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Self-organizing microfluidic crystals†

William E. Uspala and Patrick S. Doyle*b

We consider how to design a microfluidic system in which suspended particles spontaneously order into

flowing crystals when driven by external pressure. Via theory and numerics, we find that particle–particle

hydrodynamic interactions drive self-organization under suitable conditions of particle morphology and

geometric confinement. Small clusters of asymmetric “tadpole” particles, strongly confined in one

direction and weakly confined in another, spontaneously order in a direction perpendicular to the

external flow, forming one dimensional lattices. Large suspensions of tadpoles exhibit strong density

heterogeneities and form aggregates. By rationally tailoring particle shape, we tame this aggregation and

achieve formation of large two-dimensional crystals.
1 Introduction

The shape of interacting particles can control their spontaneous
organization into larger ordered structures. Recently, innova-
tions in colloidal synthesis providing precise control over
particle morphology have driven fresh efforts to relate shape to
self-assembled equilibrium structure.1,2 Particle “designers”
have exploited depletion interactions,3 steric effects,4 and Janus
patterning5 for self-assembly of novel complex materials. On the
other hand, comparatively few studies have sought to relate
shape to self-organization out of equilibrium, despite the rich
set of static and dynamic structures that can be sustained
through continuous dissipation of energy.6 In particular,
suspensions that self-organize under ow into owing crystals
are of great interest from both theoretical and practical
perspectives. They provide a natural arena for extension and
revision of theoretical ideas developed in the context of equi-
librium crystallization. Moreover, they can be harnessed for
microuidic and lab-on-a-chip applications. Orderly ow eases
recognition and interrogation of suspended objects in cytom-
etry7 and bioassays.8 Flowing crystals could be used as dynam-
ically programmable metamaterials, assembled with high
throughput in continuously operating microdevices, or as
tunable diffraction gratings.9 Researchers have achieved self-
organizing owing crystals with acoustically excited bubbles10

and weakly inertial spheres.11 However, the possibility that self-
organization of owing crystals can be encoded via design of
particle shape has remained largely unexplored.

When particles are driven by ow, they are coupled via the
disturbances they create in the suspending uid. These
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hydrodynamic interactions (HI) are central to most examples of
ow-driven self-organization at themicroscale.11,12 The tensorial
form and spatial decay of hydrodynamic interactions can
change dramatically in the presence of conning boundaries. In
particular, we consider hydrodynamic interactions when the
typical size of a particle is comparable to the height of a
conning slit, such that the particles are constrained to “quasi-
two-dimensional” (q2D) motion [Fig. 1(a)]. The tightly conned
particles experience strong friction from the conning plates,
and will therefore lag a pressure-driven external ow. Due to
this lag, the particles create ow disturbances with a charac-
teristic dipolar structure: moving upstream relative to the uid,
particles push uid mass away from their upstream edges and
draw uid mass into their downstream edges.13,14 The strength
of this leading order ow disturbance is proportional to the
particle area, and decays as the inverse square distance from the
particle center. That mass conservation determines the leading
order disturbance is ultimately due to the presence of the two
conning plates. The plates exert friction on the uid, removing
momentum from the system and screening long-range
momentum transport. In contrast, in three dimensions,
conservation of momentum determines the leading order far-
eld ow disturbance, the “Stokeslet.”

Quasi-two-dimensional microchannels have proven to be a
rich setting for collective phenomena involving owing droplets
or solid particles, including owing crystals.15 One-dimensional
owing crystals of “pancake shaped” droplets, ordered in the
streamwise direction, can sustain transverse and longitudinal
acoustic waves, or “microuidic phonons”.16,17 Small clusters of
discs, ordered perpendicular to the ow direction, can maintain
relative positions as they are carried by the ow.18 Various two-
dimensional crystal lattices are possible in unbounded q2D.19

However, in each example of a owing crystal, the crystal is only
marginally stable: the amplitude of a collective mode neither
grows nor decays in time. Consequently, crystals have no
“restoring force” against perturbation by channel defects, and
Soft Matter, 2014, 10, 5177–5191 | 5177
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Fig. 1 (a) Illustration of quasi-2D hydrodynamics. A disc is tightly
confined between parallel plates and subject to an external flow (black
vectors). The particle is advected downstream (blue vector) by the
flow. However, due to strong friction from the confining plates, the
particle lags the external flow, andmoves upstream relative to it (green
vector). The particle therefore creates a characteristic dipolar flow
disturbance field; fluid mass is pushed away from its upstream edge
and drawn into its downstream edge. (b) A single fore-aft asymmetric
dumbbell is stably attracted to the centerline through hydrodynamic
self-interaction and interaction with its hydrodynamic images. (c) A
single aligned and focus particle is part of an infinite lattice of real and
image particles. When one or more image particles are exchanged for
real particles, the resulting configuration should also steadily translate
along the channel with no relative particle motion. Each of the real and
image particles is separated by W/n, where n is the number of real
particles. (d) An infinite two-dimensional lattice should likewise
steadily translate. The lattice length a is determined by particle density.
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do not self-organize from disorder. However, disordered droplet
suspensions exhibit large, freely propagating uctuations in
density,20 as well as directionally dependent, long-range orien-
tational order in droplet velocity,21 hinting that underlying
collective effects could be molded to promote crystallization.

Recently, we have shown via theory and experiments that a
single asymmetric dumbbell comprising two rigidly connected
discs, or “tadpole,” will align with the external ow and focus to
the channel centerline.22 We isolated three viscous hydrody-
namic mechanisms that together produce this “self-steering,”
and which are shown schematically in Fig. 1(b). The “head” and
“tail” discs of a particle interact hydrodynamically. Since the
discs are unequal in size, they have unequal hydrodynamic
strength, and the larger head disc pushes the tail downstream.
Therefore, self-interaction drives alignment with the ow.
Secondly, when the particle is not aligned, self-interaction
drives cross-streamline or lateral migration, since the scattered
ow produced by a disc has a component perpendicular to the
direction of the external ow. Finally, when the particle is dis-
placed from the centerline, interaction with its own hydrody-
namic images across the channel side walls drives rotation away
from alignment. Through the combination of these three
5178 | Soft Matter, 2014, 10, 5177–5191
effects, the aligned and focused conguration is an attractor for
particle dynamics.

This single particle picture provides a starting point for
consideration of how owing crystals might self-organize in
multiple particle systems. In Fig. 1(c), we consider a single
aligned and focused particle. The particle translates in the ow
direction without any rotation or lateral motion, and is part of
an innite lattice of real and image particles. If one or more of
the image particles is exchanged for a real particle, and the
associated image channels are exchanged for uid, the resulting
conguration should also steadily translate with no relative
particle motion. Each real particle in the “triplet” at the right of
Fig. 1(c) experiences the same ow elds as the “singlet” at le,
and therefore must have the same motion as the singlet. The
triplet conguration is a “xed point” in phase space for the
dynamics of the system, and, in view of the innite lattice, can
be regarded as a one-dimensional owing crystal. In general, for
a group of n real particles, the n-let conguration is a xed
point. For an n-let, the real particles are located at y ¼ W/2n +
(i � 1)W/n, where i ˛ {1.n}, ŷ is the transverse direction, and y
¼W/2 is the channel centerline. For instance, particle i ¼ 1 in a
triplet is located at y ¼ W/6 and has two neighbors: a real
particle at y ¼W/2, and its reected image particle at y ¼ �W/6.
The transverse positions are determined by translational
symmetry: each particle, real or image, is separated from its
nearest neighbors by a distance W/n.

Furthermore, symmetry considerations extend to two-
dimensional crystals. Fig. 1(d) shows two “columns” of a
“doublet crystal” that has translational symmetry in the
streamwise direction. This conguration is also a xed point.
For instance, for the column shown at le, the inuence of all
other columns vanishes by symmetry. In general, two-dimen-
sional n-let crystals are dynamical xed points for suspension
dynamics.

While we have argued that one and two-dimensional owing
crystals are dynamical xed points – i.e. have no relative particle
motion – we have not examined their stability. For instance, a
lattice might be linearly unstable, subject to a clumping insta-
bility resembling that found for a row of sedimenting
spheres.23,24 Even if a lattice is linearly stable, its basin of
attractionmight not be signicant if the dynamics of the system
are multistable.25 Addressing these questions requires a quan-
titative approach.

