pexDV � kBTNin lnðV0 � DVÞ�

hmin
DV

½f ðDV ; pexÞ� (19)

for osmosis. To obtain the enthalpy of the symmetrically
buckled branch we just change UPog to UPog 2 in this expression,
which results in

G2ðpexÞ ¼ min
DV

�
f ðDV ; pexÞ þ

	
21=4 � 1



UPogðDVÞ� (20)

The additional term (21/4 � 1)UPog(DV) is positive for all DV.
The volume-dependent enthalpy function whose minimum we
are searching is thus shied to higher values, see Fig. 4(b). As a
consequence, the stationary shape that resides in the minimum
is shied to a higher enthalpy when there are two dimples on
the shell instead of one; and also the transition states at the
enthalpy maximum lie at higher enthalpy. This result is
conrmed by the enthalpy diagram Fig. 4(c) that was generated
from the shape equations.
Soft Matter, 2014, 10, 8358–8369 | 8365
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5 Applications: shape control, shape
analysis and osmotic pressure sensing

In osmotic buckling, both the external part pex ¼ kBTNex/Vex of
the osmotic pressure, which is given by the external concen-
tration of osmotically active particles and the internal particle
number Nin, which is enclosed in the capsule during synthesis,
are relevant experimental control parameters. The external
pressure pex allows to control the nal buckled shape experi-
mentally, and the internal particle number Nin allows to control
the nal buckled shape and the buckling threshold pex,cb itself.
Both of these controls provide interesting applications, which
can be analyzed using the energy landscape (18).

We can determine the energy minimum analytically and
quantify the concentration of osmotically active particles, which
is needed inside and outside the shell in order to stabilize
buckled shapes of a desired volume reduction. Particularly
interesting is the buckled shape that is obtained at the buckling
threshold (15), pex ¼ pex,cb, where the shell can buckle sponta-
neously. The condition for an extremum of the free enthalpy is

0 ¼ G0ðDVÞ ¼ U 0
PogðDVÞ � pex;cb þ kBTNin

V0 � DV
: (21)

This equation can be solved for the internal osmolyte
concentration Nin/V0 and simplies considerably if only the
leading order in ~EB is retained. The value of kBTNin also deter-
mines the external pressure pex,cb needed to induce buckling,
see eqn (15). For both values, the simplied results are

kBT
Nin

V0

z 4

�
V0

DV
� 1

�
E2D

R0

ffiffiffiffiffiffi
~EB

q
and

pex;cb z 4
V0

DV

E2D

R0

ffiffiffiffiffiffi
~EB

q
: (22)

Both results can be directly translated into concentrations of
osmotically active particles inside and outside the shell. The
classical buckling pressure pcb ¼ �4

ffiffiffiffiffiffi
~EB

p
E2D=R0 occurs as the

relevant scale in eqn (22). In order to obtain buckled shapes
with DV ¼ V0/2, for example, one should adjust the internal
osmolyte concentration to Nin/V0 ¼ �pcb/kBT and the external
osmolyte concentration to Nex/Vex ¼ �2pcb/kBT. These are
exactly the values used in Fig. 3, and the inset in the V(pex)
diagram conrms that the buckling at the classical threshold
indeed results in a shape close to V ¼ V0/2.

Because the external osmotic pressure determines the
volume of the buckled capsule, we can also use the shape or
volume of osmotically buckled capsules as an indicator for the
applied osmotic pressure. Solving the equation G0(DV) ¼ 0, for
pex we nd the relationship between capsule volume and
external osmotic pressure as

pex ¼ pin;0

�
1� DV

V0

��1

þ 3

2
61=4Jmin

E2D
~EB3=4

R0ð1� n2Þ1=4
�
DV

V0

��1=4

(23)
8366 | Soft Matter, 2014, 10, 8358–8369
with the internal osmotic pressure in the undeformed reference
state, pin,0 ¼ kBTNin/V0. This relationship has a simple inter-
pretation: the rst term in eqn (23) would be the relationship
between external osmotic pressure and capsule volume if
the capsule exactly assumed its osmotically preferred volume
V ¼ pin,0V0/pex. The second term captures the additional inu-
ence of shell elasticity on this relationship.

The relationship (23) matches the numerical results with a
striking accuracy as can be seen in the bifurcation diagram
Fig. 3 (gray line). Because the free enthalpy landscape is based
on the approximate Pogorelov model, which is inaccurate for
large dimples, we would expect our analytical estimate also to
become inaccurate for large DV. Surprisingly, this is not the
case. For large DV, the position of the free enthalpy minimum is
primarily determined by the competition of the osmotic terms
�pexDV and �kBTNin ln(V0 � DV) in eqn (18); the elastic energy
UPog plays a subordinate role. Indeed, the purely osmotic
approximation pex ¼ kBTNin/(V0 � DV), where the elastic
contribution is completely neglected, is in good agreement with
the numerical pressure–volume-relationship for DV T 0.5.
Neglecting the elastic contribution in eqn (23) is justied for
small ~EB (and not too small DV) because kBTNin ¼ O (pcb) � ~EB

1/2

and the elastic term is �~EB
3/4.

