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Effects of thermal fluctuations and fluid
compressibility on hydrodynamic synchronization
of microrotors at finite oscillatory Reynolds

number: a multiparticle collision dynamics

simulation study

Mario Theers and Roland G. Winkler*

We investigate the emergent dynamical behavior of hydrodynamically coupled microrotors by means of

multiparticle collision dynamics (MPC) simulations. The two rotors are confined in a plane and move

along circles driven by active forces. Comparing simulations to theoretical results based on linearized

hydrodynamics, we

demonstrate

that time-dependent hydrodynamic interactions lead to

synchronization of the rotational motion. Thermal noise implies large fluctuations of the phase-angle

difference between the

rotors,

but synchronization prevails and the ensemble-averaged time

dependence of the phase-angle difference agrees well with analytical predictions. Moreover, we

demonstrate that compressibility effects lead to longer synchronization times. In addition, the relevance
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of the inertia terms of the Navier—Stokes equation are discussed, specifically the linear unsteady

acceleration term characterized by the oscillatory Reynolds number Ret. We illustrate the continuous
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1 Introduction

Cell motility is a remarkable accomplishment of evolution,
being fundamental for a variety of cellular activities. Microor-
ganisms such as spermatozoa, bacteria, protozoa, or algae use
flagella for their propulsion.*® Furthermore, flagellar motion
plays a major role in eukaryotes,"* where they transport fluid in
the respiratory system in form of cilia,* are involved in cellular
communications,® and even determine the morphological left-
right asymmetry in the embryo.°

The various types of collective flagella and cilia motions
require a synchronization of their beating pattern. The two
flagella of Chlamydomonas beat synchronously during straight
swimming, while asynchronous beating causes tumbling.”**
The helical filaments of bacteria, e.g., E. coli, synchronize their
rotational motion during bundling.™** Multi-ciliated and
multi-flagellated objects such as unicellular Paramecia®® or
Volovoxes® exhibit periodic spatio-temporal surface patterns
known as metachronal waves (MCW).?*28

The synchronized beating of nearby swimming spermatozoa
was first modeled and analyzed in ref. 29, suggesting that
hydrodynamic interactions lead to synchronization. Since then,
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breakdown of synchronization with the Reynolds humber Rer, in analogy to the continuous breakdown
of the scallop theorem with decreasing Reynolds number.

the hydrodynamics of active systems at low Reynolds numbers
has become a subject of major interest.>*° Indeed, recent
experimental results on the fluid-mediated interactions
between flagella of two Volvox carteri cells unambiguously reveal
the importance of hydrodynamic interactions on their
synchronized motion.** However, synchronization is not easily
achieved for systems at zero Reynolds number,'>'%3%3>-3¢ where
the fluid dynamics is described by Stokes equations. The pres-
ence of kinematic reversibility of these equations combined
with swimmer symmetries may prevent synchroniza-
tion.*>%3%3%31 To overcome this fundamental limitation of
Stokes equations and to generate a non-reciprocal dynamics,
various alternatives have been suggested. This comprises
inclusion of additional degrees of freedom such as system
flexibility,”'5-1820.23:25,33,3536 3 gpecific coupling,” e.g., via
surfaces,*® or nonreversible driving forces.******* In addition,
specific system designs combined with hydrodynamic interac-
tions lead to synchronization as has been shown for sheets***
and models of Chlamydomonas.*>* For the latter, synchroniza-
tion of flagella beating can even be achieved without hydrody-
namic interactions.**** Alternatively and more general, the
linear unsteady Stokes equation can be adopted to describe the
fluid properties.**** Here, the time reversibility of the under-
lying dynamical equation is broken.

The described lack of synchronization due to kinematic
reversibility is equivalent to Purcell's scallop theorem*® for

—~
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locomotion at zero Reynolds numbers. The same type of
symmetry arguments apply for both effects. Hence, the two
examples belong to a more general class of physical
phenomena, which are all based on the specificities of the
time independent, linear, and zero Reynolds number Stokes
equations, which are identical under time reversal. Hence,
any insight into a particular phenomenon has implications
for a broader range of physical effects. Recently, it has been
shown*>* that even for oscillatory reciprocal forcing of a solid
body at arbitrary small Reynolds numbers Re > 0 a net
translational motion is obtained. The effect disappears for
zero Reynolds number in agreement with the scallop
theorem.**™"” The consideration demonstrates, however, that
the scallop theorem breaks down in a continuous way and no
critical inertia is required for the onset of motion.*” Implica-
tions for other phenomena, e.g., synchronization need to be
resolved.

