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Critical Casimir interactions around the consolute
point of a binary solvent

T. F. Mohry,ab S. Kondrat,cd A. Maciołek*abe and S. Dietrichab

Spatial confinement of a near-critical medium changes its fluctuation spectrum and modifies the

corresponding order parameter distribution, resulting in effective, so-called critical Casimir forces (CCFs)

acting on the confining surfaces. These forces are attractive for like boundary conditions of the order

parameter at the opposing surfaces of the confinement. For colloidal particles dissolved in a binary liquid

mixture acting as a solvent close to its critical point of demixing, one thus expects the emergence of

phase segregation into equilibrium colloidal liquid and gas phases. We analyze how such phenomena

occur asymmetrically in the whole thermodynamic neighborhood of the consolute point of the binary

solvent. By applying field-theoretical methods within mean-field approximation and the semi-empirical

de Gennes–Fisher functional, we study the CCFs acting between planar parallel walls as well as between

two spherical colloids and their dependence on temperature and on the composition of the near-critical

binary mixture. We find that for compositions slightly poor in the molecules preferentially adsorbed at

the surfaces, the CCFs are significantly stronger than at the critical composition, thus leading to

pronounced colloidal segregation. The segregation phase diagram of the colloid solution following from

the calculated effective pair potential between the colloids agrees surprisingly well with experiments and

simulations.
I. Introduction

Finite-size contributions to the free energy of a spatially
conned uid give rise to an excess pressure, viz., an effective
force per unit area acting on the conning surfaces. This so-
called solvation force depends on the geometry of the conne-
ment, the surface separation, the uid–uid interactions, the
substrate potentials exhibited by the surfaces, and on the
thermodynamic state of the uid.1 The solvation force acquires
a universal, long-ranged contribution upon approaching the
bulk critical point of the uid, as rst pointed out by Fisher and
de Gennes.2 This is due to critical order parameter uctuations
which led to the notion of ‘critical Casimir forces’, in analogy
with the quantum-mechanical Casimir forces which are due to
quantum uctuations of conned electromagnetic elds.3

The important role of critical Casimir forces (CCFs) for
colloidal suspensions has implicitly been rst recognized while
studying experimentally aggregation phenomena in binary
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near-critical solvents.4 Numerous other experimental studies
followed aiming to clarify important aspects of the observed
phenomenon, such as its reversibility and the location of its
occurrence in the temperature – composition phase diagram of
the solvent (see, for example, ref. 5–7 and references therein).
Measurements were performed mostly in the homogeneous
phase of the liquid mixture. They have demonstrated that the
temperature–composition (T, c) region within which colloidal
aggregation occurs is not symmetric about the critical compo-
sition cc of the solvent mixture. Strong aggregation occurs on
that side of the critical composition which is rich in the
component disfavored by the colloids. More recently, reversible
uid–uid and uid–solid phase transitions of colloids dis-
solved in the homogeneous phase of a binary liquid mixture
have been observed.8–10 These experiments also show that the
occurrence of such phase transitions is related to the affinity of
the colloidal surfaces for one of the two solvent components as
described above.

Various mechanisms for attraction between the colloids,
which can lead to these phenomena, have been suggested. The
role of dispersion interactions, which are effectively modied in
the presence of an adsorption layer around the colloidal parti-
cles, has been discussed in ref. 11. A “bridging” transition,
which occurs when the wetting lms surrounding each colloid
merge to form a liquid bridge,12 provides a likely mechanism
sufficiently off the critical composition of the solvent. However,
in the close vicinity of the bulk critical point of the solvent, in
This journal is © The Royal Society of Chemistry 2014
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line with the prediction by Fisher and de Gennes,2 attraction
induced by critical uctuations should dominate.

In the original argument by Fisher and de Gennes, the
scaling analysis for off-critical composition of the solvent has
not been carried out. Due to the lack of explicit results for the
composition dependence of CCFs, for a long time it has not
been possible to quantitatively relate the aggregation curves to
CCFs. Rather, it was expected that CCFs play a negligible role for
off-critical compositions because away from cc the bulk corre-
lation length, which determines the range of CCFs, shrinks
rapidly. However, to a certain extent the properties of an
aggregation region can be captured by assuming the attraction
mechanism to be entirely due to CCFs. This has been shown in a
recent theoretical study which employs an effective one-
component description of the colloidal suspensions.13 Such
an approach is based on the assumption of additivity of CCFs
and requires the knowledge of the critical Casimir pair potential
in the whole neighborhood of the critical point of the binary
solvent, i.e., as a function of both temperature and solvent
composition close to (Tc, cc). In ref. 13, it was assumed that
colloids are spherical particles all strongly preferring the same
component of the binary mixture such that they impose
symmetry breaking (+, +) boundary conditions14 on the order
parameter of the solvent. Further, the pair potential between
two spherical particles has been expressed in terms of the
scaling function of the CCFs between two parallel plates by
using the Derjaguin approximation.15 The dependence of the
CCFs on the solvent composition translates into the depen-
dence on the bulk ordering eld hb conjugate to the order
parameter [see eqn (A4) in the rst part of ref. 13]. For the
parallel-plate (or lm) geometry in spatial dimension D ¼ 3, the
latter has been approximated by the functional form obtained
from Ginzburg–Landau theory in the mean-eld approximation
(i.e., for D¼ 4). The scaling functions of the CCFs resulting from
these approximations have not yet been reported in the litera-
ture. We present them here for a wide range of parameters. In
order to assess the quality of the approximations adopted in ref.
13 we calculate the scaling functions of the CCFs by using
alternative theoretical approaches and compare the corre-
sponding results.

In this spirit, one can estimate how well the mean-eld
functional form, which is exact in D ¼ 4 (up to logarithmic
corrections), approximates the dependence on hb of CCFs for
lms in D ¼ 3 by comparing it with the form obtained from the
local-functional approach16 in D ¼ 3. We use the semi-empirical
free energy functional developed by Fisher and Upton16 in order
to extend the original de Gennes–Fisher critical-point ansatz.2

Upon construction, this functional fullls the necessary analytic
properties as function of T and a proper scaling behavior for
arbitrary D. The extended de Gennes–Fisher functional provides
results for CCFs in lms with (+, +) boundary conditions at hb ¼
0, which are in a good agreement with results fromMonte Carlo
simulations.17 A similar local-functional approach proposed by
Okamoto and Onuki18 uses a renormalized Helmholtz free
energy instead of the Helmholtz free energy of the linear para-
metric model used in ref. 17. Such a version does not seem to
produce better results for the Casimir amplitudes.18 This
This journal is © The Royal Society of Chemistry 2014
‘renormalized’ local-functional theory has been recently applied
to study the bridging transition between two spherical parti-
cles.19 Some results for the CCFs with strongly adsorbing walls
and hb s 0 obtained within mean-eld theory and within
density functional theory in D¼ 3 have been presented in ref. 20
and 21, respectively. These results are consistent with the
present ones.

We also explore the validity of the Derjaguin approximation
for the mean-eld scaling functions of the CCFs, focusing on
their dependence on the bulk ordering eld. For that purpose,
we have performed bona de mean-eld calculations for
spherical particles, the results of which can be viewed as exact
for hypercylinders in D ¼ 4 or approximate for two spherical
particles in D ¼ 3.

This detailed knowledge of the CCFs as function of T and hb
is applied in order to analyze recently published experimental
data for the pair potential and the segregation phase diagram10

of poly-n-isopropyl-acrylamide microgel (PNIPAM) colloidal
particles immersed in a near-critical 3-methyl-pyridine (3MP)–
heavy water mixture.