Eqn (23) provides the basis for measurements of the external
osmotic pressure by using elastic capsules as pressure sensors.
The capsules must be “calibrated” in the sense that their elastic
properties, size and internal osmolyte concentration are known.
When they are embedded in a bath with a larger, unknown
osmolyte concentration and buckle consequently, their volume
difference can be measured and inserted into eqn (23) to obtain
pex or the external osmolyte concentration Nex/Vex¼ pex/kBT. The
volume measurement could be achieved through a microscopy
image analysis, in the simplest version by measuring the shell
depth d and original radius R0 (see Fig. 5) and using the
geometrical relationship for shapes whose dimple is an
exact mirror-reection of a spherical cap31 to obtain
DV/V0 ¼ (1� d/2R0)

2(2 + d/2R0)/2. While the relationship (23) for
pex(DV) is very precise, this relationship DV(d) acquires some
errors, but Fig. 5(a) shows that these errors are only signicant
for d ( R0/2.

Vice versa, eqn (23) or the resulting relationship for pex as a
function of d/R0, see Fig. 5, can be used to determine the
capsule's material parameters by tting experimental data for
d/R0 at different external osmotic pressures pex. Specically, eqn
(23) can be used to determine the parameter combination
E2D~EB

3/4/R0 and the internal osmotic pressure pin,0. In combi-
nation with an analysis of the maximal edge curvature of
buckled shapes as proposed in ref. 16 and experimentally
realized in ref. 17, which allows to determine the reduced
bending modulus ~EB, both elastic moduli and the internal
osmotic pressure can be obtained from relatively simple shape
analyses of osmotically pressurized shells. To this end, accurate
measurements of the external osmotic pressure and images of
cross-sections along the axis of symmetry of the shells must be
provided.

We tested such an analysis using the data published in ref. 9
for polyelectrolyte capsules with radius R0 ¼ 2 � 10�6 m and
This journal is © The Royal Society of Chemistry 2014
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Fig. 5 Using a buckled shell as an osmotic pressure sensor: from ameasurement of the depth d and original shell radius R0, the external osmotic
pressure pex can be determined. (a) The data points are generated from the dataset already used in Fig. 1 and 3, with ~EB ¼ 10�4, n¼ 1/3 and kBTNin

¼�pcbV0, and the solid line represents the analytical approximation based on eqn (23). (b) Analysis of experimental results published in ref. 9. The
data points from the experiments are fitted using eqn (23) with the internal osmotic pressure as a fitting parameter. The open points were
excluded from the fit because the experimental images looked conspicuous that they may not represent centered cross-sections.
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wall thickness H0 ¼ 2 � 10�8 m. The polyelectrolyte capsules
were then deated osmotically, by adding poly(styrene sulfo-
nate, sodium salt) (PSS) to the exterior solution. The osmotically
active particles are the counter-ions surrounding the PSS
molecules, and they exert an external osmotic pressure pex on
the capsules. In the experiments, the values of pex were
measured with a Vapor Pressure Osmometer. In view of the few
available data points, which can be obtained from the confocal
microscopy capsule images in ref. 9, we use the value for the
shear modulus of the shell material G¼ 500 MPa given in ref. 9,
which corresponds to a Young modulus of E ¼ 1500 MPa if n ¼
0.5. Using also the measured values for capsule radius and
thickness this leads to E2D ¼ 30 N m�1 and ~EB ¼ 1.11 � 10�5.
Inside the capsule we also expect a certain concentration of
ions, because the capsule was fabricated from polyelectrolytes.
This gives rise to a nonzero but unknown internal osmotic
pressure pin,0 ¼ kBTNin/V0 (in the undeformed state) which
serves as the only tting parameter in the following in order to
explain the observed shapes aer osmotic buckling.

The value for G obtained in ref. 9 might be questionable
because its determination relied on a measurement of the
buckling pressure using the classical buckling pressure |pcb|, see
eqn (10). This determination assumes a vanishing internal
pressure, i.e., pin z 0 in eqn (15) and, moreover, the classical
buckling pressure (15) only represents an upper bound for the
buckling pressure. Real imperfect shells buckle already at
considerably weaker pressures,21,39 between the classical osmotic
buckling pressure pex,cb, where the spherical shape becomes
unstable and the much smaller critical osmotic pressure pex,c,
where buckling becomes energetically favorable as discussed
above. As already pointed out, values for E2D and ~EB could also be
obtained from a shape analysis, in principle, if shape images for
more external osmotic pressures pex were available.