For a theoretical understanding of the mechanisms gov-
erning synchronization in complex (biological) systems,
computer simulations are particularly beneficial, since they
capture potential non-linear effects, hydrodynamic interac-
tions, and thermal fluctuations.'”*®*%%° The latter have been
recently shown to markedly effect the dynamics of E. coli
bacteria.>® Thereby, mesoscale hydrodynamic simulation
techniques such as the multiparticle collision dynamics (MPC)
method®'~** are particularly valuable. MPC is a particle-based
simulation approach, which captures hydrodynamic interac-
tions and thermal fluctuations.>® It has successfully been
applied to a broad range of soft matter systems such as
colloids, polymers, vesicles and blood cells, and, in particular,
microswimmers,'7,1%2857-68

In this article, we apply the MPC approach to study the
time-dependent, correlated dynamics of two hydrodynami-
cally coupled microrotors. We adopt the rotor model proposed
in ref. 23. As we have shown analytically, the rotational
dynamics of such coupled rotors is synchronized by time-
dependent hydrodynamic interactions.** MPC simulations are
performed to verify the previous results, to elucidate the
influence of thermal fluctuations and that of fluid compress-
ibility. Moreover, we discuss the importance of the inertia
terms of the Navier-Stokes equation—the linear unsteady
acceleration term and the non-linear advection term—by
introducing corresponding Reynolds numbers*>*” and
demonstrate that the two can be comparable for micrometer-
size objects. From a simulation technical point of view, we
establish a link between the Landau-Lifshitz Navier-Stokes
fluctuating hydrodynamic equations and the MPC approach in
terms of stress tensors for angular and non-angular
momentum conserving simulations. Specifically, we present
the respective dissipation fluctuation relations.

The paper is organized as follows. The fluid and the rotor
model are described in Sec. 2. In Sec. 3, relevant basic hydro-
dynamic equations are discussed. Theoretical results for
synchronization and the flow field are presented in Sec. 4, and
simulation results are shown in Sec. 5. Finally, Sec. 6 summa-
rizes our findings.
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2 Fluid and rotor model
2.1 Multiparticle collision dynamics

The MPC fluid consists of N point particles of mass m with the
positions r; and velocities v; (i = 1, ..., N), which interact with
each other by a stochastic, momentum-conserving process. The
particle dynamics proceed in two steps—streaming and colli-
sion. In the ballistic streaming step, the particle positions are
updated via

r{t + h) = r{t) + hvi(?), 1)

where # is the collision time step. In the collision step the
simulation box is partitioned into cubic cells of length «q, in
which multiparticle collisions are performed. In the SRD
version of MPC,*** the relative velocity of each particle, with
respect to the center-of-mass velocity of the cell, is rotated by a
fixed angle « around a randomly oriented axis. Hence, the new
velocities are

vilt + h) = vem(?) + R(@)[(7) — vem(D)], (2)

where R(«) is the rotation matrix,*

Vem = Nic Z v; (3)
iecell
is the center-of-mass velocity, and N, the total number of
particles in the cell. In its original version, MPC violates Gali-
lean invariance. It is restored by a random shift of the collision
grid at every step.”®
The collision rule (2) violates angular momentum conser-
vation,” which is associated with a non-symmetric stress
tensor.**”>”* Angular momentum conservation is reestablished
on the cell level by a solid-body type rotation of relative veloci-
ties after a collision according to™

vi(t+ 1) = vem(t) + R(@)[vi(£) — vem (2)] — Fice

X (mUt S {re0) % ret) = R (0]}, ()
Jjecell
where I is the moment of inertia tensor of the particles in the
center-of-mass reference frame; r;(¢f) and v;.(t) are the
respective relative positions and velocities after streaming,
ie, . =T1;— Fem and v; . = v; — Ve, With the center-of-mass
position rcpy,.

In order to simulate an isothermal fluid, a collision-cell-
based, local Maxwellian thermostat is applied, where the rela-
tive velocities of the particles in a cell are scaled according to the
Maxwell-Boltzmann scaling (MBS) method.”

2.2 Microrotor

We adopt the rotor model of ref. 23: two beads of radius Ry
move along circles of radius R, each driven by an active force F;
(¢f Fig. 1). The two circles are centered at R’ = (—1)/(d/2)e, (i =
1, 2), where &, is the unit vector along the x-axis and d the center-
to-center distance; both beads are confined in the xy-plane. The
trajectories of the bead centers can be expressed as

Soft Matter, 2014, 10, 5894-5904 | 5895
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Fig.1 Model system of hydrodynamically coupled rotors.?* Two beads
move along fixed circular trajectories, each driven by a constant
tangential force F.

R{(1) = R + (R cos ¢1), Rsin ¢(1), 0)", (5)
in terms of the phase angles ¢,(¢). The driving forces
Fi(r) = Fi|1) (6)

are of equal magnitude and point along the tangents #,(¢) of the
trajectories, where

i(1) = (=sin ¢(1), cos (1), 0)". 7)

The coupling of the beads with the MPC solvent is estab-
lished in the collision step.>»”>””® Thereby, the beads are treated
as fluid particles with the mass M. Thus, in cells with a bead the
center-of-mass velocity is given by

imv,(l) + MV (t)

mN. + M

(8)

Vem ()

The velocity V(¢ + h) of the bead after a collision follows
according to eqn (2) or (4), respectively, taking into account the
appropriate mass M.