Our paper is organized such that in Section II we discuss the
theoretical background. In Section IIIA, results for CCFs for
lms are presented. These results as obtained from the eld-
theoretical approach within mean-eld approximation are
compared with those stemming from the local functional
approach. We discuss how the dependence of the CCFs on the
bulk ordering eld hb changes with the spatial dimension D.
Section IIIB is devoted to the CCF between spherical particles,
where we also probe the reliability of the Derjaguin approxi-
mation. In Section IV our theoretical results are confronted with
the corresponding experimental ndings and simulations. We
provide a summary in Section V.
II. Theoretical background

For the demixing phase transition of a binary liquid mixture,
the order parameter f is proportional to the deviation of the
concentration c ¼ 9A � 9B from its value cc at the critical point,
i.e., f � c � cc; here 9a, a ˛ {A, B}, are the number densities of
the particles of species A and B, respectively. The bulk ordering
eld hb, conjugate to this order parameter, is proportional to
the deviation of the difference Dm ¼ mA � mB of the chemical
potentials ma, a˛ {A, B}, of the two species from its critical value,
i.e., hb � Dm � Dmc. We note, that the actual scaling elds for
real uids are linear combinations of hb and the reduced
temperature t ¼ (Tc � T)/Tc [t ¼ (T � Tc)/Tc] for a lower [upper]
critical point.

Close to the bulk critical point, the bulk correlation length
attains the scaling form

x(t, hb) ¼ xtI
(D)
� (|S| ¼ xt/xh), (1)

where the universal bulk scaling function I(D)� satises
I(D)� (|S| / 0) ¼ 1 and I(D)� (|S| / N) ¼ |S|�1. The functional
form of I(D)� (|S|) depends on the sign (�) of t, but not on the sign
of the bulk scaling variable S. It is suitable to dene the latter as
sgn(S) ¼ sgn(thb). The bulk correlation length for hb ¼ 0 is
Soft Matter, 2014, 10, 5510–5522 | 5511
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xt ¼ x(0)� |t|�n (2)

and

xh ¼ x(0)h |hb|
�n/(bd) (3)

is the bulk correlation length along the critical isotherm. Here n,
b, and d ¼ (Dn/b) � 1 are standard bulk critical exponents. For
the Ising bulk universality class considered here, n ¼ 0.63 and
b¼ 0.33 in spatial dimension D¼ 3 and n¼ b¼ 1/2 in D$ 4.22,23

There are three non-universal amplitudes, x(0)� and x(0)h , but the
ratio Ux ¼ x(0)+ /x(0)� forms an universal number,23,24 Ux(D ¼ 3) x

1.9 and UxðD ¼ 4Þ ¼
ffiffiffi
2

p
: The values of x(0)� and x(0)h depend on

the denition of x which we take to be the true bulk correlation
length governing the exponential decay of the two-point corre-
lation function of the bulk order parameter.

A. Film geometry

A generalized, solvent mediated force f (k) between two parallel
planar walls a distance L apart is given by1

f ðkÞ ¼ � vFðexÞ

vL
¼ � vðF � V fbÞ

vL
; (4)

where fb is the bulk free energy density,F is the free energy of the
lm, and V ¼ AL where A is the macroscopically large surface
area of one wall. f ðkÞ=A is the excess pressure over the bulk value
of the solvent. Upon approaching the bulk critical point of the
conned medium f (k) acquires the universal long-ranged contri-
bution f (k)

C , known as the critical Casimir force.25–27 Due to
its particular spatial variation and dependence on temperature,
f (k)C is a well dened and distinct contribution to f (k).28

Finite-size scaling29 predicts that2

f
ðkÞ
C

A ¼ kBT

LD
~w
ðDÞ
k ðY ¼ sgnðtÞL=xt; L ¼ sgnðhbÞL=xhÞ; (5)

where kB is the Boltzmann constant and ~w
ðDÞ
k ðY; LÞ is an

universal scaling function. Its functional form depends on the
bulk universality class and on the surface universality classes of
the conning walls. Here we focus on walls with the same
adsorption preferences (expressed in terms of surface elds
conjugate to the order parameter at the surfaces) in the so-
called strong adsorption limit in which f(r) / N for the
spatial coordinate r approaching the walls. Note that ~w(D)

depends on the sign of hb because the surface elds at the
conning walls break the bulk symmetry hb / �hb. Depending
on the particular thermodynamic path under consideration,
other representations of the scaling function of the critical
Casimir force might be more convenient. For example, the

scaling function ŵ
ðDÞ
k ðY ¼ sgnðtÞL=xt;S ¼ sgnðthbÞxt=xhÞ lends

itself to describe the dependence of the CCFs on hb at xed
temperature. We will discuss the following representations

~w
ðDÞ
k ðY;LÞ ¼ ŵ

ðDÞ
k

�
Y;S ¼ L

Y ¼ sgnðthbÞ
xt

xh

�
¼

w
ðDÞ
k ðL;SÞ ¼ w

ðDÞ
k

 
Y ¼ Y

I
ðDÞ
� ðjSjÞ

¼ sgnðtÞL
x
;S

!
:

(6)
5512 | Soft Matter, 2014, 10, 5510–5522
B. Colloidal particles

We consider two spherical colloids, or more generally two
hypercylinders, in spatial dimension D. A hypercylinder HD,d ¼
{r ¼ (rt, rk) ˛ R

d � R
D�d ||rt|# R} has a nite extension R in d

dimensions and is innitely elongated in the remaining (D � d)
dimensions. In particular, spherical colloids in D ¼ 3 are H3,3-
particles; our numerical results are approximate for H3,3, but
exact in D ¼ 4, i.e. for H4,3. Here, the two hypercylinders are
assumed to be geometrically identical and aligned parallel to
each other. We denote this geometry by ++. The solvent-
mediated force f (++) between two hypercylinders a closest
surface-to-surface distance L apart is dened by the right hand
side of eqn (4) with F as the free energy of the binary solvent in
the macroscopically large volume V with two suspended
colloids.

In analogy to the lm geometry, f (++) acquires the scaling
contribution f (++)

C , which is given by

f
ð++Þ
C

l
¼ kBT

LLD�d

1

Dðd�1Þ=2

�wðD;dÞ
++

�
Y ¼ sgnðtÞL

xt
;D ¼ L

R
; L ¼ sgnðhbÞ

L

xh

�
; (7)

where l is the “length” of the (D� d)-dimensional hyperaxis and
w(D,d)
++ is an universal scaling function. (Note that in ref. 20 and

30 this scaling function has been dened slightly differently.)
Within the Derjaguin approximation15 the total force

between two spherical objects, H3,3 or H4,3, is taken to be

f ð++ÞC =lx
ð ​
dS~f

ðkÞ
C ¼ 2p

ðR
0
r~f

ðkÞ
C ðLðrÞÞdr; where ~f (k)C is the force

per area and LðrÞ ¼ Lþ
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðr=RÞ2

q �
2R, leading to the

scaling function [compare with eqn (5) and (7)] for d¼ 3 and D˛
{3, 4}

w
ðD;d¼3Þ
++;Derj ðY;D;LÞ ¼ p

ð1þ2D�1

1

dxx�D

�
�
1� D

2
ðx� 1Þ

�
~w
ðDÞ
k ðxY; xLÞ: (8)

Note, that for (D, d) ¼ (4, 4) in the expression for w(4,4)
++,Derj

there is an additional factor of 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þð1þ Dðx� 1Þ=4Þ

p
multiplying the integrand in eqn (8). Commonly,20,30–33 in this
context [i.e., eqn (8)] D is set to zero. Thus, within the Derjaguin
approximation, f (++)