From ve confocal microscopy images, Fig. 2(B) and (C) in
ref. 9, we measured the ratio d/R0. An uncertainty arises because
we are not sure if the cross-sections imaged by the confocal
microscopy cut through the center of the capsules and if they
are oriented along the axis of symmetry of the capsules. For
This journal is © The Royal Society of Chemistry 2014
each image, the external osmotic pressure is given in ref. 9. The
resulting data points are plotted in Fig. 5(b), together with the t
using eqn (23). For the t parameter we obtained kBTNin¼ 5.4�
10�12 J, which corresponds to an internal osmotic pressure
(in the undeformed state) of pin,0¼ kBTNin/V0¼ 1.6� 105 Pa and
to a concentration of Nin/V0 ¼ 65 mol m�3. eqn (23) describes
the experimental results with reasonable accuracy.
6 Discussion and conclusion

We have shown that the stability of buckled spherical shells (with
respect to axisymmetric deformation modes) depends on the
specic system that generates the pressure difference between
the inside and outside. If a simple mechanical pressure differ-
ence is prescribed, the enclosed volumewill not affect the applied
mechanical pressure, and the shell will collapse completely aer
the buckling has set in. This is known as snap-through buckling
in the shell theory literature. On the other hand, when the system
is constructed so that the shell must have a given volume, the rst
stable shapes aer buckling have a small, but nite dimple.

In most experiments, there will be feedback between the
deformation and the pressure difference exerted on the shell,
for example, for osmotic buckling or if the shell encloses a gas.
The feedback by an internal medium will stop the snap-through
buckling at a nite volume, thus stabilizing buckled shapes
with medium volume. Our ndings explain why these are the
shapes that are usually observed in experiments, although they
are unstable from the simple viewpoint of pressure control.

The stabilizing effect of an internal medium is quite generic
as long as the force density exerted on the shell is still a normal
pressure that is spatially constant. We checked that the same
qualitative results could be obtained by including a compress-
ible uid in the shell, with an energy contribution Ff (V� V0).2

The reason for this generic behavior is that the enthalpy land-
scape, see Fig. 4, is qualitatively identical, no matter how exactly
the energies that penalize large volume differences look like.

Within this paper we specically discussed buckling under
(i) volume control, (ii) mechanical pressure control and (iii)
Soft Matter, 2014, 10, 8358–8369 | 8367
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osmotic pressure control. Yet, even more experimental situa-
tions are conceivable, which give rise to feedback between
volume and pressure difference: (iv) as already mentioned, the
shell can be lled with a compressible uid. (v) The elastic
properties of the shell could depend on the concentration of an
enclosed substance, e.g., if the substance chemically reacts with
the shell material. This will give rise to capsule volume depen-
dent elastic properties. (vi) One frequently used mechanism in
volume controlled experiments is to slowly dissolve the interior
liquid of the capsule by the external liquid, thus reducing the
internal volume.12,13,26 This procedure will involve feedback as
soon as the exterior volume is no longer much larger than the
internal capsule volume. If reducing the capsule volume
increases the internal pressure or stiffens the capsule material,
such feedbackmechanisms will stabilize non-collapsed buckled
shapes. If a reduced capsule volume increases the external
pressure or soens the capsule material, complete collapse
upon buckling will be the generic behavior.

For osmotic pressure control, the capsule tends to assume a
preferred volume which is prescribed by the osmolyte concentra-
tions. Therefore, the observed shape bifurcation behavior for
osmotic pressure control becomes typically qualitatively similar to
buckling under volume control, see Fig. 1 and 3. In particular,
snap-through buckling is suppressed. This requires, however, that
the initial osmolyte concentration in the capsule interior is suffi-
ciently large. We presented a quantitative theory which also
captures the inuence of shell elasticity on the resulting relation-
ship (23) between external osmotic pressure and capsule volume.
Buckling under osmotic pressure is indeed intermediate between
buckling under volume control and buckling under mechanical
pressure: in the limit of a small number Nin of osmotically active
molecules in the capsule interior, buckling under mechanical
pressure control is recovered; for increasing Nin, the behavior
effectively approaches buckling under volume control.

We have shown that these ndings can be relevant for the
control of buckled shapes in applications by controlling the
osmolyte concentration. Conversely, we can use elastic capsules
as osmotic pressure sensors, and an accurate analytical formula
is derived that allows deduction of the osmotic pressure from
the observed volume of buckled capsules using eqn (23). This
relationship can also be used to obtain elastic moduli of the
capsule and its internal osmotic pressure from shape changes
of the capsule if the external osmotic pressure is experimentally
controlled. We applied this procedure to published experi-
mental data from Gao et al.9 on polyelectrolyte capsules. Our
ndings are also relevant for stabilizing buckled shapes of a
desired volume in applications by choosing the osmolyte
concentrations according to eqn (22) to realize a desired DV.
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18.

6 M. P. Neubauer, M. Poehlmann and A. Fery, Adv. Colloid
Interface Sci., 2013, 207, 65–80.

7 H. Rehage, M. Husmann and A. Walter, Rheol. Acta, 2002, 41,
292.

8 E. Donath, G. Sukhorukov, F. Caruso, S. Davis and
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