Hence, the phase angles evolve as

0(t41) =00+ O+ 5 (51 ) ©)

between MPC collisions. In a collision, the angular velocities
change. The new values after a collision follow from the relation

ot + 1) :%t}(r+h)-V,~(t+h). (10)

2.3 Parameters

All simulations are performed with the rotation angle « = 130°,
the mean number of particles per collision cell (N.) = 10, and
the collision step h=10"%y/ma?/(kg®), where O is the
temperature and kg the Boltzmann constant. This yields the
viscosity n = 82.21/mks®/a* for the non-angular momentum
conserving MPC variant (2).”° For a rotor, we choose M = 10m,
which yields the bead diffusion coefficient
Dy/+/ks®a?/m = 0.0023 and the hydrodynamics radius Ry =

5896 | Soft Matter, 2014, 10, 5894-5904
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kg®/(67nD,) = 0.28a assuming no-slip boundary conditions.®
The radius of a circle is set to R = 2a and the distance to d = 5a
in terms of the MPC length scale. In simulations, forces in the
range F/(kg®/a) = 10-100 are considered, which corresponds to
the Péclet numbers Pe = FR/(kp®) = 20-200.

Periodic boundary conditions are applied for the fluid, with a
rectangular square-cuboid box of side lengths L, = L, = 100a
and L, = 20a.

All results presented in the following have been obtained
with the non-angular momentum conserving collision rule (2).
However, simulations confirm that these results are indepen-
dent of the applied MPC variant and they agree very well with
each other.

3 Hydrodynamics

As is well established, the hydrodynamic properties of the MPC
fluid are excellently described by the linearized Navier-Stokes
equations on sufficiently large length and time scales.’"**3%7%73
Moreover, the dynamics of the coupled rotors of Sec. 2.2 can be
described analytically within the linearized Navier-Stokes
equations.* In order to establish a link between simulation
results and analytical considerations, we will briefly describe
the basic hydrodynamic background.

3.1 Navier-Stokes equations and MPC fluid
Mass and momentum conservation of an isothermal fluid are
expressed by the continuity and the Navier-Stokes equation®*

@JFV.(W) =0, (11)

ot

p(%—‘—(v-V)v) =V-o+f, (12)
respectively. Here, p + dp(r, t) denotes the mass density with its
mean value p and its (small) fluctuations dp(r, ) at the position r
in space and the time ¢. v = v(r, ¢) is the fluid velocity field, fir, )
a volume force, and a(r, ¢) the stress tensor. Note that only the
mean density p will appear throughout the rest of the paper.

For the MPC fluid, the explicit form of the stress tensor
depends on the lack or presence of angular momentum
conservation during collision. In general, the stress tensor can
be expressed as

6var
Oag = _paaﬁ + Znaﬁa’ﬁ' a_,7
v s

(13)

with the pressure p and the Cartesian indices «, 8, &, 8 €
{x, 3, 2

(i) For angular momentum conserving fluids, the standard
symmetric stress tensor is obtained®*

6va 2 6110/
- géaﬁ %:GTM)’ (14)

v,
Ousg = —POug +77<a—rﬁ+ g

ar,
with

2
Naga'g = n(éaw%ﬁ' + 6a6’6ﬁzx’ - géaﬁatﬂﬁ’) (15)

This journal is © The Royal Society of Chemistry 2014
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in three dimensions. 7 denotes the shear viscosity. Note, we
assume that the bulk viscosity is zero.>***

(ii) For the non-angular momentum conserving variant of
the MPC approach of Sec. 2.1, the non-symmetric tensor is given

by73,84,85

v, dvg vy I,
=—pd Bz =% (16
Oupg = — POog + 1 (ag+ aﬁzara) r57 ( )
with
X 2
nuﬁw’ﬁ/ = 7]6&[3'66&’ + n 60104’6(16’ - gaaﬁéa’ﬁ/ . (17)

Here, n* and 7° are the kinetic and collisional contribution to
the viscosity n = 7N + y¢.5253.71-73,798687 Alternative expressions for
the stress tensor have been used, which differ from eqn (16) by a
term with vanishing divergence only and thus yield the same
Navier-Stokes equation.>*7%7>%*

With the stress tensor (16), eqn (12) turns into

(g: (»v-V) ) = —Vp+nAv+%V(v-v) +f. (18)

For angular momentum conserving fluids 5" is replaced by
in eqn (18).

3.2 Inertia and Reynolds numbers

In order to asses the relevance of the various terms in eqn (18),
in particular the time-dependent and non-linear inertia terms,
we scale the velocity field by a typical value V, length by L, and
time by T, as usual,®® which yields the equation

/

d
ReT _Vl

3 +Re (v-V')V

k
U A+ Z—nv’(v’ V) +f, (19)
where the primed quantities are dimensionless and of ¢ (1).

