Open Access Article. Published on 08 May 2014. Downloaded on 8/27/2025 9:43:43 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Soft Matter

.

ROYAL SOCIETY
OF CHEMISTRY

View Article Online

View Journal | View Issue

Critical Casimir interactions around the consolute
point of a binary solvent

Cite this: Soft Matter, 2014, 10, 5510

T. F. Mohry,®® S. Kondrat,“® A. Maciotek*®® and S. Dietrich®®

Spatial confinement of a near-critical medium changes its fluctuation spectrum and modifies the
corresponding order parameter distribution, resulting in effective, so-called critical Casimir forces (CCFs)

acting on the confining surfaces. These forces are attractive for like boundary conditions of the order

parameter at the opposing surfaces of the confinement. For colloidal particles dissolved in a binary liquid

mixture acting as a solvent close to its critical point of demixing, one thus expects the emergence of

phase segregation into equilibrium colloidal liquid and gas phases. We analyze how such phenomena

occur asymmetrically in the whole thermodynamic neighborhood of the consolute point of the binary

solvent. By applying field-theoretical methods within mean-field approximation and the semi-empirical

de Gennes-Fisher functional, we study the CCFs acting between planar parallel walls as well as between

two spherical colloids and their dependence on temperature and on the composition of the near-critical

binary mixture. We find that for compositions slightly poor in the molecules preferentially adsorbed at
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the surfaces, the CCFs are significantly stronger than at the critical composition, thus leading to

pronounced colloidal segregation. The segregation phase diagram of the colloid solution following from
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www.rsc.org/softmatter simulations.

. Introduction

Finite-size contributions to the free energy of a spatially
confined fluid give rise to an excess pressure, viz., an effective
force per unit area acting on the confining surfaces. This so-
called solvation force depends on the geometry of the confine-
ment, the surface separation, the fluid-fluid interactions, the
substrate potentials exhibited by the surfaces, and on the
thermodynamic state of the fluid.* The solvation force acquires
a universal, long-ranged contribution upon approaching the
bulk critical point of the fluid, as first pointed out by Fisher and
de Gennes.” This is due to critical order parameter fluctuations
which led to the notion of ‘critical Casimir forces’, in analogy
with the quantum-mechanical Casimir forces which are due to
quantum fluctuations of confined electromagnetic fields.?

The important role of critical Casimir forces (CCFs) for
colloidal suspensions has implicitly been first recognized while
studying experimentally aggregation phenomena in binary
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the calculated effective pair potential between the colloids agrees surprisingly well with experiments and

near-critical solvents.” Numerous other experimental studies
followed aiming to clarify important aspects of the observed
phenomenon, such as its reversibility and the location of its
occurrence in the temperature - composition phase diagram of
the solvent (see, for example, ref. 5-7 and references therein).
Measurements were performed mostly in the homogeneous
phase of the liquid mixture. They have demonstrated that the
temperature-composition (7, ¢) region within which colloidal
aggregation occurs is not symmetric about the critical compo-
sition c. of the solvent mixture. Strong aggregation occurs on
that side of the critical composition which is rich in the
component disfavored by the colloids. More recently, reversible
fluid-fluid and fluid-solid phase transitions of colloids dis-
solved in the homogeneous phase of a binary liquid mixture
have been observed.>'® These experiments also show that the
occurrence of such phase transitions is related to the affinity of
the colloidal surfaces for one of the two solvent components as
described above.

Various mechanisms for attraction between the colloids,
which can lead to these phenomena, have been suggested. The
role of dispersion interactions, which are effectively modified in
the presence of an adsorption layer around the colloidal parti-
cles, has been discussed in ref. 11. A “bridging” transition,
which occurs when the wetting films surrounding each colloid
merge to form a liquid bridge,"* provides a likely mechanism
sufficiently off the critical composition of the solvent. However,
in the close vicinity of the bulk critical point of the solvent, in

This journal is © The Royal Society of Chemistry 2014
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line with the prediction by Fisher and de Gennes,* attraction
induced by critical fluctuations should dominate.