C � D�(d�1)/2 [eqn (7)]. We adopt this
approximation except of, cf., Fig. 3(b), where we shall discuss
the full dependence on D given by eqn (8).
C. Landau theory

In the spirit of an expansion in terms of 3¼ 4� D, for the lowest
order contribution we use the mean-eld Landau–Ginzburg–
Wilson theory (hereaer called ‘Landau theory’ for brevity) in
order to study the universal CCF in the lm geometry (Section
IIIA) and between two colloidal particles (Section IIIB). The
Hamiltonian, in units of kBT, is given by14,34,35
This journal is © The Royal Society of Chemistry 2014
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H½fðrÞ� ¼
ð
V

�
1

2
ðVfÞ2 þ s

2
f2 þ u

4!
f4 � hbf

�
dDr; (9)

where V is the volume of the conned critical medium, s f t
changes sign at the (mean-eld) critical temperature Tc, and the
quartic term with the coupling constant u > 0 stabilizes the
Hamiltonian in the ordered phase, i.e., for s < 0. Eqn (9) must be
supplemented by appropriate boundary conditions, which for
the critical adsorption xed point correspond to f / �N.

Within Landau theory, the bulk correlation lengths [eqn (1),
(2) and (3)] are20

xt (t > 0) ¼ s�1/2, xt (t < 0) ¼ |2s|�1/2, (10)

xhðhbW0Þ ¼
			 ffiffiffiffiffiffiffiffiffiffi

9u=2
p

hb

			�1=3

; (11)

and

x(t, hb) ¼ {[xt(|t|)]
�2sgn(t) + (u/2)fb

2(t, hb)}
�1/2, (12)

where the bulk order parameter fb(t, hb) satises�
3
h
xtðjtjÞ

i�2
sgnðtÞ þ u

2
fb

2
� ffiffiffi

u
2

r
fb ¼ ðxhÞ�3 sgnðhbÞ so that

u
2
fb

2 can be expressed in terms of xt and xh and inserted into

eqn (12). Within Landau theory s ¼ [x(0)+ ]�2t.
The minimum of eqn (9) gives themean-field prole fmf (r; t,

hb). With this the critical Casimir force is

f C ¼ kBT

ð
A
dD�1r T ðfÞ$n ¼ lkBT

ð
A0
dd�1r T ðfÞ$n (13)

where A is an arbitrary (D � 1)-dimensional surface enclosing a
colloid or separating two planes, A0 is its (d � 1)-dimensional
subset in the subspace in which the colloids have a nite extent,
n is its unit outward normal, and

T jkðfÞ ¼
dh

dðvkfÞ


vjf
�
� djkh (14)

is the stress tensor;30 here hðfÞ is the integrand in eqn (9), and
vkf ¼ vf/vxk. For the lm geometry with chemically and
geometrically uniform surfaces, the integration in eqn (13)
amounts to the evaluation of T at an arbitrary point between the
two surfaces. The force between two colloids is fC ¼ fCe, where e
is a unit vector along the line connecting their centers. We have
minimized the Hamiltonian H numerically using the nite
element method.36

Within Landau theory, the scaling functions of the critical
Casimir force carry the undetermined prefactor 1/u, which is
dimensionless in D ¼ 4. In order to circumvent this uncertainty
and to facilitate the comparison with experimental or other
theoretical results, we shall normalize our mean-eld results by
the critical Casimir amplitude for the lm geometry [see eqn (5)]
D
ð4Þ
k ¼ ~w

ðD¼4Þ
|| ðY ¼ 0;L ¼ 0Þ ¼ �ð6=uÞ4½Kð1=2Þ�4\0; 25 where K

is the complete elliptic integral of the rst kind. This normali-

zation eliminates the prefactor
1
u
. For the sphere–sphere

geometry, one has20,30 wðD¼4;d¼3Þ
++ ðY ¼ 0; D ¼ 0; L ¼ 0Þ ¼

w
ðD¼4;d¼3Þ
++;Derj ðY ¼ 0; D ¼ 0; L ¼ 0Þ ¼ p

3
~w
ðD¼4Þ
k ðY ¼ 0; L ¼ 0Þ ¼
This journal is © The Royal Society of Chemistry 2014
p

3
w
ðD¼4Þ
k ðY ¼ 0; SÞ; note that S ¼ sgn(thb)xt/xh ¼ const denes

implicitly various thermodynamic paths hb(t) which, however,
all pass through the critical point (t ¼ 0, hb ¼ 0), i.e., Y ¼ 0 [see
Fig. 1]. Accordingly, w(D) (Y ¼ 0, S) does not depend on S. This
normalization scheme holds also for nonzero values of Y, D,
and L as well as beyond the Derjaguin approximation.
D. Extended de Gennes–Fisher functional

For the lm geometry, we consider the ansatz for the free energy
functional proposed by Fisher and Upton16

F ½FðzÞ� ¼ A
ð ​L=2
�L=2

�
x2ðF; tÞ
2cðF; tÞ ðvFÞ

2 þWðF; t; hbÞ
�
dzþ Fs; (15)

where vF¼ vF/vz. The equilibrium proleFeq minimizes F, and
F[Feq] is the singular part of the free energy of the near-critical
medium conned in the lm. Note that the order parameter F
in eqn (15) is dimensionless, unlike f in the Landau model, in
which it has the dimension (length)1�D/2 [see eqn (9)]. The
surface contribution Fs ¼ �hs,1F(z ¼ �L/2) � hs,2F(z ¼ L/2)
implements the boundary conditions. We consider walls
adsorbing the same species corresponding to surface elds
hs,1 ¼ hs,2 > 0.W(F; t, hb) is the excess (over the bulk) free energy
density (in units of kBT), x(F; t) and c(F; t) are the bulk corre-
lation length and the susceptibility of a homogeneous bulk
system at (F, t), respectively.16

Minimizing the functional given by eqn (15) leads to an
Euler–Lagrange equation, which can be formally integrated.
One then proceeds by taking the scaling limit of this latter rst
integral and by using the scaling forms of the following bulk
quantities:

W(F; t, hb) ¼ |F|d+1Y�(J, S) (16)

and

x2/(2c) ¼ |F|hn/bZ�(J), (17)

where J ¼ F=Fbð�|t|; hb ¼ 0Þ ¼ |t|
�b
F=Bt. The (dimension-

less) non-universal amplitude Bt of the bulk order parameter Fb

can be expressed via universal amplitude ratios in terms of the
non-universal amplitudes x(0)+ and x(0)h of the bulk correlation
length;23 the functions ~Y�(J, S) ¼ Y�(J, S)/Y+(N, 0) and
~Z�(J) ¼ Z�(J)/Z+(N) are universal. This procedure determines
(even without knowing the explicit functional forms of ~Y� and
~Z�) a formal expression for the scaling function ŵ(D)

k of the
CCF.17,37 Here we take into account the additional dependence
on the scaling variable S s 0 and obtain38 for Y. 0

ŵ
ðDÞ
|| ðY. 0; SÞ ¼ �A1|Y|

2�a
Jm

ð1þdÞ ~YþðJm;SÞ; (18)

where A1¼ RcQc/(d + 1) is an universal number which is expressed
in terms of the universal amplitude ratios23,24 Rc, Q2, and Qc. Jm

is dened through Fm ¼ F(z ¼ zm) ¼ JmFb(�|t|, hb ¼ 0), which
for the present case hs,1, hs,2 > 0 is theminimal value of the order
parameter prole across the lm.