Furthermore, we introduced the Reynolds numbers

pVL VL

Re = T = 77 (20)
L I’
RCT = l‘:]_T = ﬁ, (21)

with the kinematic viscosity » = n/p. Typically, T is defined as
T = L/Vwhich yields Rer = Re, and for Re < 1 the left hand side
of eqn (19) is neglected. In particular, Re = 0 is assumed for
microswimmers, which leads to peculiarities in their locomo-
tion as expressed by the well-known scallop theorem.*

The oscillatory Reynolds number Rer can be written as Rer =
7,/T, with 7, = L*/v. Hence, Rey is the ratio of the viscose time
scale 7, for shear wave propagation over the distance L and the
characteristic system time 7. In order to establish proper
hydrodynamic interactions, 7,/T < 1 and, hence, Rer < 1.

In ref. 45 and 47, it is assumed that Rer < Re, which may
apply for the systems considered there, but may not be valid in
general. Alternatively to the proposed breakdown of the scallop
theorem due to the nonlinear advection term, the linear
unsteady acceleration term implies such a breakdown even at

This journal is © The Royal Society of Chemistry 2014
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zero Reynolds number Re, because the term breaks time
reversibility.

A priori, the relevance of the various Reynolds numbers is not
evident. As far as the rotor model of Fig. 1 is concerned, the
relevant length scale is the distance between the two beads L =
d, the characteristic time is the rotational period, and the rele-
vant velocity is V= wR = R/T, with the rotational frequency w.
Hence, Re/Rer = R/d < 1, since typically R < d. Thus, Rey is at
least as important as Re itself.

For a quantitative estimation of the Reynolds number, we
consider the beating of the flagella of Chlamydomonas.**** With
L= 15um,R = 4 um, and T = 15 ms, we find Re = 10> and
Rer = 10 2 in water.

The emergent dynamical behavior due to the presence of the
unsteady acceleration term has recently been studied experi-
mentally and theoretically for a colloidal particle confined in an
optical trap.® Here, the characteristic time is the trap relaxation
time tx = 6TNRy/K, which depends on the trap stiffness K. The
studies reveal strong hydrodynamic correlations for Rer = 7,/tx
2 0.1. More precisely, the studies show the self-interaction of a
single colloid mediated by its surrounding fluid. This funda-
mentally changes the particle's thermal fluctuations, which are
mediated by hydrodynamic self-interactions.” A similar type of
coupling can be achieved for two simple colloidal rotors. This
might open opportunities to exploit hydrodynamic phenomena
for novel sensing applications.

3.3 Fluctuating hydrodynamics

In the following, we focus on the linearized Navier-Stokes
equation and neglect the advection term, i.e., we set Re = 0, but
keep the unsteady acceleration term. Moreover, to account for
thermal fluctuations inherent in the MPC fluid, we introduce a
random stress tensor oX(r, t). Then, eqn (18) turns into
(Landau-Lifshitz Navier-Stokes equation)**

av n*

— pr+17Av+ 3

P V(V-v)+f.

(22)

The volume force f now consists of a deterministic force f°
and the random force fX = V-¢~. The stress tensor ¢" is
assumed to be a Gaussian and Markovian stochastic process
with the moments®*

(080 )08 (1, 0) ) = 2en 5050 — )0t = ). (23)

Nagwe 1S either given by eqn (15) or (17) depending on the
applied MPC procedure.

Taking the divergence of eqn (22) and using the linearized
continuity eqn (11) together with the ideal gas equation of state
with the velocity of sound ¢ = /kg®/m for an isothermal
system, we obtain the wave equation

(A 1 ﬁ)p =V- (nAv—O—%kV(Vv) +f).

24
c? 912 (24)

In Fourier space, eqn (22) and (24) read as®**®

Soft Matter, 2014, 10, 5894-5904 | 5897
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— K+ o’ p=ik-( — kz‘fn—kkkT‘ 7
2 )P = nkv — = v+f ],

— ikp — nk*v — —kkTv +f,

(25)

piwy = (26)
with k = |k| and the argument (k, w) of all variables with a bar.
In order to solve eqn (25) and (26) we define the longitudinal
and transverse projection operators Py(k) = kk, with the unit
vector k and the dyadic product kk, and P(k) = 1 — P; (k) along
with vy, = Py and v = Pyv. Using these projection operators, we
obtain the solution

w(k,w) = v(k,w) + v (kw) = O(k,w)f

= (Qr(k,w) + QL(kW)f, (27)
where
Or(k,w) = [ipw + k]~ Py = Or(k,w)Pr, (28)
and
ko= [+ L -we)| mo
= 0,(k,w)P,

with # = 5 + /3. The transverse part of the velocity v describes
shear waves, whereas the longitudinal part v, represents sound
waves. Fourier transformation with respect to frequency yields
the time-dependent tensors Q(k, t) = Qr(k, t)Pr and Qy(k, ¢) =
Qu(k, £)P.,** where