In this work, we develop a numerical technique to study
suspensions and small clusters of ow-driven q2D particles.
This technique can accommodate any particle shape that can be
modelled as a collection of discs connected by springs. Applying
this technique to initially disordered dumbbells, we nd that
while small clusters can assemble with signicant yield into
one-dimensional lattices, large suspensions fail to crystallize.
We trace this failure to the formation of tightly bound pairs, or
“defects,” which tend to pack into aggregates. To eliminate
these defects, we design a “trumbbell” shape for which chaining
of particles in the streamwise direction is favored by the inu-
ence of particle shape on the ow eld. Through a multistage
self-organization process, the trumbbells can form perfect
doublet crystals.
This journal is © The Royal Society of Chemistry 2014
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2 Theory and numerical method

A common and widely successful approach in polymer
dynamics is to represent a molecule as a coarse-grained chain of
beads connected by springs. These bead-spring models can
incorporate many different physical effects, including hydro-
dynamic interactions in conned geometries.26 In this section,
we develop model equations suited to disc-spring representa-
tions of q2D particles. The equations include dipolar hydrody-
namic interactions through a q2D mobility tensor, derived
below, and can accommodate conservative interaction poten-
tials. We discuss our method for numerical integration of the
deterministic model equations. Finally, we present the model
particle architectures and conservative interaction potentials
which will be used in this work.

2.1 The q2D Brinkman equation

As our starting point, we seek an effective equation describing
the dynamics of the suspending uid in a q2D channel.
Assuming the familiar creeping ow limit, the uid obeys the
Stokes equation

�VP + mV2v ¼ 0, (1)

where P(r) and v(r) are the uid pressure and velocity elds, r
indicates spatial position in a frame in which the channel walls
are stationary, and m is the dynamic viscosity. Additionally, the
uid is incompressible: V$v ¼ 0. The uid is driven in the x̂
direction by external pressure. The direction of the channel with
thinnest geometric length is ẑ, which is bounded by two plates
separated by a height H. The channel is bounded in ŷ by two
side walls separated by width W. Far from channel side walls or
suspended particles, the velocity prole is parabolic:

vðx; y; zÞ ¼ umaxðx; yÞ
�
1� 4z2

H2

�
; (2)

where z ¼ 0 is the position of the midplane and umax(x, y) is the
velocity at (x, y, 0). (This form of the velocity eld is known as
Hele-Shaw ow.) The pressure P ¼ P(x, y) is strictly a function of
x and y. Substituting eqn (2) into eqn (1), we obtain

�VPþ m

�
1� 4z2

H2

�
V2D

2umax �
�
8m

H2

�
umax ¼ 0; (3)

where V2D
2 ¼

�
v2

vx2
þ v2

vy2

�
. We dene u(x, y) as the depth

averaged velocity, where u ¼ 2umax/3. We average eqn (3) over
the channel depth H to remove the z dependence and obtain

�VP + mV2D
2u � (12m/H2)u ¼ 0. (4)

We dene the two-dimensional pressure eld P2D(x, y) h
P(x, y)H, so that P2D has the same units as surface tension, and
the two-dimensional dynamic viscosity m2D h mH. Multiplying
the previous equation by H, we obtain the two-dimensional
Brinkman equation

�VP2D + mHV2u � (12m/H)u ¼ 0. (5)
This journal is © The Royal Society of Chemistry 2014
Near suspended particles and side walls, this effectively two-
dimensional governing equation necessarily omits possible ẑ
components to the ow, and the separation of variables
assumed by eqn (2) may not be exact. These edge effects are
negligible for distances greater than �H from side walls and
suspended particles.18,27 It is interesting to note that eqn (5) is
the two-dimensional Stokes equation with an additional third
term. This term, which breaks Galilean invariance, represents
the friction exerted by the plates on the uid.

2.2 Motion of a single disc

Now we consider a simple problem in two dimensions. A single
disc with radius R and velocity Up is subject to a uniform
external ow U. The uid obeys eqn (5), and is subject to no-slip
and no-penetration conditions on the solid boundary. Solution
of eqn (5) determines two items of interest: (i) the velocity eld
u, including the disturbance created by the disc, and (ii) the
force fq2D on the disc from the uid, obtained from (i) by inte-
grating the uid stress tensor over the particle surface.

This is a simplied model for the drag forces on, and the
disturbance velocity created by, a discoidal particle between two
parallel plates. The force fq2D is exerted by the uid owing
around the disc. The disc also has thin gaps separating it from
the plates [Fig. 1(a)], but forces from these lubricating gaps are
not included in fq2D, since the gaps are not modeled by the
Brinkman equation.

The force fq2D can be calculated as

fq2D ¼ z(U � Up) + pR2(12m/H)U, (6)

where z is a drag coefficient

z h 4pmH(32/4 + 3K1(3)/K0(3)), (7)

K0 and K1 are modied Bessel functions, and 3h
ffiffiffiffiffi
12

p
R=H. Since

Galilean invariance is broken, fq2D does not only depend on the
difference between uid and disc velocities, but also directly on
the uid velocity. The second term of eqn (6) is due to the
external pressure needed to drive the uid between the plates.

Now we consider the complete set of forces on a disc,
including from the lubricating gaps. Since we assumed the zero
Reynolds number limit, all forces must balance:

z(U � Up) + pR2(12m/H)U � pR2(2m/h)Up + fn.h. ¼ 0. (8)

We have assumed shear ow in the two thin lubricating gaps,
each of height h, that separate a disc from the conning plates,
resulting in the frictional third term. fn.h. represents any non-
hydrodynamic forces on the disc. We dene friction coefficients
gc h pR2(12m/H) and gp h pR2(2m/h), and rearrange eqn (8) as

z0(U � Up) � (gp � gc)U
p + fn.h. ¼ 0 (9)

where we have dened a new drag coefficient z0 h z + gc. eqn (9)
exposes some essential physics of discs conned to q2D. Even
supposing fn.h. ¼ 0, a disc will translate more slowly than the
local uid velocity if it is subject to stronger friction than the
uid. Secondly, eqn (9) cleanly separates the hydrodynamic
Soft Matter, 2014, 10, 5177–5191 | 5179
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forces into an effective drag, proportional to the difference of
uid and particle velocities, and an effective friction, propor-
tional to particle velocity.

We rearrange again to obtain

Up ¼ U � (gp � gc)U
p/z0 + fn.h./z

0, (10)

or, if we include the friction and non-hydrodynamic forces
together in a quantity f,

Up ¼ U + f/z0. (11)

The disc moves at the uid velocity plus a linear superposi-
tion of perturbations from friction and other forces. A force on
the disc is related to a velocity perturbation by the single particle
mobility 1/z0. In the following subsections, we will seek to
generalize this single particle quantity to a mobility tensor for
systems of multiple interacting discs.

Before turning to the many-disc problem, we consider item
(i), the ow eld u. Leaving the details of the solution to an
Appendix, we note a few salient features. Far away from the disc,
the velocity eld is a potential ow:

u ¼ U + Vfd.p.. (12)

The dipole potential is

fd:p: ¼
BðU�UpÞ$r

r2
; (13)

where the position r is evaluated in relation to the disc center.
Importantly, the strength of the ow disturbance is propor-
tional to the difference between uid and particle velocities.
Substituting eqn (11), we obtain

fd:p: ¼
�Br$f

z0r2
: (14)

The coefficient B, given in Appendix B, is proportional to the
disc area: B � R2.

In Section 2.1, we mentioned possible edge effects that the
Brinkman equation necessarily omits. Edge effects would affect
the forces on a disc, but not the far-eld disturbance ow.
Nevertheless, in a previous work we found good quantitative
agreement between our simplied model and the detailed
lubrication analysis of Halpern and Secomb for the velocity of a
ow-driven disc.22,27
2.3 Systems of multiple discs

We seek a generalization of eqn (11) for a system of N discs:

V ¼ V0 + M$F. (15)

Here, V is a vector of 2N disc velocity components; V0 is a vector
of 2N external velocity components, evaluated at each disc; F is a
vector of 2N force components on the discs, including friction;
and M is the 2N by 2N mobility tensor. Crucially, this tensor
includes disc–disc hydrodynamic interactions in off-diagonal
components, and, as will be shown, can encode the effect of
5180 | Soft Matter, 2014, 10, 5177–5191
conning side walls. It will be derived in detail in the next
subsection. The location of disc i is given by ri ¼ (xi, yi) in a
reference frame xed to the channel walls.