In order to calculate the critical Casimir force from eqn (18)
one has to evaluate the functions Y� and Z� in eqn (16) and (17).
Soft Matter, 2014, 10, 5510–5522 | 5513
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The analytical expressions of these functions can be obtained by
using the so-called linear parametric model.17,23,39 For given Y
and S the scaling function of the critical Casimir force is then
computed numerically (for details see ref. 38).
III. Numerical results
A. Critical Casimir forces in lms

1. Landau theory. Our results from Landau theory for the
behavior of the scaling function w(D¼4)

k (Y ¼ sgn(t)L/x(t, hb), S ¼
sgn(thb)xt/xh) of the CCF around the consolute point of the
binary solvent are summarized in Fig. 1. This particular scaling
form turns out to be suitable for the Derjaguin approximation
used below for the sphere–sphere geometry because the
dependence of the CCF on L, measured in units of the true bulk
correlation length x(t, hb), enters w(D¼4)

k only via Y. The second
scaling variable S, which depends on the thermodynamic state
of the solvent, varies smoothly from S ¼ 0 at the bulk coexis-
tence curve to S ¼ �N at the critical isotherm.

In Fig. 1, we have plotted several lines of constant scaling
variable |Y|¼ L/x(t, hb)¼ 4, 5,.,10 in the thermodynamic space
of the solvent spanned by t̂ ¼ (L/x(0)+ )1/nt and ĥb ¼ (L/x(0)h )bd/nhb.
The shape of the lines |Y| ¼ const is determined by the bulk
correlation length x(t, hb). Therefore it is symmetric about the
t̂-axis. A break of slope occurs at the bulk coexistence line (̂t < 0,
ĥb ¼ 0) because x(t, hb) depends on the bulk order parameter fb

[see eqn (12)] which varies there discontinuously. We use the
Fig. 1 Behavior of the normalized scaling function w(D¼4)
k (Y ¼ sgn(t)L/

x(t, hb), S ¼ sgn(thb)xt/xh) of the CCF from Landau theory along lines of
constant scaling variable |Y| ¼ 4, 5, ., 10 (from the inner to the
outermost ring) in the thermodynamic state space of the solvent
spanned by t̂ ¼ (L/x(0)+ )1/nt and ĥb ¼ (L/x(0)h )bd/nhb. The color along the
lines of constant |Y| indicates the absolute value |w(D¼4)

k |. The bulk
critical point of the solvent (̂t, ĥb) ¼ (0, 0) is indicated by �. The region
shown here lies above the capillary transition critical point (Yk,c ¼ �11,
Sk,c ¼ 1.3),20 where the film coexistence line ends. For (+, +) boundary
conditions, the capillary condensation transition occurs for t̂ < 0 and ĥb

< 0. The dash-dotted lines indicate the thermodynamic paths S ¼ 1
and ¼ 3 and the dashed line the path of constant order parameter

f̂ ¼ L

x
ð0Þ
þ

f=Bt ¼ �5. Within Landau theory n ¼ 1/2 and n/(bd) ¼ 1/3.

D(D¼4)
k ¼ |w(D¼4)

k (Y ¼ 0, S)|, which is independent of S.

5514 | Soft Matter, 2014, 10, 5510–5522
color code to indicate the strength |w(D¼4)
k | of the scaling func-

tion of the CCF along these lines. For (+, +) boundary conditions
the critical Casimir force in a slab is attractive and accordingly
w(D¼4)
k < 0 for all values of t and hb.
The mainmessage conveyed by Fig. 1 is the asymmetry of the

critical Casimir force around the critical point of the solvent
with the maximum strength occurring at hb < 0. This asymmetry
is due to the presence of surface elds which break the bulk
symmetry hb / �hb of the system and shi the phase coexis-
tence line away from the bulk location hb ¼ 0. In the lm with
(+, +) boundary conditions the shied, so-called capillary
condensation transition, occurs for negative values of hb.1,40 At
capillary condensation, the solvation force (which within this
context is a more appropriate notion than the notion of the
critical Casimir force) exhibits a jump from a large value for
thermodynamic states corresponding to the (+) phase to a
vanishingly small value for those corresponding to the (�)
phase. Above the two-dimensional plane spanned by (̂t, ĥb), the
surface w(D¼4)

k forms a trough which is the remnant of these
jumps extending to the thermodynamic region above the
capillary condensation critical point, even to temperatures
higher than Tc. This trough, reecting the large strengths visible
in Fig. 1 for ĥb < 0, deepens upon approaching the capillary
condensation point.

Along the particular thermodynamic path of zero bulk eld
(i.e., S ¼ 0) the minimum is located above Tc and has the value
w(4)
k (Ymin ¼ 3.8, S ¼ 0) ¼ 1.4 � w(4)

k (0, 0). Along the critical
isotherm (i.e., |S|¼N) one has w(4)

k (Ymin¼ 8.4, S¼�N)¼ 10�
w(4)
k (0, 0). Interestingly, along all lines |Y|¼ L/x(t, hb)¼ const the

strength |w(4)
k (Y ¼ const, S)| takes its minimal value at the bulk

coexistence curve hb ¼ 0+. For |Y| W 6.3 the maximal value of |
w(4)
k (Y ¼ const, S)| is located at hb < 0 and t + 0.
It is useful to consider the variation of the scaling function of

the CCF along the thermodynamic paths of xed S. As exam-
ples, such paths are shown for S¼ 1 and S¼ 3 in Fig. 1 by dash-
dotted lines. Thermodynamic paths corresponding to 0 < S (

1.3 cross the phase boundary of coexisting phases in the lm at
certain values Ycx(S), which lie outside the range of the plot in
Fig. 1. Along the paths corresponding to 0 < S ( 3, w(4)

k (Y, S ¼
const < 3) as function of Y has two minima. The local minimum
occurs above Tc, whereas the global one occurs below Tc. For all
other xed values of S, the scaling function w(4)

k , as function of
Y, exhibits a single minimum; for negative S it is located above
Tc (i.e., Y > 0), whereas for ST 3 below Tc (i.e., Y < 0). Results for
w(D¼4)
k as function of Y ¼ sgn(t)L/x(t, hb) for constant values of

S ¼ sgn(thb) xt/xh are shown in ref. 38.
Thermodynamic paths of constant order parameter f s

0 are particularly experimentally relevant, because they corre-
spond to a xed off-critical composition of the solvent. As an

example Fig. 1 shows the case f̂ ¼ L

x
ð0Þ
þ

f=Bt ¼ �5 as indicated

by the dashed line. Within mean-eld theory this path varies
linearly with t.