Or(k,t) = L de ey (k,w) = l ek (30)
™ P
For the longitudinal part, we find
1 k)2 25 .
QL(k, l) = ; € COS(Q!) — m Sln(Ql) (31)
for 4c® > ¥*7*, and
1 4&71/2 2 .
QL(k7 [) = ; € COSh(Al) — m Slnh(At) (32)
for K*”* > 4c®. Here, we defined ¥ = #/p,

Q = k25/4c?/ (k%) —1/2, A =k?»\/1—4c*/(k*»?)/2, and
assume ¢ = 0. We obtain the velocity field v(r, t) by Fourier
transformation of eqn (27) and using the convolution theorem

v(r, 1) = jd3r' [dz’ or—v,t =) f(¥,7). (33)
The Green's function
. _ dzk —ik-r
0(r.1) = J(W Ok, 1) (34)

is known as the dynamical Oseen tensor. In general, the matrix
elements of Q(r, t) can be expressed as (r = |r|)

5898 | Soft Matter, 2014, 10, 5894-5904
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Qaﬂ(rv [) =

(4000 B ™) (35)

in real space, for both, the transversal and longitudinal part, i.e.,
A =Ar+Ap and B = By + B;. For the transverse part, the closed
expressions

ar) = (14 27) i = 51,

%

Br(r,1) = (1 + @) Firn - 80D,

r

_ 1 7
S 1) *W CXP(— m),

have been derived.**** For the longitudinal part, we obtain the

(36)

integral representation 4;, = I, and By, = 31, — 2I;, with
n=t J dk kOy (k, £)sin(kr),
) (7)
P sin(kr)
L = _27:2 J dk QL(/C Z) I: o OS(k}"):| .

4 Theoretical results

4.1 Rotor equations of motion

We consider the limit of point particles and assume a balance
between the driving and the hydrodynamic friction forces
acting on the beads, i.e.,

F(t) — v(R; — v(ry)) = 0, (38)

where vy = 6TnRy is the friction coefficient and v(r, ¢) is given by

eqn (33). The forces F; and F are related with the respective

force densities f* and f* according to
FO0 = | e, (39)

Vi

with the volume V; of particle i. Hence, we obtain the equations

of motion

R(1) = —FR

3 J oo

Vel

;F( 1) —w(1),t =) Fi(!)

ZszQr,

J#Fi

—r(1), 1 =1 )F}(7).

(40)

The restriction to a circular trajectory of a bead implies a
constraining force. In the following considerations, we neglect
this constraining force, as it leads to terms of quadratic order in
Ry/d. Moreover, for an analytical solution of the equations of
motion (40), we apply the mean-field approximation R,(t) —
R,(t) = d = de,, which is strictly valid for d/R > 1,** and
neglect the random force, i.e., we set Fr = 0.

This journal is © The Royal Society of Chemistry 2014
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Using the position vectors (5) and forces (6), eqn (40) yield
the coupled integro-differential equations

=w+— Z[dtt

J#Ei Y

O(de,,t — 1) (1) (41)

for the phase angles ¢,. Here, w = F/(yR) = 2m/T is the intrinsic
angular frequency with the rotation period 7.*

The creeping-flow limit studied previously*******° follows,
when we assume that (¢') under the integral is changing much
more slowly in time than the hydrodynamic tensor Q. Then,

integration of the transverse hydrodynamic tensor Q(r, t) yields
the asymptotic expression for t — o«

sz 0y (r,?) = (1+ ##) — (1+2¢%), (42)

7
2473/29/vt
with the unit vector # = r/|r| and the dyadic product #7. The first
term on the right hand side is the well-known Ossen tensor.***
The long-range hydrodynamic correlations yield a leading time-
dependent term, which decays slowly as ~ 1/v/¢. The sound
contribution decays much faster,* since it includes an expo-
nentially decaying factor and is thus irrelevant for the asymp-
totic behavior.

87un|r|

4.2 Synchronization and flow field

To characterize the rotor dynamics, we solve eqn (41) numeri-
cally by a combination of Euler's integration scheme and the
trapezoidal rule.”® In eqn (41), Q(r, t) = Q(r, ¢) + Q(r, ) is
required in position space. In contrast to the transversal
component Qr, for which a closed expression is given in eqn
(35) and (36), the longitudinal component Q; has to be
computed numerically for each time step by evaluating the
integrals (37).

Fig. 2 shows numerically obtained phase-angle differences
A(t) = @4(t) — ¢at) for various initial differences A(0). The
phase-angle differences exhibit an exponential decay for long
times, except for the initial value A(0) = 7, which is a metastable
state as discussed in ref. 34. Hence, the phase difference
vanishes with time and the rotors exhibit an inphase synchro-
nized rotation.