We separate the friction on the particles from the non-
hydrodynamic forces:

V ¼ V0 � M$G$V + M$Fn.h., (16)

where G is a friction tensor, which will be dened below.
Eqn (16) can be rearranged to isolate V:

V ¼ (1 + M$G)�1(V0 + M$Fn.h.). (17)

Although M is constructed from pairwise interactions, the
inversion of (1 +M$G) recoversmany-body contributions to particle
dynamics. Furthermore, particles interact hydrodynamically even
when Fn.h. ¼ 0, i.e. when they are driven only by external ow.
2.4 Mobility tensor

We write M as

Mij
ab ¼ dijdab/z

0
i + Gij

ab/z
0
j. (18)

The mobility tensor relates a force on disc j in the b direction
to a contribution to the velocity of disc i in the a direction. The
rst term is simply the single particle mobility obtained previ-
ously. The second term contains disc–disc hydrodynamic
interactions and the effects of conning side walls. The friction
tensor is diagonal:

Gij
ab h dijdab(gp,i � gc,i). (19)

As a simple demonstration, we consider how to obtain Gij
ab in

unbounded q2D, i.e. neglecting the effect of side walls. Clearly,
Gii
ab ¼ 0, since a disc is not subject to its own ow disturbance.

To obtain Gij
ab for i s j, consider the quantity Gij$(fj,/z

0
j ). This

quantity expresses the uid velocity disturbance at disc i created
by the force fj on disc j, as can be seen upon substituting eqn
(18) into (15). Since the velocity disturbance is dipolar, we can
use eqn (14) to obtain

Gij ¼ �1� dij
�
V

 
�Bjrij

rij2

!
; (20)

where rij is the vector from the center of disc j to the center of
disc i. The detailed form of Gij

ab in cartesian coordinates,
obtained in a previous work,28 is given in Appendix B.

Throughout this work, we use Gij
ab for a channel geometry,

obtained by the method of images.28 A disc generates an innite
series of image discs across the two channel side walls. The
disturbance eld created by this set of discs satises the no-
penetration boundary condition at the two side walls. We sum
over the series of discs, obtaining a “dressed” or effective disc–
disc interaction. This interaction is screened in the streamwise
direction, with a screening length proportional to the channel
width W. Furthermore, Gii

ab s 0, as a disc will experience a ow
disturbance created by its own images. We give Gij

ab for a
channel geometry in detail in Appendix B.
This journal is © The Royal Society of Chemistry 2014
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2.5 Particle architecture and conservative forces

We consider two particle architectures in this work (Fig. 2). A
dumbbell comprises two hydrodynamically interacting discs
with centers connected by a stiff spring. A trumbbell has two tail
discs, each connected to the head by a stiff spring. The tail discs
have the same radius, and the two tails have identical length.
The angle between the two tails is j. We connect the two tail
discs by a third stiff spring in order to maintain this angle.
(Alternatively, a three-body angle potential could be accommo-
dated in our mobility framework.) For both architectures, the
radius of a head disc is R1 and the radius of a tail disc is R2. The
tail length is determined by the equilibrium spring distance s.

The spring force is Hookean. If discs i and j are connected,
the force on i due to j is

Fspr
ij ¼ �kspr

�
rij � s

� rij
rij

(21)

All discs, whether within the same or different particles,
interact via repulsive excluded volume forces:29

FEV
ij ¼ F0

e�kðrij�ðRiþRjÞÞ
1� e�kðrij�ðRiþRjÞÞ

rij

rij
: (22)

Discs are also repelled from the channel side walls. Via the
length scale k�1, the excluded volume interaction can be tuned
to resemble a hard disc interaction (k�1 / 0) or a screened
electrostatic interaction in q2D (k�1 � H).30

Both dumbbells and trumbbells align under ow via
hydrodynamic self-interaction so that the head disc is
upstream. It should be noted that we have neglected the rota-
tion of individual discs. For instance, if a rigid dumbbell
comprising two linked discs rotates, the two discs should rotate
with the same angular velocity. (To see this, consider themotion
during rotation of a dumbbell of a point marked on a disc edge.)
Disc rotations do not contribute to far-eld hydrodynamics,
Fig. 2 Particle architectures considered in this work. A dumbbell
comprises hydrodynamically interacting discs, with ~R h R1/R2 ¼ 1.5.
The disc centers are connected by a stiff Hookean spring with equi-
librium length ~s h s/R2 ¼ 3.5. A trumbbell has two “tails” separated by
angle j ¼ 50�. The two tail discs are connected by a third stiff spring
(not shown) so that this angle remains fixed. Through hydrodynamic
self-interaction, both the dumbbell and trumbbell align under flow so
that the head disc is upstream.

This journal is © The Royal Society of Chemistry 2014
since they require no displacement of uid mass. However, the
rotational resistance of a disc does contribute to the overall
torque balance on a particle. Previously, we have shown that
inclusion of disc rotations has a moderate quantitative effect on
particle dynamics, but does not change the qualitative behavior
sustained by hydrodynamics.22
2.6 Numerical integration scheme

In order to integrate the equations of motion, we modify an
adaptive time-stepping scheme from Ball andMelrose.31 At each
timestep, we calculate M and the spring and excluded volume
forces from the disc positions, and obtain V from eqn (16). We
calculate Dtmax as the largest timestep that can be taken in an
Euler step without disc/disc or disc/wall overlap. We choose Dt
as gDtmax, where g¼ 0.2. We then advance the simulation over a
timestep Dt via the midpoint method.
3 Results

We consider two model problems. In the rst model problem,
we consider the dynamics of small clusters of particles in a
channel. The particles are initially seeded with random initial
angle and position in an nite area with length lx and width
equal to the channel width W. Angles and positions are chosen
with uniform probability. The simulation domain is
unbounded in the ow direction.

In the second model problem, we consider large particle
suspensions. Periodic boundary conditions are imposed in the
ow direction. When particles cross a periodic boundary, they
are mapped to the other side of the simulation domain. More-
over, particles experience disturbance ows created by periodic
images. Since the hydrodynamic interaction decays exponen-
tially in the ow direction, we consider only two image cells on
each side of the real domain. The simulation domain has length
Lx in the ow direction, and particles are seeded with random
initial angle and position in the domain.

We take the external ow to be U0 ¼ U0x̂. Particles move in
the xy plane, with channel side walls bounding the y direction.
Owing to the linearity of Stokes ow, the only effect of U0 is to
set a timescale R2/U0 for particle dynamics. The particles'
trajectories in space do not depend on the magnitude of U0.
Therefore, when showing results, we parameterize trajectories
by average particle position in the streamwise direction,

xc ¼ 1
N

X
xi , instead of by time.

If the particles are effectively rigid, the dimensionless
parameters governing the model problems are purely
geometric. Particle architecture is characterized by head/tail
asymmetry ~R h R1/R2, bond length ~s h s/R2, dimensionless
lubricating gap height ~h h h/H, and trumbbell angle j. The
channel has dimensionless width ~W h W/R2 and height ~H h
H/R2. We x ~R ¼ 1.5, ~s ¼ 3.5, j ¼ 50�, ~h ¼ 0.08, and ~H ¼ 1.6. ~W
varies as indicated in the text. Additionally, suspensions are
characterized by the two-dimensional particle number density
f0 h N/(LxW), where N is the number of particles in the simu-
lation domain.
Soft Matter, 2014, 10, 5177–5191 | 5181
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Fig. 3 (a) Trajectories of an isolated pair of dumbbells from two
hundred random initial conditions. Blue and green curves are obtained
from each run as the y positions of the two head discs plotted against
the pair center of mass xc. A majority of dumbbells focus to the
centerline; these trajectories have a characteristic exponential enve-
lope. A substantial number focus to the doublet crystal positions y/W¼
1/4 and y/W ¼ 3/4, which are given by the geometric construction of
the Introduction. Other pairs form stable defects that are attracted to
positions near the side walls, or unstable but long-lived oscillatory
defects that eventually break up to form doublet crystals. The channel
width is ~W ¼ 30. (b) Histogram of the final head disc positions of five
hundred trajectories, including those in (a). Approximately 20% of
dumbbell pairs form doublet crystals. (c) Pair behaviors obtained in the
simulations of (a). The unstable defects translate back and forth across
a section of the channel width before breaking up. Singlets
weakly repel each other in the flow direction; there is no steady
separation in x.
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To approximate a rigid constraint, we use a stiff spring

constant ~ksprh
ksprs
z1U0

¼ 50, where z1 is evaluated for the head

disc. The dimensionless constant ~kspr characterizes the ability
of a spring to resist stretch or compression by viscous hydro-
dynamic forces. We found negligible quantitative difference
when we compared the dynamics of a single dumbbell with this
spring constant and previous results for a single dumbbell with
an explicit rigid constraint.22 For the excluded volume potential,

we use ~k h kR2 ¼ 10 and ~F0h
F0

z1U0
¼ 50.