In the original argument by Fisher and de Gennes, the
scaling analysis for off-critical composition of the solvent has
not been carried out. Due to the lack of explicit results for the
composition dependence of CCFs, for a long time it has not
been possible to quantitatively relate the aggregation curves to
CCFs. Rather, it was expected that CCFs play a negligible role for
off-critical compositions because away from c. the bulk corre-
lation length, which determines the range of CCFs, shrinks
rapidly. However, to a certain extent the properties of an
aggregation region can be captured by assuming the attraction
mechanism to be entirely due to CCFs. This has been shown in a
recent theoretical study which employs an effective one-
component description of the colloidal suspensions.” Such
an approach is based on the assumption of additivity of CCFs
and requires the knowledge of the critical Casimir pair potential
in the whole neighborhood of the critical point of the binary
solvent, ie., as a function of both temperature and solvent
composition close to (T, c.). In ref. 13, it was assumed that
colloids are spherical particles all strongly preferring the same
component of the binary mixture such that they impose
symmetry breaking (+, +) boundary conditions** on the order
parameter of the solvent. Further, the pair potential between
two spherical particles has been expressed in terms of the
scaling function of the CCFs between two parallel plates by
using the Derjaguin approximation.” The dependence of the
CCFs on the solvent composition translates into the depen-
dence on the bulk ordering field 7, conjugate to the order
parameter [see eqn (A4) in the first part of ref. 13]. For the
parallel-plate (or film) geometry in spatial dimension D = 3, the
latter has been approximated by the functional form obtained
from Ginzburg-Landau theory in the mean-field approximation
(i.e., for D = 4). The scaling functions of the CCFs resulting from
these approximations have not yet been reported in the litera-
ture. We present them here for a wide range of parameters. In
order to assess the quality of the approximations adopted in ref.
13 we calculate the scaling functions of the CCFs by using
alternative theoretical approaches and compare the corre-
sponding results.

In this spirit, one can estimate how well the mean-field
functional form, which is exact in D = 4 (up to logarithmic
corrections), approximates the dependence on %;, of CCFs for
films in D = 3 by comparing it with the form obtained from the
local-functional approach® in D = 3. We use the semi-empirical
free energy functional developed by Fisher and Upton'® in order
to extend the original de Gennes-Fisher critical-point ansatz.”
Upon construction, this functional fulfills the necessary analytic
properties as function of T and a proper scaling behavior for
arbitrary D. The extended de Gennes-Fisher functional provides
results for CCFs in films with (+, +) boundary conditions at A, =
0, which are in a good agreement with results from Monte Carlo
simulations.” A similar local-functional approach proposed by
Okamoto and Onuki'® uses a renormalized Helmholtz free
energy instead of the Helmholtz free energy of the linear para-
metric model used in ref. 17. Such a version does not seem to
produce better results for the Casimir amplitudes.”® This
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‘renormalized’ local-functional theory has been recently applied
to study the bridging transition between two spherical parti-
cles.” Some results for the CCFs with strongly adsorbing walls
and h, # 0 obtained within mean-field theory and within
density functional theory in D = 3 have been presented in ref. 20
and 21, respectively. These results are consistent with the
present ones.

We also explore the validity of the Derjaguin approximation
for the mean-field scaling functions of the CCFs, focusing on
their dependence on the bulk ordering field. For that purpose,
we have performed bona fide mean-field calculations for
spherical particles, the results of which can be viewed as exact
for hypercylinders in D = 4 or approximate for two spherical
particles in D = 3.

This detailed knowledge of the CCFs as function of T and 4y,
is applied in order to analyze recently published experimental
data for the pair potential and the segregation phase diagram™®
of poly-n-isopropyl-acrylamide microgel (PNIPAM) colloidal
particles immersed in a near-critical 3-methyl-pyridine (3MP)-
heavy water mixture.

Our paper is organized such that in Section II we discuss the
theoretical background. In Section IIIA, results for CCFs for
films are presented. These results as obtained from the field-
theoretical approach within mean-field approximation are
compared with those stemming from the local functional
approach. We discuss how the dependence of the CCFs on the
bulk ordering field A;, changes with the spatial dimension D.
Section IIIB is devoted to the CCF between spherical particles,
where we also probe the reliability of the Derjaguin approxi-
mation. In Section IV our theoretical results are confronted with
the corresponding experimental findings and simulations. We
provide a summary in Section V.

Il.  Theoretical background

For the demixing phase transition of a binary liquid mixture,
the order parameter ¢ is proportional to the deviation of the
concentration ¢ = g4 — g3 from its value c, at the critical point,
ie, ¢ ~ ¢ — cg here g,, a € {4, B}, are the number densities of
the particles of species 4 and B, respectively. The bulk ordering
field A, conjugate to this order parameter, is proportional to
the deviation of the difference Au = u, — up of the chemical
potentials u,, a € {4, B}, of the two species from its critical value,
ie, hy ~ Ap — Au.. We note, that the actual scaling fields for
real fluids are linear combinations of #4;, and the reduced
temperature ¢ = (T. — T)/T. [t = (T — T.)/T.] for a lower [upper]
critical point.