2. Approximate results for the spatial dimension D ¼ 3. In
ref. 13, the results of Landau theory (which are exact for D ¼ 4)
described above were used in order to approximate the
This journal is © The Royal Society of Chemistry 2014
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Fig. 2 Two representations of the scaling function of the critical
Casimir force for the film geometry with (+, +) boundary conditions

[eqn (6)]: (a) ŵ
ðD¼3Þ
k ðY; SÞ plotted versus Y ¼ sgnðtÞL=xt and (b)

�w(D¼3)
k (L, S) plotted versus L ¼ sgn(hb)L/xh for several values of the

scaling variable S ¼ sgn(thb)xt/xh. The full lines are the results obtained
from the local functional approach together with the linear parametric
model [eqn (18)], and the dashed lines correspond to the dimensional
approximation [eqn (19)]. In (b) the symbols are Monte Carlo data from
ref. 43 for S¼�N. We note that thermodynamic states corresponding
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dependence of the CCFs on the bulk ordering eld hb in spatial
dimension D ¼ 3:

ŵ
ðDÞ
k ðY;SÞxŵ

ðDÞ
k ðY;S ¼ 0Þ

ŵ
ðD0¼4Þ
k ðY;SÞ

ŵ
ðD0¼4Þ
k ðY;S ¼ 0Þ

; (19)

where ŵ
ðD¼3Þ
k ðY; S ¼ 0Þ is taken from Monte Carlo simulation

data.41 This “dimensional approximation” is inspired by the
observation that the trends and qualitative features of ŵ(D)

k are the
same for different values of D.41,42 The characteristics of this
approximation are as follows: (i) For D / D’ ¼ 4, the right hand
side of eqn (19) turns into the correct expression for the full range
of all scaling variables. (ii) For hb/ 0 (i.e., S/ 0) the right hand
side of eqn (19) reduces exactly to ŵ

ðDÞ
k ðY; S ¼ 0Þ for all values D,

D0, and Y. In this sense the approximation is concentrated on the
dependence on hb. (iii) For D0 ¼ 4 the approximation can be
understood as the lowest order contribution in an 3 ¼ 4 � D

expansion of zðDÞwk
¼ ŵ

ðDÞ
k ðY; SÞ=ŵðDÞ

k ðY;S ¼ 0Þ which carries the

whole dependence of the CCFs on S. Since z
ðD0¼4Þ
wk

is a ratio, the

prefactor of ŵ(D 0¼4)
k , which cannot be determined within Landau

theory (see Section IIC), drops out. In eqn (19), the scaling vari-
ables Y and S are taken to involve the critical bulk exponents in
spatial dimension D so that the approximation concerns only the
shape of the scaling function. The use of bulk critical exponents
in spatial dimension D for scaling variables which, however, are
arguments of the scaling function in spatial dimension D0 s D,
may lead to a deviation from the proper asymptotic behavior.
However, this potential violation of the proper asymptotic
behavior of the scaling function of the CCFs is expected to occur
for large values of the arguments of the scaling function for
which its value is exponentially small. Thus, the potential viola-
tion should not matter quantitatively in the range of the values of
Y and S for which the scaling function ŵ(D)

k attains noticeable
values. Here we compare this approximation with the results
obtained from the extended de Gennes-Fisher functional using
the linear parametric model.

In Fig. 2(a) we plot ŵ
ðD¼3Þ
|| ðY; SÞ as a function of Y. 0 for

several values of S. For large values of |S| the relevant part of
the corresponding thermodynamic path is close to the critical
isotherm and accordingly the scaling variable
L ¼ SY ¼ sgnðhbÞL=xh is more appropriate than the scaling
variable Y. Therefore, in Fig. 2(b) we show �w(D¼3)

k (L, S) ¼
ŵ(D¼3)
k (L/S, S) as a function of L for several xed values of

S # �2.
As can be inferred from Fig. 2 the dimensional approxima-

tion in eqn (19) works well for weak bulk elds (such that |S| <
3). Although the minima of the scaling functions are slightly
shied relative to each other, the depths of these minima
compare well with the results of the local functional approach.
For all |S| < N, the value Y ¼ 0 corresponds to the bulk critical
point and thus at Y ¼ 0 the curves ŵ(D)

k attain the same value
[see Fig. 2(a)].

For strong bulk elds, i.e., S < �4 the dimensional approx-
imation [eqn (19)] fails [see Fig. 2(b)]. For example, |�w(D¼3)

k | of
the approximative curve becomes smaller for more negative
This journal is © The Royal Society of Chemistry 2014
values of S, which is in contrast to the results of Landau theory
and of the local functional approach. This wrong trend of the
results of the dimensional approximation is explained in detail
in ref. 38.

We note that the scaling functions w(D¼3)
k of the critical

Casimir force as obtained from the local functional exhibit the
same qualitative features as the ones calculated within Landau
theory. For example, the position Ymin(S) of the minimum as
obtained from the present local functional theory changes from
YminðS ¼ 0Þ ¼ YminðS ¼ 0Þ ¼ 3:1 at the thermodynamic path
hb ¼ 0 towards Ymin(S ¼ �N) ¼ �Lmin(S ¼ �N) ¼ 9.4 at the
critical isotherm. These values are similar to the ones obtained
from Landau theory. The results of the local functional
approach are peculiar with respect to the cusp-like minimum
for curves close to the critical isotherm [for |S| ¼ N, i.e., t ¼ 0,
see Fig. 2(b)]. Such a behavior is also reported for the similar
approach used in ref. 18. However, there is no such cusp in the
to S ¼ �N and S ¼ N are the same; they form the critical isotherm.

Soft Matter, 2014, 10, 5510–5522 | 5515
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Monte Carlo data43 for t ¼ 0, i.e., |S| ¼ N, [see the symbols in
Fig. 2(b)]. As compared with the results of the local functional,
the minimum of �w(D¼3)

k (L, |S| ¼N) obtained from Monte Carlo
simulations is less deep and is positioned at a more negative
value of L. ForL > 0 [not shown in Fig. 2(b)], �w(D¼3)

k (L, |S|¼N)
as obtained from the local functional is less negative than the
corresponding scaling function obtained from the Monte Carlo
simulations.

We observe that upon decreasing the spatial dimension D
the ratio of the strengths |w(D)

k | at its two extrema, the one
located at the critical isotherm and the other located at hb ¼ 0,
increases, from 7 in D ¼ 4 to 11.5 (local functional) or 8 (Monte
Carlo simulations) in D ¼ 3, and to 15 in D ¼ 2.44
Fig. 3 The critical Casimir force between two like colloids in zero bulk
field (L ¼ 0) as obtained from Landau theory. (a) The normalized
scaling function w(D¼4,d¼3)

++ versus Y ¼ sgnðtÞL=xt for five values of D ¼
L/R, where L is the surface-to-surface distance between two H4,3-
particles of radius R. The curve D ¼ 0 corresponds to the Derjaguin
approximation. (b) The normalized scaling function w(4,3)

++ versus D for
three values of Y. 0: The results of the Derjaguin approximation as
given by eqn (8) are shown by dashed lines (D / 0, next to leading
order) and by crosses (D ¼ 0). We recall the relation

wðD¼4;d¼3Þ
++ ðY ¼ 0;D ¼ 0;L ¼ 0Þ ¼ p

3
~w
ðD¼4Þ
k ð0; 0Þ ¼ p

3
D
ð4Þ
k : For compar-

ison, the scaling function w(D¼4,d¼4)
++ at the critical point ðY ¼ L ¼ 0Þ for

H4,4-particles20 is shown by the grey dash-dotted line. Interestingly,
the full dependence on D of the Derjaguin approximation forH4,4 (grey
dotted line emerging from the grey cross) displays a trend opposite to
the result w(D¼4,d¼4)

++ of ref. 20, obtained from the full calculation.
B. Critical Casimir forces between spherical colloids

The CCF between two spherical colloids takes the form given by
eqn (7); here we take d ¼ 3 and D ¼ 4. In order to calculate w(4,3)

++ ,
we use the stress tensor T ðfÞ [see eqn (13) and (14)] with the
mean-eld prole f(r) which has been determined by mini-
mizing the Hamiltonian in eqn (9) numerically using F3DM.36 To
this end we have put two spherical particles inside a sufficiently
large rectangular box and divided the physical space into a mesh
of nite elements using TETGEN.45 We have used linear basis
functions to approximate f(r) on the mesh elements, and trans-
formed the functional [eqn (9)] into a function of values of f on
the mesh nodes; this function has been minimized numerically
using GSL.46 In order to account for the strong adsorption
boundary conditions on the surfaces of the colloids, we have
applied a short-distance expansion and have determined f(r) at a
certain small distance away from each colloid; this amounts to
applying xed boundary conditions at spheres surrounding the
colloids. (Note, however, that this approach is only valid for
sufficiently large colloid separations.) At all sides of the compu-
tational box f(r) is taken to exhibit a vanishing gradient.