3.1 Small cluster of dumbbells

The dynamics of a dumbbell pair provide an obvious starting
point for our investigation. A doublet is the simplest self-orga-
nized structure predicted by the geometric framework of Fig. 1.
Moreover, pairwise interactions are likely to play a signicant
role in determination of the behavior of large suspensions. In
Fig. 3, we show results from a pair seeded in a section with
length lx ¼ 2W of a channel with width ~W ¼ 30. One hundred
random initial congurations were simulated for ~T ¼ 5.0 � 104.

Pair behaviors can be divided into four classes, with simula-
tion snapshots of each shown in Fig. 3(c). As predicted by the
geometric construction of Fig. 1(c), pairs can self-organize into
doublets. The two particles of a doublet are positioned at y/W ¼
1/4 and y/W ¼ 3/4, which are determined by the geometric
construction of the Introduction. In Fig. 3(b), we show the nal
positions of dumbbell head discs in the transverse direction.
Approximately one h of the trajectories form doublets. Given
that particles were seeded over a large area and with any possible
angle, it is clear that the doublet basin of attraction in the system's
ve-dimensional phase space is substantial. We also obtain
singlets, in which both particles align and focus to the channel
centerline. We previously obtained this behavior for a single
dumbbell,22 and it ismost likely to occur in the two particle system
when the particles are initially widely separated. There is no
steady x separation for two singlets; they weakly repel.

However, we also obtain two behaviors that were not pre-
dicted by symmetry considerations. These “defects” are unde-
sirable from the standpoint of crystal self-organization. In the
stable defect, two particles adopt a staggered formation near a
side wall, remaining in a steady transverse position. In the
unstable defect, particles adopt a head-to-tail conguration.
The particles translate back and forth across a section of the
channel width before eventually breaking up to form a doublet.
The time-dependent behavior of the unstable defect stands out
in Fig. 3(a), which shows the y position of head discs as a
function of downstream position xc. A majority of trajectories
are clearly included in the exponential envelope that focuses to
the centerline; these are singlets. The doublets and stable
defects can also be seen quite easily.

3.2 Dumbbell suspension

For the large volume of parameter space tested, dumbbell
suspensions fail to form the two-dimensional crystals predicted
in Fig. 1(c). Instead, the dominant behavior is the formation of
5182 | Soft Matter, 2014, 10, 5177–5191
large, dynamic aggregates of dumbbells. Nevertheless, dumb-
bell suspensions qualitatively and quantitatively show tanta-
lizing signs of intermittent self-organization. Hindrance of this
self-organization can be traced qualitatively and quantitatively
to two-body defect formation.

Snapshots from a representative simulation are shown in
Fig. 4. In (a), three particles have clearly formed a triplet, with
the particle in the y ¼ 5W/6 position indicated by a black arrow.
(This and other triplet positions are determined by the
geometric construction discussed in the Introduction.) Addi-
tionally, two particles have organized into a doublet. However,
other particles have paired head-to-tail, like the unstable defect,
and in staggered formation, like the stable defect, and ve
particles have packed into an aggregate. The particle indicated
by the green arrow moves more slowly than the triplet. It
therefore encounters the triplet in (b), forming a staggered pair
with the black arrow particle, and disrupting the crystalline
order. In (c), the triplet has completely broken up. It is also
This journal is © The Royal Society of Chemistry 2014
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Fig. 4 (a–c) Snapshots from a representative simulation of a dumbbell
suspension. The channel width is ~W ¼ 20 and the simulation contains
N ¼ 20 dumbbells. There are periodic boundary conditions in the flow
direction, and the simulation box has length lx/W ¼ 7.5. (d) The
correlation function obtained from thirty-three different runs of a
dumbbell suspension simulation with the same parameters as in (a)
through (c). The sterically excluded area is indicated by a dashed line.
There is a bright ring around this region, indicating a short-range
attraction responsible for defect formation and aggregation. Peaks in
pair separation at (Dx¼ 0, Dy¼�W/3), (Dx¼ 0, Dy¼�W/2), and (Dx¼
0, Dy ¼ �2W/3), indicated by white arrows, become more clearly
visible. These peaks are due to transient formation of doublet and
triplet crystals. Simulations are run for time ~T ¼ 5.0 � 104.
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apparent from (a) through (c) that the aggregates are dynamic,
continuously gaining and losing particles.

These observations are typical of a dumbbell suspension, as
we show in Fig. 4(d) by plotting the pair distribution function
g(Dx, Dy). This function is calculated from thirty-three dumb-
bell suspension simulations. Each simulation is carried out for
a time ~T ¼ 5.0 � 104 and with the same parameters as in (a)–(c).
The pair distribution function expresses the probability of
nding two head discs separated by Dx in the external ow
direction and Dy in the transverse direction. The normalization
of g(Dx, Dy) accounts for the variation of the particle density
across the channel width, which is shown in Fig. 4(e).32 The
value of g(Dx, Dy) expresses, as a multiplicative factor, the two-
body deviation from what would be expected from the density.
In Fig. 4(d), the central dark area is sterically forbidden. There is
clearly a ring of strongly enhanced probability around the
excluded volume region: particles pair as closely as excluded
volume allows. Peaks that correspond to formation of doublets
and triplets, indicated by arrows are clearly visible. Doublets
occur for Dx ¼ 0 and Dy ¼ �W/2, while triplets occur for Dx ¼
0 and Dy ¼ �W/3 or Dy ¼ �2W/3. While we have presented our
ndings for one particular set of parameters, we obtain similar
results upon varying ~W and f0.
This journal is © The Royal Society of Chemistry 2014
3.3 Engineering hydrodynamic interactions via particle
shape

In dumbbell suspensions, crystal self-organization is frustrated
by formation of defects. In a defect, particles pair side-by-side in
either a staggered or head-to-tail conguration. We wish to
design a particle architecture that disfavors defect formation
while preserving the essential features promoting crystal self-
organization. For instance, defect formation would be dis-
favored for rod-like particles with a particular anisotropic
interaction: repulsion in the direction of the short axis and
attraction along the long axis. Such particles would tend to
chain in the ow direction. If the particles are fore-a asym-
metric, they would still order laterally as doublets and triplets.

The far-eld disturbance created by a disc is dipolar. There
are no other long-range terms; all other contributions to the
ow disturbance are exponentially screened by the conning
plates. The complete disturbance eld created by a particle
composed of linked discs is a superposition of dipolar elds.
Since the various dipoles are located at different points on the
particle, the complete particle eld is not strictly dipolar.
However, the complete eld can be expressed as a multipole
expansion which is always dipolar at leading order. The
universality of the dipolar term owes to the fact that all particles,
regardless of shape, obstruct and redirect the external ow.

The quadrupole is the rst subleading term, decaying as 1/r.3

Unlike the dipole, it captures the effects of shape anisotropy.
While the dipolar term expresses the total uid mass displaced
by the particle, the quadrupolar term captures how much of the
mass displacement owes to the front of the particle and how
much to the back. Consider Fig. 5(a). At right, we have plotted
the disturbance ow eld created by a “trumbbell” particle
comprising three discs linked by springs. The complete
disturbance ow eld is a superposition of nine dipolar elds:
three from friction on the discs (yellow arrows), and six from the
spring forces (white arrows). The disturbance ow eld is
approximately dipolar, but streamlines are bent towards the
back of the particle. The two rear discs are responsible for more
mass displacement than the front disc. The superposition of a
dipolar term and a quadrupolar term can produce bent
streamlines, as we show at le. The dipole streamlines are fore-
a symmetric. When we add a quadrupole eld of appropriate
sign, we enhance mass transport towards the rear of the particle
and decrease mass transport from the front, bending the
streamlines towards the rear.