100

A(t)/m

t/T

Fig. 2 Phase-angle differences A(t) = ¢4(t) — @,(t) determined by a
numerical solution of eqn (41) for the initial conditions A(0) = =, 37t/4,
7/2, and /4 (top to bottom) and the Péclet number Pe = 200. Note
that A(0) = 7 is an unstable fixed point. Time is scaled by the intrinsic
period T = 2mtyR/F. Other relevant parameters are provided in Sec. 2.3.
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As discussed in ref. 34, the equation of motion for the phase
difference is well approximated by
. F (!
Ay =-1% L 47 [0 (d, 1) + 0, (d,)]sin(wr)A()  (43)
for t > 1, = d*/v. Hence, A(t) decays exponentially in the
asymptotic limit ¢ — oo with the characteristic time

s =

{2 J d7[Quld, 1) + On(d, f’)]sinw’)} R

Neglecting compressibility effects by setting Q = Qr, we

find**
t_ 1
T 475‘/2 RH T, 41'::3/2 Ry R

The analytical result (45) agrees very well with numerically
determined characteristic decay times for the full numerical
solution of eqn (41), with Q = Qr, as long as T > 1,.**

The synchronized rotation is energetically favorable, as can
be visualized by the velocity field. For pointlike particles, it can
be computed according to

(45)

= ZF ‘; dr Q(r —w(t),t — ),(1). (46)

Fig. 3 depicts examples for an asynchronous and synchro-
nous state. The velocity profile decays very fast with separation
from a beat. Thereby, it is anisotropic—of Stokeslet shape —
with a slower decay in the tangential forward and backward
direction. In the synchronous state, the overall flow field is
smoother, which minimizes dissipation.

4.3 Discussion

The linear unsteady acceleration term leads to synchronization
of the rotational motion of the rotors (¢f Sec. 3.2 and 4.2).
Interestingly, the ratio of the synchronization time and the
rotational period ¢/T is proportional to the inverse of the square
root of the Reynolds number Rer = 7,/T. This implies that
synchronization appears for any non-zero Reynolds number
Rer. However, a vanishing Reynolds number leads to an infi-
nitely long synchronization time. This is in agreement with the
fact that there is no synchronization in the Stokes limit.>
Hence, we get a continuous crossover from a synchronizing to a
non-synchronizing system. This is similar to the considerations
in ref. 45 and 47 for the non-linear inertia term, with the
continuous breakdown of the scallop theorem with inertia due
to the unsteady acceleration term.

The dependence on the radio d/Ry is characteristic for
synchronization and has been found for other synchronization
mechanisms.”>?***" Interestingly, in our case t5 can solely be
expressed by the ratio of the viscous time scale Ry*/» and the
period T. Hence, synchronization is determined by shear wave
propagation over the size Ry of the sphere rather than the

Soft Matter, 2014, 10, 5894-5904 | 5899
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Fig. 3 Flow fields of hydrodynamically coupled rotors for an asyn-
chronous (top) and a synchronized (bottom) state for the Péclet
number Pe = 120. The flow field of a point particle diverges, hence, we
introduce the maximum cut-off velocity vo.

distance between the two rotors. However, we have to keep in
mind that the approximate expression (45) applies for T > 1,
only, i.e., shear waves traversed the distance between the beads. In
the limit # >> t,, the integrand of eqn (44) reduces to (47tvt') >
sin(wt'), and the integral is determined by the fluid long-time tail
only.> The details of the set-up become irrelevant on time-scales
longer than the viscous time-scale 7,. This is similar to the poly-
mer center-of-mass velocity auto-correlation function, which is
also independent of polymer properties on respective long time
scales and is solely determined by the fluid long-time tail.>** On
short time scales (t/T < 10 in Fig. 2), however, there is naturally a
significant dependence of synchronization on d due to the finite
shear-wave propagation time.

For a quantitative estimation of the synchronization time of
a biological system, we return to Chlamydomonas. In Sec. 3.2, we
estimated the Reynolds number to be Rer = 102 Taking as
radius of a flagellum Ry = 0.1 um, we find ¢t/T = 50, ie., 50
periods would be required to synchronize the beating between
the two flagella. Hence, the provided mechanism is definitely
too slow to be effective for synchronization of Chlamydomonas
flagella. An important factor here is the thin flagellum.
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Synthetic systems, such as colloids driven along circular
trajectories, may provide more control over the relevant
parameters. Consider two colloids dissolved in water with a
radius of Ry = 2 um driven along a circle with the rotation
period T = 10> s. The distance between the rotors and the
radius of their trajectories does not really matter. We will
assume values adopted in ref. 94, ie.,R = 3 pmand d = 20 um,
which yields t/T = 2 and t,/T = d°/(vT) < 1. Hence, within
about two cycles the colloids synchronize their rotation. As
indicated in ref. 90 for colloids confined in optical traps, we
expect that the rotor setup can be exploited for novel sensing
applications for colloidal particles of various shape or living
cells due to hydrodynamic phenomena.