CCFs between spherical colloids in zero bulk eld have been
widely studied in the literature.20,31,33,47,48 Within Landau theory,
so far only the critical Casimir interaction between two HD$4,3

particles in the presence of a wall has been reported; the
dependence of the CCFs on the bulk eld hb has been consid-
ered only for HD¼4,d¼4 particles. Here we focus on three-
dimensional spherical particles, i.e., on hypercylinders H3,3 or
HD$4,3. We recall that we consider (+, +) boundary conditions
only.

The scaling function wð4;3Þ
++ ðY;D ¼ const;L ¼ 0Þ, as a function

of Y, has a shape which is typical for like boundary conditions
[see Fig. 3(a)]. Interestingly, the magnitude of
w(4,3)
++ depends non-monotonically on D. This is shown explicitly in

Fig. 3(b), where the scaling function is plotted versus D for three
values of Y ¼ sgnðtÞL=xt . 0: In Fig. 3(b), w(4,3)

++ approaches the
scaling function of the Derjaguin approximation from
above whenD/ 0, but decreases upon increasing D > Dm, where
Dmz 1/2 seems to be almost independent of Y (in the range ofY
shown). This non-monotonic behavior is unlike the case of H4,4

hypercylinders, for which the scaling function approaches its
value at D ¼ 0 from below and exhibits no maxima (grey dash-
dotted line in Fig. 3(b) reproduced from ref. 20). For the wall-
5516 | Soft Matter, 2014, 10, 5510–5522
sphere geometry, such a non-monotonic behavior of the scaling
function of the CCF for D / 0 has been found for a sphere H3,3

using Monte Carlo simulations,33 but not for (hyper)cylinders
H4,d, d ˛ {2, 3}, treated within Landau theory.32

The behavior of w(4,3)
++ for large D[ 1 is not quite clear due to

technical difficulties associated with large mesh sizes and the
increasing numerical inaccuracy; moreover, in this limit, the
force attains very small values.

Results for nonzero bulk elds hb are shown in Fig. 4. For
xed sphere radii R and xed surface-to-surface distance L, the
curves in Fig. 4(a) for xed L correspond to varying the
temperature along the thermodynamic paths of iso-elds hb ¼
const. For xed L, the curves in Fig. 4(b) compare the scaling
This journal is © The Royal Society of Chemistry 2014
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Fig. 4 Effect of the bulk field (L s 0) on the scaling function
w(D¼4,d¼3)
++ of the critical Casimir force [eqn (7)] as obtained from Landau

theory. (a) Normalized w(4,3)
++ shown as a function of Y ¼ sgnðtÞL=xt for

D ¼ L/R ¼ 1 (full lines) and within the Derjaguin approximation (D ¼ 0,
dashed lines) for four values of L ¼ sgn(hb)L/xh. (b) Normalized
w(4,3)
++ shown as a function of L for Y ¼ 1 and for four values of D. The

curves are normalized with the critical Casimir amplitude D(4)
k for the

film.
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function of the CCF as function of hb along the supercritical
isotherm Tc < T ¼ const for various sphere sizes.

For hb > 0 the variation of w(4,3)
++ with Y resembles the features

observed for vanishing hb in the case of the sphere–sphere or
lm geometry, i.e., w(4,3)

++ exhibits a minimum located above Tc
(Y. 0) [compare Fig. 4(a) with Fig. 2 and 3(a)]. Upon increasing
the bulk eld, the magnitude of the scaling function decreases
and the position of the minimum shis towards larger Y. This
is in line with the behavior for the lm geometry (Fig. 1).

The behavior of the scaling function for negative bulk elds
is different. For positive Y, there is still a residual minimum of
the scaling function located very close to Y ¼ 0, which disap-
pears upon decreasing hb. This is already the case for L ¼ �2 in
Fig. 4(a). This disappearance is in line with the results for lm
geometry. For negative Y, at a certain value L < 0, in lms
capillary condensation occurs whereas between spherical
colloids a bridging transition takes place.12,19,49Near these phase
transitions, the effective force acting between the conning
surfaces is attractive and becomes extremely strong; the depth
This journal is © The Royal Society of Chemistry 2014
of the corresponding effective interaction potentials can reach a
few hundred kBT. This concomitant enormous increase of the
strength of the force is also reected in the universal scaling
function [see the green line L ¼ �2 in Fig. 4(a) for Y\0]. (For
the lm geometry this issue has been discussed in detail in ref.
20; in particular, Fig. 11 in ref. 20 exhibits a cusp in the scaling
function in the vicinity of the capillary condensation; similarly,
upon decreasing Y, called Q� in ref. 20, to negative values the
magnitude of the scaling function increases strongly.)

It is also interesting to note a non-monotonic dependence of
the scaling function w(4,3)

++ on D ¼ L/R [Fig. 4(b)]. For positive
bulk elds, |w(4,3)

++ | is stronger for larger D. This is different,
however, for negative bulk elds, for which |w(4,3)

++ | is stronger
for smaller D. Such an increase of |w(4,3)

++ | upon decreasing D

holds also for zero bulk eld [see Fig. 3(b) for D T 1/2].
Finally, for larger values of D ¼ L/R the deciencies of the

Derjaguin approximation are clearly visible in Fig. 3 and 4.
IV. Comparison with experimental
data
A. Effective interaction potentials

In ref. 10, the pair distribution function g(r) of poly-n-isopropyl-
acrylamide microgel (PNIPAM) colloidal particles immersed in
a near-critical 3-methyl-pyridine (3MP)–heavy water mixture has
been determined experimentally for various deviations DT ¼ Tc
� T from the lower critical temperature Tc z 39 �C (of the
miscibility gap of the bulk 3MP–heavy water mixture without
colloidal particles). Here we analyze the experimental data for
the 3MP mass fraction u ¼ 0.28 which is close to the critical
value (see below).

We assume that the solvent-mediated interaction between
the PNIPAM colloids is the sum of a background contribution
Ubck and the critical Casimir potential Uc. This assumption is
valid for small salt concentrations50 which is the case for the
samples studied in ref. 10. Accordingly, one has

Ubck(r) ¼ Uexp(r; DT) � Uc(r; DT), (20)

where r is the center-to-center distance.
Within the studied temperature range DT < 1 K this ‘back-

ground’ contribution is expected to depend only weakly on
temperature and hence we consider it to be temperature inde-
pendent. We use the potential of mean-force in order to extract
the experimentally determined interaction potential Uexp(r) ¼
�kBT ln[g(r)]. This relation is reliable for small solute densities,
as they have been used in the experiments. Therefore only small
deviations are expected to occur by using more accurate
expressions for the potential, such as the hypernetted chain or
the Percus–Yevick closures.