Quadrupolar interactions bear a crucial difference from
dipolar interactions: quadrupolar interactions can drive relative
motion of two identical particles, as shown by Janssen et al.33

Consider two identical particles separated in the external ow
direction (Dx s 0, Dy ¼ 0) in unbounded q2D, with particle A
upstream of particle B. Considering only dipolar interactions,
particle A drives particle B upstream, and particle B drives A
upstream with equal strength. Via dipolar interactions, the two
particles are slower than they would be individually, but do not
move relative to each other. However, if we add a quadrupolar
interaction with the same sign as in Fig. 5(a), particle A drives B
upstream, and particle B drives A downstream. The particles are
Soft Matter, 2014, 10, 5177–5191 | 5183
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Fig. 5 (a) At right, we show the disturbance flow created by a single
isolated “trumbbell” in unbounded q2D, calculated numerically.
Streamlines are shown in black. The total flow disturbance is due to the
superposition of dipole singularities: yellow arrows show dipoles from
friction on the discs, and white arrows show dipoles from internal
spring forces. Notably, the streamlines are fore-aft asymmetric, bent in
the downstream direction. The color field indicates the x component
of the disturbance velocity. To focus attention on the far-field
disturbance, we do not show the area immediately around the particle.
The disturbance flow field can be regarded as the sum of multipole
components. The lowest order contribution is a point dipole. The
quadrupolar correction bends the streamlines downstream. (b) In
contrast, the disturbance streamlines for a dumbbell are bent
upstream. Accordingly, its quadrupolar correction has opposite sign as
the trumbbell quadrupole.

Fig. 6 Effective potentials for two dumbbells (dashed red line) and two
trumbbells (solid black line) aligned in the flow direction in unbounded
q2D. The quadrupolar contribution to the interaction of two dumb-
bells is repulsive. For two trumbbells, the quadrupolar component is
attractive. Higher order, shorter range multipole components are
repulsive, stabilizing the trumbbells against collision. As a result, two
trumbbells have an equilibrium separation Dxeq/R2 ¼ 7.4.
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hydrodynamically attracted. A quadrupolar interaction with
opposite sign would drive the particles apart.

We are now in a position to understand why two dumbbell
singlets repel each other, as observed during study of dumbbell
pair dynamics. The disturbance ow eld of a single dumbbell
is shown in Fig. 5(b). The streamlines are bent forward, since
the head disc displaces more mass than the tail disc. Accord-
ingly, the quadrupolar eld created by a dumbbell is repulsive.

Although two trumbbells are attracted through quadrupolar
interactions, repulsion by higher order, shorter range multipole
terms stabilizes the particles against collision. As a result, there
is an equilibrium pairing distance for trumbbells, as previously
found for deformable droplets.33 This equilibrium is most
clearly illustrated with an effective potential. We dene Ueff by
dDx/dt ¼ �dUeff/dx. For the trumbbell architecture studied, a
pair has a potential well with minimum at Dxeq/R2 ¼ 7.4, as
shown in Fig. 6. Dumbbells clearly repel with no equilibrium
pairing distance.

Signicantly, quadrupolar interactions disfavor the side-by-
side congurations characteristic of defects. As can be seen in
Fig. 5(b), quadrupole streamlines issue from the side of a
trumbbell and terminate at the front and rear. Two side-by-side
trumbbells will rotate around each other until Dy¼ 0. If the sign
of the quadrupole is negated, as with the dumbbells, quad-
rupolar interactions favor side-by-side pairing.

Although the focus of this work is on the qualitative effect of
hydrodynamic interactions, in Appendix D we briey outline an
approach for calculation of the strengths of the dipolar,
5184 | Soft Matter, 2014, 10, 5177–5191
quadrupolar, and higher order terms in the multipole expan-
sion of a particle's disturbance ow. Our approach conrms
that the dumbbell and trumbbell have quadrupolar terms of
opposite sign. Moreover, it reveals that the dipolar and quad-
rupolar coefficients are of the same order of magnitude.
3.4 Trumbbell suspensions

General observations. A suspension of trumbbell particles
can self-organize into two-dimensional owing crystals. Crystal
formation occurs through multiple stages. These can be
summarized as: (i) self-alignment of individual particles with
the ow; (ii) local self-organization, both laterally, through
doublet and triplet formation, and in the ow direction,
through formation of strings; (iii) formation of channel length-
spanning lanes with propagating lattice defects; and (iv) defect
annihilation and relaxation to an unstrained lattice. Crucially,
quadrupolar interactions drive the formation of strings, which
preferentially align in the ow direction, precursing lanes. For
dumbbells, hydrodynamic interactions drive organization in
the lateral direction, but provide no mechanism driving orga-
nization in the ow direction. For trumbbells, hydrodynamic
interactions drive organization in both directions.

The simulation snapshots in Fig. 7 illustrate the various
stages of self-organization. In (a), particles are initially placed
with random positions and angles. In (b), nearly all particles
have individually aligned with the ow. Sections of the
suspension have locally self-organized: some particle pairs have
formed doublets spanning the channel width, while other
particles have formed strings in the ow direction via quad-
rupolar HI. In (c), the particles have completely partitioned into
two separate lanes located near the doublet crystal positions.
However, the lanes are not spread evenly across the channel,
and many particles are not unambiguously matched with a
partner in a neighboring lane. This mismatch produces two
This journal is © The Royal Society of Chemistry 2014
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Fig. 7 A suspension of trumbbells can self-organize into a two-
dimensional crystal. There are N ¼ 20 particles with ~W ¼ 20 and Lx/W
¼ 7.5. (a) Trumbbells are initially placed with random positions and
angles. (b) The particles have aligned with the flow. Groups of particles
have locally self-organized, either laterally, as doublets, or in the
streamwise direction, as strings held together by the quadrupolar
interaction. (c) The particles have entirely partitioned into two separate
lanes located near the doublet positions y ¼W/4 and y ¼ 3W/4. In this
case, the two lanes have an equal number of particles. However, not
every particle has found a partner. For some particles the partner
position is vacant (e.g. particle 9.) For others, the partner is shared (e.g.
particles 4, 10, 1) in a triangular configuration. (d) The particles have
spread more evenly across the channel, but vacancies and triangle
formations remain. (e) The suspension now resembles a strained
crystal, and is on the threshold of relaxation to an unstrained lattice.
Particle 2 will capture particle 16, allowing 6 and 19 to partner. (f) The
particles have settled into an apparently “perfect” crystal, and have
approximately the same neighbors as in frame (c). (g) Evolution of the
order parameters with center of mass position xc. Dashed lines
correspond to the frames shown previously. (h) Long time evolution of
the particle positions in the streamwise direction. Aside from a small
amplitude, low frequency density wave, particles positions in x are
approximately evenly spaced and steady.
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characteristic lattice defect structures that can be seen in a still
image, such as (c). In a triangle formation, two particles seem to
share a partner; for instance, particles 4 and 10 share particle 1.
For other particles, such as 14 and 9, the partner position is
vacant. In (d), the lanes have spread across the channel, but
vacancies and triangle formations persist. In (e), the suspension
resembles a strained crystal. Vacancies have annihilated by
pairing across the two lanes. The crystal is on the threshold of
relaxation to an unstrained lattice: particle 2 is about to capture
This journal is © The Royal Society of Chemistry 2014
particle 16, allowing 6 and 19 to pair. Finally, in (f), the
suspension has relaxed to an apparently perfect lattice.

Quantitatively, in Fig. 7(g) we show six different order
parameters as a function of average downstream position xc.
The values of xc for frames (b) through (f) are indicated on the
plot. We briey describe the parameters here, leaving their
details to an Appendix. F describes the average orientation of
particles with the external ow. J4, J4,r, and J6 are bond
orientational order parameters, expressing whether neigh-
boring particles generally have a square, rectangular, or
hexagonal structure. These parameters capture the geometric
arrangement of particles, but not whether they are in the correct
spatial positions. The parameter JT quanties translational
order: how evenly the particles are spread in the streamwise
direction, and how close the row separation is to W/2. Finally,
JT,y isolates the partitioning of particles into lanes separated by
W/2 in the y direction.