Close to the bulk critical point, the bulk correlation length
attains the scaling form

E(t, ho) = ELDZ] = EJEn), (1)

where the uwuniversal bulk scaling function I satisfies
(2] - 0) =1 and (|2 —» =) = |Z|~". The functional
form of I'”)(|=|) depends on the sign (+) of ¢, but not on the sign
of the bulk scaling variable 2. It is suitable to define the latter as
sgn(X) = sgn(thy,). The bulk correlation length for A, = 0 is
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£ =801 (2)
and
£ = E V| 0 3)

is the bulk correlation length along the critical isotherm. Here v,
B, and ¢ = (Dv/B) — 1 are standard bulk critical exponents. For
the Ising bulk universality class considered here, v = 0.63 and
6 = 0.33 in spatial dimension D=3 and v = 3 =1/2 in D = 4.*>*
There are three non-universal amplitudes, E(io] and 55,0), but the
ratio Uz = £/ forms an universal number,*** U;(D = 3) =
1.9 and U;(D = 4) = /2. The values of £Q) and £{) depend on
the definition of £ which we take to be the true bulk correlation
length governing the exponential decay of the two-point corre-
lation function of the bulk order parameter.

A. Film geometry

A generalized, solvent mediated force £V between two parallel
planar walls a distance L apart is given by*

dF )
oL

_OF = Vfy)

£ = ), )

where f,, is the bulk free energy density, F is the free energy of the
film, and V = AL where A is the macroscopically large surface
area of one wall. f(I) / A is the excess pressure over the bulk value
of the solvent. Upon approaching the bulk critical point of the
confined medium f () acquires the universal long-ranged contri-
bution £, known as the critical Casimir force.>>* Due to
its particular spatial variation and dependence on temperature,
SV is a well defined and distinct contribution to f(.2*
Finite-size scaling® predicts that®
1 kT

Aﬁﬁ

(Y =sen()L/z, A=sga(h)L/E),  (5)

where kg is the Boltzmann constant and &ff)(y, A) is an
universal scaling function. Its functional form depends on the
bulk universality class and on the surface universality classes of
the confining walls. Here we focus on walls with the same
adsorption preferences (expressed in terms of surface fields
conjugate to the order parameter at the surfaces) in the so-
called strong adsorption limit in which ¢(r) — o« for the
spatial coordinate r approaching the walls. Note that
depends on the sign of h;, because the surface fields at the
confining walls break the bulk symmetry A, — —h;,. Depending
on the particular thermodynamic path under consideration,
other representations of the scaling function of the critical
Casimir force might be more convenient. For example, the

3 = sgn(thy)&; /&) lends
itself to describe the dependence of the CCFs on 7, at fixed
temperature. We will discuss the following representations

scaling function {9‘(‘D> (Y =sgn(¢)L/&;,
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B. Colloidal particles

We consider two spherical colloids, or more generally two
hypercylinders, in spatial dimension D. A hypercylinder Hp ; =
{r=(r.,r)e RYx R” ?||r, | =R} has a finite extension R in d
dimensions and is infinitely elongated in the remaining (D — d)
dimensions. In particular, spherical colloids in D = 3 are Hj ;-
particles; our numerical results are approximate for Hj 3, but
exact in D = 4, i.e. for H,;. Here, the two hypercylinders are
assumed to be geometrically identical and aligned parallel to
each other. We denote this geometry by oo. The solvent-
mediated force f(°°) between two hypercylinders a closest
surface-to-surface distance L apart is defined by the right hand
side of eqn (4) with F as the free energy of the binary solvent in
the macroscopically large volume V with two suspended
colloids.

In analogy to the film geometry, f(°°)
contribution f\°*), which is given by

acquires the scaling

&0 kT 1
] ~ LILD—d A(d—l)/z
L L
x {2d) (JJ =sgn(t)—,A =—, A =sgn(h) > (7)
gl gh
where [ is the “length” of the (D — d)-dimensional hyperaxis and
®® is an universal scaling function. (Note that in ref. 20 and
30 this scaling function has been defined slightly differently.)
Within the Derjaguin approximation™ the total force
between two spherical objects, H; ; or H,3, is taken to be

g R
fc(“)/lzJ deéH) = ZWJ Pfg)(L(p))dp, where fi is the force
0

per area and L(p) =L+ (1 —4/1-— (p/R)Z)ZR, leading to the

scaling function [compare with eqn (5) and (7)] ford =3 and D e
{3, 4}

142471

dxx~?