Since the numerical calculation of the critical Casimir
potential in the bona de sphere–sphere geometry for all
parameters which are needed for comparison with experiment
is too demanding, here we resort to the Derjaguin approxima-
tion. Within this approximation the critical Casimir potential Uc

between two colloids of radius R [eqn (7) and (8)] is15,31,32
Soft Matter, 2014, 10, 5510–5522 | 5517

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c4sm00622d


Fig. 5 Effective interaction potential Uexp as determined experimen-
tally in ref. 10 (symbols, dashed lines as a guide to the eye) and its
background contribution Ubck (full lines). The experimental system
consists of colloidal particles of radius Rz 250 nm immersed in a near
critical binary liquid mixture. The effective potential was determined
for various deviations DT ¼ Tc � T from the lower critical point Tc, at
DT/K ¼ 0.6 (�, magenta), 0.5 (,, green), 0.4 (B, orange), and 0.3 (O,
blue). Upon approaching Tc the minimum of the potential U deepens
due to the attractive Casimir interaction. The ‘background’ part of the
potential is obtained by subtracting the critical Casimir potential Uc

[see eqn (20) and (21)]. If Ubck was temperature independent the
various full lines would collapse. In (a) the binary liquid mixture used in
the experiments (mass fraction u¼ 0.28) is assumed to be at its critical
composition u ¼ uc ¼ 0.28, whereas (b) corresponds to a slightly off-
critical composition ~f ¼ ðuc � uÞ=Bt ¼ �0:088: In (b) one observes a
better collapse of the full lines than in (a). The critical Casimir potential
Uc depends on S, which is directly related to ~f via the equation of state
S ¼ E(|t|b~f) (see the main text). The curves correspond to the
value x(0)+ ¼ 1.5 nm [eqn (2)]. The colloidal particles are soft, so that
Uexp(r < 2R) > 0 and very large but not infinite.
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Ucðr;DT ;uÞ ¼ pkBT
R

r� 2R

ðN
1

dx


x�2 � x�3

�
ŵ
ðD¼3Þ
k ðxY;SÞ;

(21)

where Y ¼ sgnðtÞðr � 2RÞ=xt and S ¼ sgn(thb)xt/xh. The depen-
dence of Uc on temperature and on the mass fraction of the
solvent is captured by the bulk correlation lengths xt and xh of
the solvent, respectively [eqn (2) and (3)]. In order to calculate
the scaling function ŵ(D¼3)

k of the critical Casimir force between
two planar walls we use the local functional approach (see
Section IID).

For the amplitude of the thermal bulk correlation length we
take x(0)+ ¼ 1.5 nm, which we extracted from the experimental
data presented in ref. 51. However, in the literature there are no
well established data for the critical mass fraction uc of the
3MP-heavy water binary liquid mixtures. In ref. 52, the value
uc ¼ 0.28 is quoted while the scaling analysis of the data shown
in Fig. 1 in ref. 52 suggests the value uc z 0.29. The inaccuracy
of the value for uc enters into the reduced order parameter
~f ¼ ðuc � uÞ=Bt; Bt is the non-universal amplitude of the bulk
coexistence curve ucxðt ¼ DT=Tc\0Þ ¼ uc � Bt|t|

b
. Thus, via

the equation of state one obtains S ¼ E
�
jtjb~f



[see eqn (A4) in

the rst part of ref. 13] so that the critical Casimir potential Uc

[eqn (21)] depends sensitively on the value of uc. The function E
is determined by using the equation of state within the linear
parametric model.39 Note, that as long as we consider the

reduced order parameter ~f we do not have to know the non-
universal amplitude Bt (or x(0)h which is related to Bt via
universal amplitude ratios.)

Fig. 5(a) shows the experimentally determined potentials
and the extracted background contributions Ubck for the critical
composition being uc ¼ 0.28 ¼ u, as stated in ref. 10. In view of
the uncertainty in the value of uc, we used ~f as a variational
parameter for achieving the weakest variation of the back-
ground potential Ubck with temperature. For example, for
~f ¼ �0.088 the variation of Ubck as function of T is smaller than
0.5kBT and thus comparable with the experimentally induced
inaccuracy [see Fig. 5(b)]. Adopting the value Btx0:5 (which can
be inferred from the experimental data of ref. 52)
~f ¼ ðuc � uÞ=Bt ¼ �0:088 corresponds to a critical mass frac-
tion uc x 0.236. This value of uc differs signicantly from the
value given in ref. 10. We conclude that either the solvent used
in these experiments was indeed at the critical composition, but
Uc does not capture the whole temperature dependence of Uexp

[case (a)]; or that Uc does capture the whole temperature
dependence of Uexp, but u ¼ 0.28 is not the critical composition
[case (b)]. For all tested values of ~f, the potential Ubck, which
corresponds to DT/K ¼ 0.2, deviates the most from the other
three curves. Theses deviations might be attributed to the
invalidity of the Derjaguin approximation (compare Section
IIIB) or to the overestimation of the CCFs within the local
functional approach (compare Fig. 2). The calculated Uc may
suffer from these approximations, and accordingly the obtained
Ubck; this may thus also be the cause of the attractive part in
Ubck. Moreover, also other physical effects, such as a coupling of
the critical uctuations to electrostatic interactions or the
5518 | Soft Matter, 2014, 10, 5510–5522
structural properties of the so microgel particles, which we
have not included in our analysis [see eqn (20)], might be of
importance for the considered system.
B. Segregation phase diagram

The experiments of ref. 10 indicate that, upon approaching the
critical point of the solvent, a colloidal suspension segregates
into two phases: poor (I) and rich (II) in colloids. Ref. 10 also
provides the experimental data for the colloidal packing
This journal is © The Royal Society of Chemistry 2014
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Fig. 6 Segregation phase diagram from theory (RPA), experiment, and
simulations (MC). (a) The phase diagram obtained within RPA using the
four available background potentials Ubck from Fig. 5, and their
average. The critical Casimir potential is calculated within the Derja-
guin approximation using the local functional approach (see Section
IVA) for a reduced solvent order parameter ~f ¼ �0.088. The back-
ground contributions Ubck have been extracted from the experimen-
tally determined effective potentials [compare eqn (20)] at DT/K ¼ 0.6
(magenta), 0.5 (green), 0.4 (orange), and 0.3 (blue). The thick brown
curve corresponds to the average of the four potentials Ubck. The solid
lines show the phase boundaries in terms of the packing fraction h of
the colloids, the dashed lines correspond to the spinodals, and dots
represent critical points. (b) Comparison of the theoretical predictions
for the phase boundaries (based on the averageUbck) with Monte Carlo
simulations (T) and experiments (�, with error bars) of ref. 10. On the
temperature axis DT ¼ Tc � T increases from top to bottom in order to
mimic a lower critical point Tc (of the solvent) as observed
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fractions (h(I,II)cx ) in the coexisting phases I and II. In order to
calculate h(I,II)cx , we use the so-called ‘effective approach,’ within
which one considers a one-component system of colloidal
particles interacting with each other through an effective,
solvent-mediated pair potential U. Thus this approach ignores
that the solvent itself may ‘participate’ in the phase separation
of the colloidal suspension. This approximation allows us,
however, to make full use of the known results of standard
liquid state theory (for more details and concerning the limi-
tations of this approach see ref. 13 and 53).

Within the random-phase approximation, the free energy F
of the effective one-component system is given by13,54

ps3

6n
FRPA ¼ kBT fhs þ

1

2
hs

2 ~Ua;0; (22)

where n is the volume of the system. For the hard-sphere
reference free energy fhs we adopt the Percus–Yevick expression

fhs
�
hs ¼ ln

�
p

6
ðs=lÞ3

�
þ ln

�
hs

1� hs

�
� 2� 10hs þ 5hs

2

2ð1� hsÞ
2

; (23)

where hs ¼
�

s

2R

�3

h ¼ p

6
s39 with h being the packing fraction

of the colloids, 9 their number density, and l is the thermal
wavelength. We use for the effective hard-sphere diameter

s ¼
ðr0
0

�
1� exp

�
� U=ðkBTÞ

��
dr, with U(r ¼ r0) ¼ 0. One can

adopt also other denitions of s (for a discussion see ref. 55 and
56). Using the present denition renders a slightly better
agreement with the experimental data than using the one given
in ref. 56.