At the beginning of the simulation, particles individually
align with the ow through hydrodynamic self-interaction, and
F rapidly evolves to unity.JT,y rapidly increases between frames
(b) and (c) as the particles partition into two lanes. All ve J

parameters exhibit a crossover at frame (e), conrming that it
marks the beginning of rapid relaxation to an unstrained crys-
talline structure. As the appearance of frame (f) suggests, the
lattice is rectangular, and J4,r evolves to unity. On the other
hand,JT approaches unity only very slowly. In fact, although (f)
appears to be a perfect lattice, there are very small imperfections
in the particle positions in the ow direction. In (h), we show
particle positions in the ow direction as function of xc. A small
amplitude, low frequency density wave propagates in x, but
particles are otherwise evenly spaced. The value of xc for frame
(f) is indicated on the plot.

Motion of lattice defects. We have not yet examined the
specic mechanism by which lattice defects propagate through
the lattice and eventually annihilate. In the snapshots of Fig. 7,
we identied triangle formations and vacancies as character-
istic defect structures. On closer examination, both appear as
transient structures in a three-body mechanism of defect
propagation. In Fig. 8(a), we show a single particle (particle 3) in
a doublet position y ¼ 3W/4 approaching a doublet pair (parti-
cles 1 and 2.) The single particle has a “vacant” partner position.
The doublet moves more quickly than particle 3, owing to the
dipolar hydrodynamic interactions between the pair. If we
consider the form of the dipole in Fig. 1(a), it is clear that two
particles oriented perpendicular to the ow will experience
“collective drag reduction,” i.e. will speed up relative to a single
particle. Therefore, the doublet and particle 3 collide, forming a
transient triangle formation. Particle 3 displaces particle 2.
Particles 1 and 3 pair and move downstream as a doublet, and
particle 2 is le upstream. In Fig. 8(b), the same mechanism is
clearly responsible for vacancy propagation in a two-dimen-
sional lattice. Notably, the two lanes slide past each other
through the partner swap that occurs in defect propagation. In
the earlier results of Fig. 7, the particles have the same neigh-
bors in frames (c) and (f). Despite defect propagation, there is
no net sliding because there is an equal number of vacancies in
the two lanes.
Soft Matter, 2014, 10, 5177–5191 | 5185
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Fig. 8 Vacancy defects propagate by a simple mechanism. (a) A
cluster of three isolated particles. Particles 1 and 2 are initially placed in
a doublet crystal configuration, and particle 3 is placed next to particle
2. Due to dipolar HI, a doublet crystal has a greater downstream
velocity than an isolated particle, since each particle in the crystal
increases the local fluid velocity of its partner in what has been called
“transverse anti-drag”.34 The crystal collides with the slower particle 3.
Particle 3 slows down particle 2 and speeds up particle 1, forming a
triangular configuration. Particle 1 swaps partners, leaving particle 2
upstream. (b) The same mechanism occurs in a two-dimensional
crystal. As a result of defect motion, the two rows of the crystal slide
past each other: particle 24 has exchanges particle 15 for particle 10,
and particle 22 is about to exchange particle 2 for particle 15.

Fig. 9 Two vacancy defects in parallel lanes can annihilate each other
on close approach. If an equal number of particles partition to two
lanes, defect annihilation precedes relaxation to a defect-free crystal.
(a) The doublet lattice shown here has two vacancy defects in different
lanes. (b) The vacancies flow upstream. Since they move at different
speeds, they come close enough to each other to initiate annihilation.
(c) The particles indicated by magenta and green arrows begin to
displace the particles immediately upstream, forming the character-
istic triangle structures of Fig. 8(a). (d) The particle with the green arrow
successfully acquires a doublet partner, pushing the particle indicated
by the cyan arrow upstream. The magenta arrow particle, on the other
hand, has not yet finished acquiring a doublet particle. It will be
captured by the cyan arrow particle. (e) The particle with the cyan
arrow captures the green arrow particle. The lattice is locally strained,
initiating a shear wave. (f) The shear wave propagates upstream. (g) The
shear wave has dissipated, and the crystal has relaxed to equilibrium.
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Lattice defect annihilation and crystal relaxation. Owing to
differences in local microstructure, lattice defects can move at
different speeds. Two lattice defects in different lanes can
annihilate each other on close approach. In Fig. 9(a), we show
a doublet crystal with a lattice defect in each lane. The defects
ow upstream, drawing close to each other in frame (b). Via
the mechanism of defect propagation just discussed, two
triangle congurations are created in frame (c). If propagation
were to proceed as usual, the particles indicated by magenta
and green arrows would acquire new doublet partners,
pushing the vacancies upstream. In (d), the green arrow
particle has successfully paired, displacing the particle indi-
cated by the cyan arrow upstream. However, the magenta
arrow particle still has not nished partnering. This allows the
cyan arrow particle to capture the magenta arrow particle in
frame (e). The vacancies are gone, but the lattice is locally
strained, creating a shear wave that propagates down the
lattice. This wave dissipates, and the lattice relaxes to an
apparently perfect crystal in (g).

Crystallization with permanent lattice defects. We have
considered the self-organization of essentially perfect doublet
crystals. All lattice defects in the top and bottom lanes eventu-
ally pair and annihilate. However, crystals can also self-organize
with two types of permanent lattice defect. If an unequal
number of particles partition between the two lanes, then it is
5186 | Soft Matter, 2014, 10, 5177–5191
not possible for all vacancies to pair and annihilate, and some
permanently ow through the lattice. Secondly, a stray particle
can ow between the two lanes of a doublet crystal on the
channel centerline. Both types of lattice defect are shown in
Fig. 10. Particle 7, the “centerline inclusion,” strains the lattice
as it moves downstream, forming transient triplet structures
with particles in the top and bottom lanes. Due to the transverse
anti-drag effect – the increased velocity of particles oriented
perpendicular to the external ow – the particles in a triplet ow
faster than the rest of the suspension. The temporary partners
of particle 7 are continuously exchanged through collisions with
downstream particles. Former partners, le upstream, return to
the doublet transverse positions. Through this mechanism, the
two lanes of the doublet lattice ow around the centerline
inclusion.

Wide channels. For larger channel widths ~W , self-organizing
crystals with more than two lanes (e.g. triplet or quadruplet
crystals) are possible in principle. We have not observed the
This journal is © The Royal Society of Chemistry 2014
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Fig. 10 Suspensions can crystallize with two types of permanent
defect. If an unequal number of particles is partitioned between the
crystal lanes, then vacancies have no means to heal. Secondly, a stray
particle on the centerline can propagate freely through a doublet
crystal. Frames (a) through (e) show both types of defect. A vacancy
switches from particle 4 to particle 9 through the mechanism dis-
cussed in Fig. 8, moving upstream. Particle 7 strains the lattice as it
moves down the centerline. Particles flow around it, returning to their
previous y positions upstream of the defect. The inclusion has a higher
velocity than doublet pairs, due to the “transverse anti-drag” effect
discussed above.

Fig. 11 Self-organization of three lanes in a wide channel. There are N
¼ 45 particles in a simulation box with ~W ¼ 30 and Lx/W ¼ 6. (a)
Particles are seeded with a random initial configuration. (b) Particles
have aligned with the flow and organized into strings and, at right, a
quadruplet. (c) At left, particles have sorted themselves into three
lanes. Strings of particles are joining these lanes. (d) Lanes now extend
over most of the simulation box. A long string of particles flows around
an “inclusion” that is not in a lane. (e) Particles are now entirely within
the three lanes. The lanes contain different numbers of particles, and
vary in density in the streamwise direction. These density variations
propagate through the lanes.