1

X {1 —%(x - l)} {9‘(‘])) (xY, xA). (8)

Note, that for (D, d) = (4, 4) in the expression for ¥{%*) Derj
there is an additional factor of 2./(x —1)(1+ A(x—1)/4)
multiplying the integrand in eqn (8). Comrnonly,z"'30 % in this
context [i.e., eqn (8)] A is set to zero. Thus, within the Derjaguin
approximation, f{°*) ~ A“@"V2 [eqn (7)]. We adopt this
approximation except of, cf., Fig. 3(b), where we shall discuss
the full dependence on A given by eqn (8).

C. Landau theory

In the spirit of an expansion in terms of ¢ = 4 — D, for the lowest
order contribution we use the mean-field Landau-Ginzburg-
Wilson theory (hereafter called ‘Landau theory’ for brevity) in
order to study the universal CCF in the film geometry (Section
IIIA) and between two colloidal particles (Section IIIB). The
Hamiltonian, in units of kg7, is given by'*3**3°

This journal is © The Royal Society of Chemistry 2014
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How) = | {3007 430+ ko —mof @r 0

where V is the volume of the confined critical medium, t o« ¢
changes sign at the (mean-field) critical temperature T, and the
quartic term with the coupling constant u > 0 stabilizes the
Hamiltonian in the ordered phase, i.e., for < 0. Eqn (9) must be
supplemented by appropriate boundary conditions, which for
the critical adsorption fixed point correspond to ¢ — F.

Within Landau theory, the bulk correlation lengths [eqn (1),
(2) and (3)] are*®

E >0 =1 "6 (t<0)= 21" (10)
£,y 20) = ‘\/Mhb‘%, (11)

and
E(1, hy) = {[EID] sgn(t) + w2y (1, ho)} ™", (12)
where the bulk order parameter ¢yt i) satisfies

{3 [Ez(|t|)} - sgn(z) +g¢b2}\/§¢b = (&,) % sgn(h,) so that

5¢b2 can be expressed in terms of £, and &, and inserted into

eqn (12). Within Landau theory = = [£{”] .
The minimum of eqn (9) gives the mean-field profile ¢,¢ (1; ¢,
hp). With this the critical Casimir force is

d"'r T(¢)-n

/

fe= kBTJ Ay T(¢)m= szTJ (13)
A

where A is an arbitrary (D — 1)-dimensional surface enclosing a
colloid or separating two planes, A’ is its (d — 1)-dimensional
subset in the subspace in which the colloids have a finite extent,
n is its unit outward normal, and

Tald) = 550 08) = s
is the stress tensor;* here f(¢) is the integrand in eqn (9), and
0xp = 0¢/0x;. For the film geometry with chemically and
geometrically uniform surfaces, the integration in eqn (13)
amounts to the evaluation of 7 at an arbitrary point between the
two surfaces. The force between two colloids is fc = fce, where e
is a unit vector along the line connecting their centers. We have
minimized the Hamiltonian H numerically using the finite
element method.?*

Within Landau theory, the scaling functions of the critical
Casimir force carry the undetermined prefactor 1/u, which is
dimensionless in D = 4. In order to circumvent this uncertainty
and to facilitate the comparison with experimental or other
theoretical results, we shall normalize our mean-field results by
the critical Casimir amplitude for the film geometry [see eqn (5)]
Al = 97 (¥ = 0,A = 0) = —(6/w)4[K(1/2)]" <0, where K
is the complete elliptic integral of the first kind. This normali-

(14)

. c. 1
zation eliminates the prefactor ” For the sphere-sphere

geometry, has?*® 9=4d=3)(y —0 A =0, A=0)=
=0, a=0,84=0=Z3""¥=0 A=0)=

o o Derj

one
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El}(D:‘l)
3
implicitly various thermodynamic paths #y(¢) which, however,

all pass through the critical point (¢t = 0, A, = 0), i.e., Y = 0 [see
Fig. 1]. Accordingly, 9 (Y = 0, =) does not depend on =. This
normalization scheme holds also for nonzero values of Y, A,
and A as well as beyond the Derjaguin approximation.