In eqn (22), one has ~Ua;0 ¼
6

ps3
Ûaðq ¼ 0Þ; where Ûa(q ¼

|q|) ¼
Ð
exp(�iqr)Ua(r)d

3r is the Fourier transform of the
attractive part (Ua) of the interaction potential,

UaðrÞ ¼
(
Uðr ¼ rminÞ for 0# r\rmin

UðrÞ for r$ rmin;
(24)

where U(r) attains its minimum at rmin.
In order to calculate the phase diagram of the effective one-

component system within the RPA approximation, we use the
pair potential U(r) ¼ Ubck(r) + Uc(r), where Uc is given by eqn
(21), and where the background contribution Ubck is extracted
from the experimental data of ref. 10. As discussed in Section
IVA, there is some inaccuracy in determining the background
potential Ubck. Following ref. 10 and assuming ~f ¼ 0, we have
to consider four different Ubck. The resulting corresponding
segregation phase diagrams differ from each other qualita-
tively. Interestingly, the attractive part of the background
potentials Ubck(r; DT, ~f) corresponding to DT/K ¼ 0.4 and 0.2
[see Fig. 5(a)] is so strong, that for these potentials alone (i.e.,
for U ¼ Ubck without Uc) the RPA free energy predicts already a
phase segregation. For the background potential Ubck(r; DT, ~f)
corresponding to DT ¼ 0.6 K and ~f ¼ 0, the presence of Uc is
necessary for the occurrence of phase segregation within RPA.
However, the resulting relative value of the critical temperature
(DT)c,eff x 0.39K is much smaller than the experimentally
observed one. On the other hand, for ~f ¼ �0.088, which
This journal is © The Royal Society of Chemistry 2014
renders the best expression for Ubck out of the experimental
data of ref. 10 (see Fig. 5), the resulting RPA phase segregation
diagrams are consistent with each other. This is visible in
Fig. 6(a), where we compare the coexistence curves hcx(T)
resulting from the four potentials Ubck of Fig. 5(b), as well as
from Ubck obtained by averaging these four potentials Ubck.
Although these ve background potentials look very similar,
they nonetheless lead to coexistence curves the critical
temperatures of which differ noticeably [see Fig. 6(a)].
However, away from their critical point, the various coexistence
experimentally.
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curves merge; see the region DT < 0.4 K in Fig. 6(a). This
indicates that for small DT the critical Casimir potential
dominates the background potential, so that the details of the
latter (and thus its inaccuracy) become less important.

Fig. 6(b) compares the RPA predictions for the segregation
phase diagram with the experimental data and with the Monte
Carlo simulation data provided by ref. 10. The pair potentials
used in these MC simulations are the sum of an attractive and a
repulsive exponential function and thus they differ from the
ones used here. At high colloidal densities, the RPA is in
surprisingly good agreement with the experimental data. On the
other hand, at low densities the RPA agrees well with the Monte
Carlo simulations, but both theoretical results underestimate
the experimental values which, in turn, agree well with the low-h
branch of the RPA-spinodal (an observation also observed for
~f ¼ 0). While this latter ‘agreement’ might be accidental, it
nevertheless raises the question whether the experimental
system has actually been fully equilibrated at the time of the
measurements.

V. Summary

Critical Casimir forces act between surfaces conning a near-
critical medium. For instance, colloidal particles suspended
in a binary liquid mixture act as cavities in this solvent. Thus
near its critical point of demixing the suspended colloids
interact via an effective, solvent-mediated force, the so-called
critical Casimir force (CCF). We have analyzed the depen-
dence of the CCFs on the bulk ordering eld (hb) conjugate to
the order parameter of the solvent. For a binary liquid mixture,
hb is proportional to the deviation of the difference of the
chemical potentials of the two species from its critical value. In
the presence of hb, we have used the mean-eld approximation
for the Landau–Ginsburg–Wilson theory to calculate the CCFs
between parallel plates and between two spherical colloids, as
well as the local functional approach of Fisher and de Gennes
for parallel plates. We have shown that the CCF is asymmetric
around the consolute point of the solvent, and that it is stronger
for compositions slightly poor in that species of the mixture
which preferentially adsorbs at the surfaces of the colloids [see
Fig. 1, 2(a), (b) and 4].

For two three-dimensional spherical particles posing as
hypercylinders (H4,3) in spatial dimension D ¼ 4 we observe a
non-monotonic dependence of the scaling function of the CCF
on the scaling variable D¼ L/R, where L is the surface-to-surface
distance and R is the radius of monodisperse colloids [see
Fig. 3(b) as well as Fig. 4]. Unlike four-dimensional spherical
particles (H4,4) in D ¼ 4, the scaling functions for H4,3 exhibit a
maximum at D z 1/2 before decreasing upon increasing D [see
Fig. 3(b)]. This different behavior may be attributed to the extra
macroscopic extension of the hypercylinders H4,3. This raises
the question whether H4,3 or H4,4 is the better mean-eld
approximation for the physically relevant case of three-
dimensional particles H3,3 in D ¼ 3. Due to this uncertainty,
and in view of the limited reliability of the Derjaguin approxi-
mation (see Fig. 3 and 4), more accurate theoretical approaches
are highly desirable. Because the local functional approach is
5520 | Soft Matter, 2014, 10, 5510–5522
computational less demanding than Monte Carlo simulations
and it is reliable for hb ¼ 0, it would be very useful to improve
this approach for hb s 0 and to generalize it to more complex
geometries, in particular to spherical objects.

In addition, due to numerical difficulties the behavior of the
scaling function of the CCF for D / N remains as an open
issue. Since one faces similar numerical difficulties for D / 0,
we conclude that within Landau theory, the numerical solution
nds its useful place in between small and large colloid sepa-
rations. The small separations are captured well by the Derja-
guin approximation. For HD,d-particles with d > bD/n, the large
separations can be investigated by the so-called small radius
expansion. However, the case H4,3 represents a ‘marginal’
perturbation for which the small radius expansion is not valid.57

Therefore, it would be interesting to study the asymptotic
behavior of the scaling function of the CCF for large colloid
separations by other means.

We have compared our theoretical results for the critical
Casimir potential [within the Derjaguin approximation and the
local functional approach, see eqn (21)] with experimental data
taken from ref. 10 (see Fig. 5). Concerning the potentials we nd
a fair agreement, however their detailed behavior calls for
further, more elaborate experimental and theoretical
investigations.

As a consequence of the emergence of CCFs, a colloidal
suspension thermodynamically close to the critical point of its
solvent undergoes phase separation into a phase dense in
colloids and a phase dilute in colloids. Using the random phase
approximation for an effective one-component system, we have
calculated the phase diagram for this segregation in terms of
the colloidal packing fraction and of the deviation of tempera-
ture from the critical temperature of the solvent. Surprisingly,
despite resorting to these approximations, the calculated phase
diagram agrees fairly well with the corresponding experimental
andMonte Carlo data (Fig. 6). Both the RPA calculations and the
Monte Carlo simulations are based on the so-called effective
approach and compare similarly well with the experimental
data. However, in order to achieve an even better agreement
with the experimental data, it is likely that models have to be
considered which take into account the truly ternary character
of the colloidal suspension.
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