Fig. 12 (a) Head disc pair correlation function g(Dx, Dy) calculated
over the entire trajectory of Fig. 11. The dashed white line indicates the
sterically excluded area. Particles are depleted from close contact not
only by steric interactions, but also by hydrodynamic interactions. The
five streaks are due to particle laning. Each lane has localized peaks,
indicating local crystalline order. In Fig. 11(e), particles and their
neighbors in other lanes adopt crystalline order where the local lane
densities match. (b) Correlation function calculated from the begin-
ning of the simulation through frame (c) of Fig. 11. Particles have not
yet partitioned into lanes, but particle pairing by quadrupolar HI leads
to peaks at (Dx ¼ �6.5, Dy ¼ 0).
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formation of perfect triplet crystals. However, for ~W ¼ 30,
particles generally organize into three lanes that are approxi-
mately located at the triplet transverse positions. Lanes have
always been observed to have unequal numbers of particles. In
Fig. 11, an initially random conguration of N ¼ 45 particles in
a wide channel ( ~W ¼ 30, Lx/W ¼ 6) evolves into a conguration
of three lanes through stages of self-alignment and local self-
organization. Notably, local self-organization includes such
events as transient formation of quadruplets, as shown in frame
(b), and the organization of long strings of particles held
together by quadrupolar HI, appearing in frames (b), (c), and
(d). When nally organized, as in frame (e), the lanes have
density heterogenities in the ow direction that propagate
through the lanes.

As with dumbbell suspensions, we can quantitatively
examine self-organization in wide channels with correlation
functions. The head disc pair correlation functions g(Dx, Dy)
of Fig. 12(a) was calculated for the entire trajectory of Fig. 11.
Notably, the central dark spot extends beyond the sterically
excluded region. Hydrodynamic interactions are repulsive at
short range, preventing particles from aggregating. There are
clear peaks in the triplet positions (Dx ¼ 0, Dy ¼ �W/3) and
(Dx ¼ 0, Dy ¼ �2W/3), as well as (Dx ¼ �W/2, Dy ¼ �W/3).
These peaks are indicative of local crystalline order. In
Fig. 11(e), particles adopt local crystalline congurations
where the densities of neighboring lanes match. Finally, the
streaks in Fig. 12(a) extending over all Dx/W are due to both
the relative motion of neighboring lanes and the variation of
This journal is © The Royal Society of Chemistry 2014
density within a lane. In Fig. 12(b), we have limited calcula-
tion of g(Dx, Dy) to the beginning of the simulation
through frame (c) of Fig. 11. The streaks and crystal
peaks have not yet appeared, but quadrupolar HI
drives pairing in the ow direction, with a peak at (Dx ¼
�6.5R2, Dy ¼ 0).
Soft Matter, 2014, 10, 5177–5191 | 5187
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4 Conclusions

We have shown that a ow-driven suspension of microparticles
can self-organize into owing crystals under suitable conditions
of particle shape and geometric connement. Shape and
connement modify hydrodynamic interactions between
particles. They can be tailored so that hydrodynamic interac-
tions drive organization in multiple spatial directions and over
multiple time and length scales.

In our system, organization into a two-dimensional crystal
occurs through several stages in which one, two, and multiple-
body mechanisms are successively important. Particles rst
align with the ow via hydrodynamic self-interaction. This self-
alignment generically occurs for asymmetric particles in quasi-
two-dimensional connement.22 In the next stage, particles
spatially order in both the streamwise and transverse directions
via two distinct two-body mechanisms. While the transverse
mechanism is generic for asymmetric q2D particles, we engi-
neered the streamwise mechanism by breaking the coaxial
geometry of the model particle. Particles form lanes with lattice
defects that propagate and eventually annihilate via coordi-
nated motions of multiple particles. Finally, the lattice collec-
tively relaxes to an unstrained and nearly perfect crystal.

To our knowledge, our study is to rst to demonstrate that
owing lattices can be stabilized purely by viscous hydrody-
namic interactions. It provides a particularly simple system for
the development and examination of theoretical ideas in non-
equilibrium self-organization. For instance, one might ask if
crystallization is described by the minimization of a functional,
such as rate of energy dissipation.15 Our study also provides a
starting point for further exploration of the collective dynamics
of complex particles in q2D connement. Our theoretical and
numerical framework can accommodate suspension poly-
dispersity, particle deformability, other interaction potentials,
and more complex particle morphologies. For instance, a
trumbbell with unequal size tail discs is a model chiral particle.
The dynamics of DNA driven by ow in slit-like connement35 or
ow-driven conned bers36 or microsprings37 could be studied
with a bead-spring chain representation. The statistics and
kinetics of dumbbell aggregation could be studied in further
detail, especially in comparison with the dynamic clustering
that occurs in q2D droplet suspensions.20,38 Finally, we have
exploited the effects of only the rst two terms in the multipole
expansion of a particle's disturbance eld, and our consider-
ation of these terms was largely qualitative. Shape and multi-
pole expansions could be quantitatively related via the approach
outlined in Appendix D, as well as conformal mapping.39 A
systematic and parametric study of shape could obtain the
scaling dependence of the multipole coefficients on the gov-
erning dimensionless groups. It could also obtain the depen-
dence on these groups of the location and depth of the effective
potential well for interacting pairs, as in Fig. 6.

Experimentally, our ndings could be tested with Continuous
Flow Lithography (CFL).40 In this technique, hydrogel particles
with two-dimensional extruded shape are “optically stamped”
with UV light in a owing stream of photopolymerizable
5188 | Soft Matter, 2014, 10, 5177–5191
prepolymer solution. Particle shape is dictated by the choice of
photomask. Since particles are fabricated in situ, this technique
allows precise control over the initial positions and orientations
of one or more quasi-two-dimensional particles. In a recent
work, we used CFL to study the dynamics of a single asymmetric
dumbbell, obtaining qualitative and semi-quantitative agree-
ment between theory and experiment.22 We note that the model
problems appropriate for our numerical study are not ideal for
experimental work. For instance, the suspension in Fig. 7 settled
into a owing lattice only aer owing approximately one
thousand channel widths downstream. For a typical channel
width of 300 mm, the required channel length would be 30 cm,
which is impractical. Fortunately, the control over initial
conguration afforded by CFL, guided by insight provided by
numerics, should allow study of initial congurations that self-
organize over realistic microchannel lengths. Furthermore, the
completely disordered initial condition of Fig. 7 does not
represent typical device operation conditions. Ordinarily, parti-
cles in solution are continuously injected into a channel through
an inlet port. A possible experiment would be to synthesize
particles with CFL, collect them at the channel outlet, and then
inject them into a ow-through device. We previously performed
such an experiment with dilute solutions in order to study single
particle dynamics.22Our numerical scheme could bemodied so
that particles continuously enter and exit the ow domain,
modeling typical device operation conditions.
Appendix
A Single disc ow eld

Since the problem of Section 2.2 is two-dimensional, it can be
solved with a stream function approach. In cylindrical coordi-
nates, the stream function J is dened by

1

r

vJ

vq
hur; � vJ

vr
huq: (23)

Eqn (5) becomes

V4J � l2V2J ¼ 0, (24)

where l2 h 12/H2. By the linearity of the Brinkman equation,
the complete problem can be split into two subproblems: (a) the
disc is stationary and subject to an external ow U, and (b) the
disc is moving with velocity Up through a quiescent uid. We
will discuss the solution to (b). The solution to (a) easily follows.

We take Up ¼ Upx̂. The solution for ub, where the subscript
designates the subproblem, is subject to the following boundary
conditions. Far away from the disc, the ow eld must
vanish, so that ub,r|r/N ¼ 0 and ub,q|r/N. On the edge of the
disc, the no-slip and no-penetration conditions hold, and we
have ur|b,r ¼R ¼ Up cos(q) and ub,q|r¼R ¼ �Up sin(q). These
boundary conditions suggest a solution of the formJ(r, q) ¼ f(r)
sin(q). The boundary conditions reduce to conditions on f(r):

f(R) ¼ RUp and
vf
vr

|r¼R ¼ Up. substituting f(r)sin(q) into eqn (24)

and solving the equation, we obtain
This journal is © The Royal Society of Chemistry 2014
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f ðrÞ ¼ c1rþ c2

r
þ c3K1ðlrÞ: (25)

Imposing the boundary conditions, we nd the integration
constants to be c1 ¼ 0,

c2 ¼ Up

�
1þ 2K1ðalRÞ

RK0ðlRÞ
�
R2; (26)

and

c3 ¼ �2Up

lK0ðlRÞ: (27)

Eqn (25) has a revealing interpretation. The second, long-
range term is the dipolar ow disturbance. The third term
decays exponentially with screening length �H. This term
represents the viscous boundary layer in the vicinity of the disc.
The boundary layer is associated with the Laplacian term in eqn
(5), which constitutes a singular perturbation to the equation.