(Y =0, X); note that £ = sgn(thy,)/%, = const defines

D. Extended de Gennes-Fisher functional

For the film geometry, we consider the ansatz for the free energy
functional proposed by Fisher and Upton'®

Wy

F[o(2)] = A (00)* + W (D, 1,hy)| dz+ F,, (15)

J_rp
where 0@ = d9/dz. The equilibrium profile .4 minimizes F, and
H®.4] is the singular part of the free energy of the near-critical
medium confined in the film. Note that the order parameter @
in eqn (15) is dimensionless, unlike ¢ in the Landau model, in
which it has the dimension (length)'~”* [see eqn (9)]. The
surface contribution Fs = —hs19(z = —L/2) — hs,P(z = L/2)
implements the boundary conditions. We consider walls
adsorbing the same species corresponding to surface fields
hsq = hsp > 0. W(®; t, hy) is the excess (over the bulk) free energy
density (in units of kgT), £(®; t) and x(®; ¢) are the bulk corre-
lation length and the susceptibility of a homogeneous bulk
system at (@, t), respectively.*®

Minimizing the functional given by eqn (15) leads to an
Euler-Lagrange equation, which can be formally integrated.
One then proceeds by taking the scaling limit of this latter first
integral and by using the scaling forms of the following bulk
quantities:

W(®; 1, hy) = DY (P, 3) (16)

and

1) = 19" ZW), (17)
where ¥ = @/®,(—|t|, b, =0) = |t|76d5/Bt. The (dimension-
less) non-universal amplitude B; of the bulk order parameter @y,
can be expressed via universal amplitude ratios in terms of the
non-universal amplitudes E(f)) and Eﬁ,o) of the bulk correlation
length;* the functions Y. (¥, 3) = Y.(¥, 3)/Y.(«, 0) and
Z.(W) = Z.(W)/Z,( =) are universal. This procedure determines
(even without knowing the explicit functional forms of Y. and
Z4) a formal expression for the scaling function {‘}hD) of the
CCF."*” Here we take into account the additional dependence
on the scaling variable = # 0 and obtain® for >0

~(D 2—a ~
3 (¥>0, 2= —aDI W, (W,,35),  (18)

where A; = R,Q./(6 + 1) is an universal number which is expressed
in terms of the universal amplitude ratios*** R, Q,, and Q.. ¥,
is defined through @, = &(z = z,) = ¥ Pp(—|t|, 1, = 0), which
for the present case kg 1, hs , > 0 is the minimal value of the order
parameter profile across the film.

In order to calculate the critical Casimir force from eqn (18)
one has to evaluate the functions Y. and Z, in eqn (16) and (17).

Soft Matter, 2014, 10, 5510-5522 | 5513
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The analytical expressions of these functions can be obtained by
using the so-called linear parametric model.”*** For given )
and = the scaling function of the critical Casimir force is then
computed numerically (for details see ref. 38).

[1l.  Numerical results
A. Critical Casimir forces in films

1. Landau theory. Our results from Landau theory for the
behavior of the scaling function OﬁD =Y = sgn(LE(E, ), = =
sgn(thy)é/6,) of the CCF around the consolute point of the
binary solvent are summarized in Fig. 1. This particular scaling
form turns out to be suitable for the Derjaguin approximation
used below for the sphere-sphere geometry because the
dependence of the CCF on L, measured in units of the true bulk
correlation length £(¢, #;,), enters 19ﬁD:4) only via Y. The second
scaling variable X, which depends on the thermodynamic state
of the solvent, varies smoothly from = = 0 at the bulk coexis-
tence curve to = = + oo at the critical isotherm.

In Fig. 1, we have plotted several lines of constant scaling
variable |Y| = L/&(¢t, hy) = 4, 5,...,10 in the thermodynamic space
of the solvent spanned by ¢ = (L/£”)""¢ and Ay, = (L/£}")*"hy,.
The shape of the lines |Y| = const is determined by the bulk
correlation length £(t, hy,). Therefore it is symmetric about the
t-axis. A break of slope occurs at the bulk coexistence line (£ < 0,
h, = 0) because £(t, h1,) depends on the bulk order parameter ¢,
[see eqn (12)] which varies there discontinuously. We use the

e/

Fig. 1 Behavior of the normalized scaling function 0‘(P:4)(Y = sgn(t)L/
(t, hy), = = sgnl(thp)é:/&p) of the CCF from Landau theory along lines of
constant scaling variable |Y| = 4, 5, ..., 10 (from the inner to the
outermost ring) in the thermodynamic state space of the solvent
spanned by t = (L/ZO)Yt and Ay, = (L/EX)P*""hy,. The color along the
lines of constant |Y| indicates the absolute value [9{°=%|. The bulk
critical point of the solvent (t, A,) = (0, 0) is indicated by e. The region
shown here lies above the capillary transition critical point (Y| c = —11,
2).c = 1.3),%° where the film coexistence line ends. For (+, +) boundary
conditions, the capillary condensation transition occurs for t < 0 and hy,
< 0. The dash-dotted lines indicate the thermodynamic paths £ =1
and = 3 and the dashed line the path of constant order parameter

z}:%d)/& = —5. Within Landau theory » = 1/2 and »/(80) = 1/3.
¢

by
AP=¥ = |9{P=*(Y = 0, 2)|, which is independent of .
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color code to indicate the strength |9{P=")| of the scaling func-
tion of the CCF along these lines. For (+, +) boundary conditions
the critical Casimir force in a slab is attractive and accordingly
9fP=" < 0 for all values of ¢ and .