5 Simulations
5.1 Co-rotating beads

MPC simulation results for the time dependence of the phase-
angle difference A(f) = ¢4(¢) — @,(t) of co-rotating beads are
displayed in Fig. 4. The three phase-angle differences decay

1.0

A(t)/n

t)T

Fig. 4 Time dependence of phase-angle differences for three reali-
zations with the initial value A(0) = /2 and Pe = 180.

0.5

0.4
0.3
0.2

(A()/m

0.1

0.0

—0.1 I ! l !
0 1 2 3 4

t/(10°h)

Fig. 5 Average phase-angle difference A(t) for the Péclet numbers Pe
= 120, 140, 160, and 180 (top to bottom). Symbols represent simula-
tion results and the solid lines are obtained by numerical integration of
egn (41) including transversal and longitudinal modes of the hydro-
dynamic tensor.
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90°

270°
Fig. 6 Distribution of the phase-angle difference in the synchronized

state for Pe = 100. The red line indicates a wrapped normal distribution
with parameters estimated according to eqgn (47).

initially, but there is no clear asymptotic value. In contrast,
the variations due to thermal fluctuations are rather large. To
extract the average behavior, we performed up to 10° inde-
pendent simulation runs for a parameter set. The average A
indeed shows synchronization of the bead rotation despite
strong thermal fluctuations as displayed in Fig. 5 for various
Péclet numbers. As is evident from the figure, the simulation
results compare well with the theoretical predictions accord-
ing to eqn (41) when taking into account compressibility
effects, although there are small differences for Pe = 140
and 160.

The distribution of phase-angle differences in the synchro-
nized state are shown in Fig. 6 in a polar representation. The
simulation data are well described by a wrapped normal
distribution, where the mean u and standard deviation ¢ of a set
of phase differences A, are calculated according to

1 O
u = arg (Fr ,,5:1 exp(lAn)),
>1/2

g= < 2 log
for N; realizations.®

The time dependence of the standard deviations ¢ for the
systems of Fig. 5 are presented in Fig. 7. We find a significant
dependence of ¢ on the applied force. Thereby, the fluctuations
decrease with increasing Pe. For the considered range of Péclet
numbers, the ratio of the standard deviations (=0.4/0.2 = 2)
decreases faster with increasing Pe than the ratio of the Pe
decreases (120/180 = 2/3). The increase of the fluctuations with
decreasing Pe implies very large ¢ on the order of .

We like to stress that synchronization reveals a strong
dependence on periodic boundary conditions, as illustrated in
Fig. 8 and already reported in ref. 25 for a similar, but time-
independent rotor model. The synchronization time is evidently
significantly shorter for smaller simulation boxes, increases
with increasing box size L, and approaches an asymptotic value.

QAL
— ) exp(iA,)
v 2
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t/(10°h)

Fig.7 Standard deviations (egn (47)) for the Péclet numbers Pe = 120,
140, 160 and 180 (top to bottom).

t)T

Fig. 8 Average phase-angle differences for the simulation box sizes
Ly/a = 25,50, 75,100 and 150 (bottom to top). The box dimension L, =
20a is fixed and the Pécelt number is Pe = 100.

Within the accuracy of the simulations, the curves for L, = 100a
and 150a are similar and are therefore close to the asymptotic
limit. The following results are obtained for the box length L, =
L, = 100q and L, = 20aq.

The influence of compressibility on the decay of the phase-
angle difference is illustrated in Fig. 9, where simulations are
compared with analytical results for incompressible and
compressible fluids. Interestingly, for the selected parameters,
compressibility slows down synchronization considerably.

In order to quantify the effects of compressibility, we define
the maximum deviation

N mag(|Ac(t) —N(0)|/m (48)
=
of the phase-angle differences and the difference
|ts.c — 1 i|
S =2l T sl 49
7 Ise + ts‘i ( )

of the synchronization times between a compressible (index c)
and an incompressible (index i) fluid. Results for these quan-
tities obtained from the theoretical description of Sec. IV are
presented in Fig. 10 for various Péclet numbers. Evidently, there
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Fig. 9 Phase-angle difference A(t) for Pe = 120. The solid line follows
by numerical integration of eqn (41) including transversal and longi-
tudinal modes of the hydrodynamic tensor, whereas the dashed line
includes transverse modes only. Symbols are ensemble-averaged
simulation results and the vertical line indicates the definition of g,.

0.14 0.35
0.12 0.30
4 0.10 0.25 )
5 ©
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! | I | I ! | 0.10
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Pe

Fig. 10 Maximum deviations o (egn (48), bullets) of the phase-angle
difference and deviations o (egn (49), diamonds) between synchro-
nization times for various Pécelt numbers of compressible and
incompressible fluids.

is little qualitative difference between o, and g,. Compress-
ibility matters most in the range Pe = 40-120. For smaller and
larger Pe, the effect of sound diminishes.