B Hydrodynamic interaction tensor

The hydrodynamic interaction tensor for unbounded q2D
directly follows from the results of the previous section. It is
non-zero only for i s j. Transforming to cartesian coordinates,

Bih

�
1þ 2K1ðaRiÞ

aRiK0ðaRiÞ
�
Ri

2

Xhðxi � xjÞ; Yhðyi � yjÞ
GðijÞ

xx ¼ BjðX 2 � Y 2Þ
.
rij

4; GðijÞ
xy ¼ 2BjXY

.
rij

4

GðijÞ
yx ¼ GðijÞ

xy ; G
ðijÞ
yy ¼ �GðijÞ

xx :

To obtain the HI tensor in a channel geometry, we must
include the effect of conning side walls. The no-penetration
condition on the side walls can be imposed by the method of
images. A disc and its images split into two sets. The “far” set
includes the real disc, as well as periodic images displaced from
the real disc in the y direction with periodicity 2W. Each disc in
the “far” set has the same velocity as the real disc. The “near” set
is seeded from the original disc's mirror image across the closest
side wall and includes periodic copies of this image. The “near”
set includes the image nearest to the real disc. The y component
of velocities in this set are negated relative to the original disc,
while the x component remains unchanged. Summing over
images, the self-interaction (i ¼ j) is determined as:

Cih

�
1þ 2K1ðaRiÞ

aRiK0ðaRiÞ
��

Rip

2W

�2

G
ðiiÞ
ab ¼ G

ðiiÞ
ab;near þ G

ðiiÞ
ab;far

G
ðiiÞ
xx;far ¼ �Cj

�
3; G

ðiiÞ
yy;far ¼ �G

ðiiÞ
xx;far

G
ðiiÞ
xy;far ¼ 0; G

ðiiÞ
yx;far ¼ 0;

GðiiÞ
xx;near ¼ �Cj

�
sin2ðpyi=WÞ; GðiiÞ

yy;near ¼ GðiiÞ
xx;near;

GðiiÞ
xy;near ¼ 0; GðiiÞ

yx;near ¼ 0:
This journal is © The Royal Society of Chemistry 2014
For i s j,

X� h p(xi� xj)/2W, Y� h p(yi � yj)/2W

G
ðijÞ
xx;far ¼ Cj

2 cos2 Y� cosh2 X� � cosh2 X� � cos2 Y�

ðcosh2 X� � cos2 Y�Þ2

G
ðijÞ
xy;far ¼ 2Cj

cos Y� cosh X� sin Y� sinh X�

ðcosh2 X� � cos2 Y�Þ2

G
ðijÞ
yx;far ¼ G

ðijÞ
xy;far; G

ðijÞ
yy;far ¼ �G

ðijÞ
xx;far

GðijÞ
xx;near ¼ Cj

2 cos2 Yþ cosh2 X� � cosh2 X� � cos2 Yþ

ðcosh2 X� � cos2 YþÞ2

GðijÞ
xy;near ¼ �2Cj

cos Yþ cosh X� sin Yþ sinh X�

ðcosh2 X� � cos2 YþÞ2

GðijÞ
yx;near ¼ �GðijÞ

xy;near; G
ðijÞ
yy;near ¼ GðijÞ

xx;near

G
ðijÞ
ab ¼ G

ðijÞ
ab;near þ G

ðijÞ
ab;far

For xed Y+ and Y�, the two body interaction decays expo-
nentially with screening length W/p or W/2p as |X�| / N.
C Denition of order parameters

The order parameters are dened as follows. F measures the
average alignment of particles with the ow:

FðxcÞh 1

N

X
i

cosðqiÞ: (28)

The angle qi is dened by the ow direction and the vector
between particle i's head disc and the midpoint between its two
tail discs.

The bond order parametersJ4,J4,r,J6 capture whether the
particles are in a square, rectangular, or hexagonal lattice,
respectively. For each frame of a simulation, we nd each par-
ticle's neighbors via a Voronoi tesselation, taking periodic
boundaries into account. We obtain J4 and J6 as

J4h
1

N

X
i

����� 1

Nnbr

X
j

eI8qij

����� (29)

and

J6h
1

N

X
i

����� 1

Nnbr

X
j

eI6qij

�����; (30)

where the inner sum is taken over all Nnbr neighbors j of particle
i. The angle qij is dened by the ow direction x̂ and the vector
between the head discs of i and j.

The bond order parameter J4 will be less than one for a
rectangular lattice, since the set of next nearest lattice neigh-
bors will not generally have angles qij that are an integer
multiple of p/4. The inner sum in the rectangular bond order
parameter is limited to the closest three particles:
Soft Matter, 2014, 10, 5177–5191 | 5189
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J4;r h
1

N

X
i

�����13
X
j

eI8qij

�����: (31)

We consider three particles instead of four because the
doublet lattice has only two lanes of real particles.

We dene JT as

JT h
1

N

�����
X
i

eIðm1kxxiþm1kxyiÞ
����� (32)

where kx¼ 2p/Lx and ky¼ 2p/W. For twenty particles partitioned
into two rows, m1 ¼ 10 and m2 ¼ 2. Unlike the bond order
parameters, JT is sensitive to imperfections in the particles' x
positions.

Finally, we dene

JT ;y h
1

N

�����
X
i

eIm1kxyi

�����; (33)

which quanties the partitioning of particles into lanes sepa-
rated by the lattice length given by the geometric construction
of Fig. 1(c).
D Calculation of multipole coefficients

We briey outline a method to calculate the coefficients in the
multipole expansion of the disturbance velocity created by a
particle. As a concrete example, we consider a trumbbell
particle. First, we numerically calculate the spring and friction
forces on an isolated trumbbell in unbounded q2D using the
framework developed in Section 2. These forces are shown in
Fig. 5(a) as yellow and white vectors. So that we can use complex
variable techniques, here we consider the forces to be distrib-
uted on the complex plane at positions zhead (of the head disc)
and ztail,1 and ztail,2 (of the two tail discs.) The complex potential
F(z) is given by a superposition of dipolar singularities

FðzÞ ¼
X
j

aj�
z� zj

�; (34)

where the disturbance velocity in the complex plane, (u, v), is

given by
dF
dz

¼ u� Iv. The dipole strengths aj are given by aj ¼
Bjfj/z

0
j . The sum is taken over the forces fj, which here are taken

to be complex numbers. A force fj occurs at zj ˛ {zhead, ztail,1,
ztail,2}, and has direction and magnitude given by the phase and
modulus of fi. Additionally, z

0
j ˛ {z 0

head, z
0
tail} and Bj ˛ {Bhead,

Btail}, as appropriate. We wish to nd the coefficients bk in a
multipole expansion for F(z),

FðzÞ ¼
XN
k¼1

bk

ðz� aÞk; (35)

The expansion is centered at a, the hydrodynamic center of
resistance. Here, we approximate a as az (zheadz

0
head + ztail,1z

0
tail

+ ztail,2z
0
tail)/(z

0
head + 2z

0
tail).41,42Using the residue theorem, we nd

that the coefficients bk are given by moments of the dipolar
strengths
5190 | Soft Matter, 2014, 10, 5177–5191
bk ¼
X
j

ajðz� aÞk�1
: (36)

Notably, the dipolar coefficient b1 does not depend on the
expansion center a. Therefore, the (equal and opposite) spring
forces cancel out, and b1 is simply the sum of the dipolar
coefficients associated with the friction forces. For the trumb-
bell, we obtain b1/U0R2

2 z 1.78 and b2/U0R2
3 z 0.78. According

to these calculations, the quadrupolar interaction is weak but
not negligible: for instance, for a position a distance 5R2 from
the trumbbell center, the quadrupolar contribution to the ow
eld is �1.3% of the external ow strength, whereas the dipolar
contribution is �7.1%. For the dumbbell in Fig. 5(b), we obtain
b1/U0R2

2z 1.29 and b2/U0R2
3z�0.19. Therefore, the dumbbell

and trumbbell have quadrupole terms of opposite sign, as
expected. Moreover, the dipole and quadrupole coefficients are
of the same order of magnitude for both architectures.
However, we note that the exact value of the quadrupole
strength b2 is sensitive to the value of a, especially for the
dumbbell. Our approximation for a neglected the effect of
hydrodynamic interactions on the center of resistance. In future
studies that focus on the quantitative details of the multipole
expansion, the exact value of the hydrodynamic center of
resistance should be rigorously calculated.42
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