The main message conveyed by Fig. 1 is the asymmetry of the
critical Casimir force around the critical point of the solvent
with the maximum strength occurring at 4y, < 0. This asymmetry
is due to the presence of surface fields which break the bulk
symmetry h, — —h;, of the system and shift the phase coexis-
tence line away from the bulk location 4}, = 0. In the film with
(+, +) boundary conditions the shifted, so-called capillary
condensation transition, occurs for negative values of £, At
capillary condensation, the solvation force (which within this
context is a more appropriate notion than the notion of the
critical Casimir force) exhibits a jump from a large value for
thermodynamic states corresponding to the (+) phase to a
vanishingly small value for those corresponding to the (—)
phase. Above the two-dimensional plane spanned by (Z, fzb), the
surface z?f‘D:“) forms a trough which is the remnant of these
jumps extending to the thermodynamic region above the
capillary condensation critical point, even to temperatures
higher than T.. This trough, reflecting the large strengths visible
in Fig. 1 for hy < 0, deepens upon approaching the capillary
condensation point.

Along the particular thermodynamic path of zero bulk field
(i.e., £ = 0) the minimum is located above T, and has the value
(Y min = 3.8, T = 0) = 1.4 x 90, 0). Along the critical
isotherm (i.e., |=| = «) one has 1‘}ﬁ4)(Ymin =8.4,8=—»)=10 X
0&4)(0, 0). Interestingly, along all lines |Y| = L/£(t, hp,) = const the
strength |19ﬁ4)(Y = const, X)| takes its minimal value at the bulk
coexistence curve i, = 0", For |Y| = 6.3 the maximal value of |
I)(Y = const, 3)| is located at i, < 0 and ¢ = 0.

It is useful to consider the variation of the scaling function of
the CCF along the thermodynamic paths of fixed =. As exam-
ples, such paths are shown for ¥ =1 and = = 3 in Fig. 1 by dash-
dotted lines. Thermodynamic paths corresponding to 0 < = <
1.3 cross the phase boundary of coexisting phases in the film at
certain values Y.(Z), which lie outside the range of the plot in
Fig. 1. Along the paths corresponding to 0 < 2 < 3, 0ff)(Y, z =
const < 3) as function of Y has two minima. The local minimum
occurs above T, whereas the global one occurs below T. For all
other fixed values of =, the scaling function 0&4), as function of
Y, exhibits a single minimum; for negative X it is located above
T, (i.e., Y > 0), whereas for = > 3 below T. (i.e., Y < 0). Results for
9fP=" as function of Y = sgn(¢)L/4(¢, hy) for constant values of
3 = sgn(thy) £,/&, are shown in ref. 38.

Thermodynamic paths of constant order parameter ¢ +*
0 are particularly experimentally relevant, because they corre-
spond to a fixed off-critical composition of the solvent. As an

- L
example Fig. 1 shows the case ¢ = Eq& /B: = —5 as indicated
+

by the dashed line. Within mean-field theory this path varies
linearly with ¢.

2. Approximate results for the spatial dimension D = 3. In
ref. 13, the results of Landau theory (which are exact for D = 4)
described above were used in order to approximate the
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dependence of the CCFs on the bulk ordering field Ay, in spatial
dimension D = 3:

~ (D1=4)
X . v (V2
0@ =0" vz =0l 2

9 (Y2 =0)

(19)
+(D=3) . . .

where 9" (Y, = =0) is taken from Monte Carlo simulation
data.** This “dimensional approximation” is inspired by the
observation that the trends and qualitative features of %D) are the
same for different values of D.**** The characteristics of this
approximation are as follows: (i) For D — D’ = 4, the right hand
side of eqn (19) turns into the correct expression for the full range
of all scaling variables. (ii) For 4, — 0 (i.e., = — 0) the right hand
side of eqn (19) reduces exactly to {9”1) (¥, = =0) forall values D,
D/, and Y. In this sense the approximation is concentrated on the
dependence on #,. (iii) For D' = 4 the approximation can be
understood as the lowest order contribution in an ¢ =4 — D