The influence of compressibility on synchronization also
depends on the separation d. It can be rationalized by comparing
the viscous time scale 7, = d*/v with the sound time scale 7. = d/c.
Since 7, increases much faster than t. with d, the relevance of
sound for hydrodynamics decreases with increasing d, until
eventually 7. < 1, and compressibility effects can be neglected.

5.2 Counter-rotating beads

The time-dependent hydrodynamic properties of counter-
rotating beads can also be studied. Here, the driving forces in
eqn (40) are given by

F(1) = (—1)Fi(1). (50)
Similar mean field calculations as for the co-rotating

beads can be employed and suggest a slow exponential decay of
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@1 + ¢ — 0. Numerical investigations of eqn (40) without
random forces and sound modes qualitatively agree with this
prediction, although the dynamics of the rotors are not well
described quantitatively by the mean-field approach.

Interestingly, in our MPC simulations, the rotors exhibit an
anti-synchronized stationary state, i.e., ¢; + ¢, — T, in contrast
to the theoretical results. Whether this is due to the multipli-
cative noise term in eqn (40), or due to sound modes remains
unclear, since a mean-field approach is not applicable. In any
case, the stationary synchronized state is reached at markedly
longer time scales, i.e., the synchronization times increase
considerably.

6 Summary and conclusions

We have performed analytical calculations and computer
simulations to elucidate the influence of time-dependent
hydrodynamic interactions, thermal fluctuations, and fluid
compressibility on the synchronization of the rotational motion
of microrotors. We find that the presence of the linear unsteady
acceleration term in the Navier-Stokes equation leads to
synchronization of the rotational motion. Synchronization even
prevails in the presence of thermal fluctuations, as shown by
our mesoscale simulations exploiting the MPC method.
Thereby, the simulation results are well described by our mean-
field analytical theory. Fluid compressibility affects the
synchronization time over a certain range of Péclet numbers.
Thereby, compressibility implies larger synchronization times
compared to incompressible fluids. This is related to the
instantaneous propagation of hydrodynamics in incompress-
ible fluids.”

Naturally, synchronization by time-dependent hydrody-
namic interactions is possible, because the time reversibility of
the underlying dynamical equations is broken, despite a time-
reversible cyclic rotor motion. Our studies show that the
synchronization time exhibits the dependence ¢;/T ~ 1/+/Rer
on the oscillatory Reynolds number Rer = t,/T, with 7, the
viscous time scale and T the period. Hence, ¢; approaches
infinity for Reyr — 0, ie., for systems where the period is far
larger than the viscous time. However, the transition is gradual,
which implies a continuous breakdown of synchronization in
analogy to the continuous breakdown of the scallop theorem
with decreasing Reynolds number Re.**” Only for Rer = 0, there
is no synchronization anymore, again in analogy with the
scallop theorem.

Our MPC simulations emphasize the importance of time-
dependent hydrodynamic interactions as a synchronization
mechanism. Aside from physical aspects, this is also important
from a simulational point of view. In mesoscale simulations,
such as MPC, a clear separation of time scales, e.g., 7. < 7, < T,
is often not possible and Reynolds numbers are rather on the
order of 10~" to 10~ * than zero. Thus, time-dependent hydro-
dynamic interactions are present and relevant, and results have
to be interpreted with care when compared with results of the
Stokes equation. In this context, we would like to mention that
the present finite Reynolds number has very little effect on

This journal is © The Royal Society of Chemistry 2014
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synchronization, as is evident by the agreement between
simulations and analytical theory.

The simulations reveal a strong dependence of synchroni-
zation on the size of the simulation box. Thereby, the finite size
effect becomes more pronounced for smaller Péclet numbers
and the determination of the asymptotic behavior becomes
increasingly demanding. The box-size dependence can be
understood as follows. No box-size effect appears when the
rotors synchronized their motion before the sound traversed
the box length L, which requires the time 7~ = L/c, hence, t,/7% <
1. With eqn (45) and the intrinsic frequency w ~ F, we obtain
to/T= ~ (RIRy)*?/(LF*®). Thus, a reduction of the force has to be
compensated by an increase of the box size in order to maintain
a small ratio t/t=.

Moreover, thermal fluctuations are significantly more
pronounced for small Pe, which impedes the extraction of the
average synchronization behavior. We emphasize, however, that
the rotor motion synchronizes even for small Péclet numbers;
only the numerical effort increases.

A critical comparison with typical values of microswimmers,
e.g., Chlamydomonas, reveals that time-dependent hydrody-
namic interactions are present, but are most likely not the
dominant mechanisms for synchronization of their flagella
motion. In contrast, systems of micrometer-size objects, e.g.,
colloids or biological cells, can be tailored such that hydrody-
namic interactions are most relevant. This might open oppor-
tunities to exploit hydrodynamic phenomena for novel sensing
applications with tailored set-ups.
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