expansion of :f;? = {‘}‘(lD) Y, 3 /{9‘(‘[))()1, 3 = 0) which carries the

whole dependence of the CCFs on =. Since Cf,Dl:‘l) is a ratio, the
I

{P"=%), which cannot be determined within Landau

prefactor of ¢
theory (see Section IIC), drops out. In eqn (19), the scaling vari-
ables ) and X are taken to involve the critical bulk exponents in
spatial dimension D so that the approximation concerns only the
shape of the scaling function. The use of bulk critical exponents
in spatial dimension D for scaling variables which, however, are
arguments of the scaling function in spatial dimension D' # D,
may lead to a deviation from the proper asymptotic behavior.
However, this potential violation of the proper asymptotic
behavior of the scaling function of the CCFs is expected to occur
for large values of the arguments of the scaling function for
which its value is exponentially small. Thus, the potential viola-
tion should not matter quantitatively in the range of the values of
Y and = for which the scaling function @hm attains noticeable
values. Here we compare this approximation with the results
obtained from the extended de Gennes-Fisher functional using
the linear parametric model.

In Fig. 2(a) we plot @ffzs)()}, 3) as a function of >0 for
several values of =. For large values of |Z| the relevant part of
the corresponding thermodynamic path is close to the critical
isotherm  and  accordingly  the  scaling  variable
A =3Y =sgn(hy)L/E, is more appropriate than the scaling
variable ). Therefore, in Fig. 2(b) we show d{P=Y(A, 3) =
P~ (A/Z, =) as a function of A for several fixed values of
S =-2.

As can be inferred from Fig. 2 the dimensional approxima-
tion in eqn (19) works well for weak bulk fields (such that |Z| <
3). Although the minima of the scaling functions are slightly
shifted relative to each other, the depths of these minima
compare well with the results of the local functional approach.
For all |2| < o, the value ) = 0 corresponds to the bulk critical
point and thus at ) = 0 the curves @ﬁD] attain the same value
[see Fig. 2(a)].

For strong bulk fields, i.e., £ < —4 the dimensional approx-
imation [eqn (19)] fails [see Fig. 2(b)]. For example, |9{"~?)| of
the approximative curve becomes smaller for more negative
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values of Z, which is in contrast to the results of Landau theory
and of the local functional approach. This wrong trend of the
results of the dimensional approximation is explained in detail
in ref. 38.

We note that the scaling functions 9{°=® of the critical
Casimir force as obtained from the local functional exhibit the
same qualitative features as the ones calculated within Landau
theory. For example, the position Y,i,(2) of the minimum as
obtained from the present local functional theory changes from
Yimin(Z = 0) = Ymin (2 = 0) = 3.1 at the thermodynamic path
hp = 0 towards Ypin(2 = —®) = —Apin(2 = — ) = 9.4 at the
critical isotherm. These values are similar to the ones obtained
from Landau theory. The results of the local functional
approach are peculiar with respect to the cusp-like minimum
for curves close to the critical isotherm [for |Z| = «, ie.,t =0,
see Fig. 2(b)]. Such a behavior is also reported for the similar
approach used in ref. 18. However, there is no such cusp in the

) 0

~10
A = sgn (hy) L/

—15

Fig. 2 Two representations of the scaling function of the critical
Casimir force for the film geometry with (+, +) boundary conditions
[egn (6)]: (a) {9‘(‘[):3) (¥, =) plotted versus Y =sgn(t)L/&; and (b)
P=3(A, =) plotted versus A = sgn(hy)L/£, for several values of the
scaling variable = = sgn(thp)é:/¢p. The full lines are the results obtained
from the local functional approach together with the linear parametric
model [egn (18)], and the dashed lines correspond to the dimensional
approximation [egn (19)]. In (b) the symbols are Monte Carlo data from
ref. 43 for £ = — o0 . We note that thermodynamic states corresponding
to 2 = —w and = = » are the same; they form the critical isotherm.
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Monte Carlo data* for t = 0, i.e., |Z| = o, [see the symbols in
Fig. 2(b)]. As compared with the results of the local functional,
the minimum of J{°=*)(A, |Z| = =) obtained from Monte Carlo
simulations is less deep and is positioned at a more negative
value of A. For A >0 [not shown in Fig. 2(b)], 9{P"Y(A, |Z| = «)
as obtained from the local functional is less negative than the
corresponding scaling function obtained from the Monte Carlo
simulations.

We observe that upon decreasing the spatial dimension D
the ratio of the strengths |19ﬁD)| at its two extrema, the one
located at the critical isotherm and the other located at /, = 0,
increases, from 7 in D = 4 to 11.5 (local functional) or 8 (Monte
Carlo simulations) in D = 3, and to 15 in D = 2."

B. Critical Casimir forces between spherical colloids

The CCF between two spherical colloids takes the form given by
eqn (7); here we take d = 3 and D = 4. In order to calculate 9%,
we use the stress tensor 7 (¢) [see eqn (13) and (14)] with the
mean-field profile ¢(r) which has been determined by mini-
mizing the Hamiltonian in eqn (9) numerically using F3DM.?® To
this end we have put two spherical particles inside a sufficiently
large rectangular box and divided the physical space into a mesh
of finite elements using TETGEN.*”* We have used linear basis
functions to approximate ¢(r) on the mesh elements, and trans-
formed the functional [eqn (9)] into a function of values of ¢ on
the mesh nodes; this function has been minimized numerically
using GSL.** In order to account for the strong adsorption
boundary conditions on the surfaces of the colloids, we have
applied a short-distance expansion and have determined ¢(r) at a
certain small distance away from each colloid; this amounts to
applying fixed boundary conditions at spheres surrounding the
colloids. (Note, however, that this approach is only valid for
sufficiently large colloid separations.) At all sides of the compu-
tational box ¢(r) is taken to exhibit a vanishing gradient.

CCFs between spherical colloids in zero bulk field have been
widely studied in the literature.>******"*® Within Landau theory,
so far only the critical Casimir interaction between two Hp=4 3
particles in the presence of a wall has been reported; the
dependence of the CCFs on the bulk field £, has been consid-
ered only for Hp_44-4 particles. Here we focus on three-
dimensional spherical particles, i.e., on hypercylinders H; ; or
Hp=43. We recall that we consider (+, +) boundary conditions
only.

The scaling function 94 (), A = const, A = 0), as a function
of Y, has a shape which is typical for like boundary conditions
[see  Fig. 3(a)]. Interestingly, the magnitude of
9% depends non-monotonically on A. This is shown explicitly in
Fig. 3(b), where the scaling function is plotted versus A for three
values of ) = sgn(t)L/,> 0. In Fig. 3(b), 9* approaches the
scaling function of the Derjaguin approximation from
above when A — 0, but decreases upon increasing A > A,,,, where
A, = 1/2 seems to be almost independent of ) (in the range of Y
shown). This non-monotonic behavior is unlike the case of H, 4
hypercylinders, for which the scaling function approaches its
value at A = 0 from below and exhibits no maxima (grey dash-
dotted line in Fig. 3(b) reproduced from ref. 20). For the wall-
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A|=L/§=0

0.5
1.0
2.0

) 0 5
Y = sen () L/&

A[=L/§=0
Y =sgn(t) L/§ =

Fig. 3 The critical Casimir force between two like colloids in zero bulk
field (A = 0) as obtained from Landau theory. (a) The normalized
scaling function 9¥2=4%9=3 versus J = sgn(t)L/, for five values of A =
L/R, where L is the surface-to-surface distance between two Hgys-
particles of radius R. The curve A = 0 corresponds to the Derjaguin
approximation. (b) The normalized scaling function 943 versus A for
three values of Y >0. The results of the Derjaguin approximation as
given by egn (8) are shown by dashed lines (A — 0, next to leading
order) and by crosses (A = 0). We recall the relation
PP=44=3)(y) — 0,A = 0,A = 0) = 2{9‘(‘[’:4)(0, 0) = gA‘(ﬁ). For compar-
ison, the scaling function #2=49=% at the critical point (Y = A = 0) for
Hy 4-particles® is shown by the grey dash-dotted line. Interestingly,
the full dependence on A of the Derjaguin approximation for H4 4 (grey
dotted line emerging from the grey cross) displays a trend opposite to
the result 92=*9=% of ref. 20, obtained from the full calculation.

sphere geometry, such a non-monotonic behavior of the scaling
function of the CCF for A — 0 has been found for a sphere H; 5
using Monte Carlo simulations,* but not for (hyper)cylinders
H, 4, d € {2, 3}, treated within Landau theory.*

The behavior of 9% for large A >> 1 is not quite clear due to
technical difficulties associated with large mesh sizes and the
increasing numerical inaccuracy; moreover, in this limit, the
force attains very small values.

Results for nonzero bulk fields Ay, are shown in Fig. 4. For
fixed sphere radii R and fixed surface-to-surface distance L, the
curves in Fig. 4(a) for fixed A correspond to varying the
temperature along the thermodynamic paths of iso-fields &, =
const. For fixed L, the curves in Fig. 4(b) compare the scaling
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Fig. 4 Effect of the bulk field (A # 0) on the scaling function
9'P=49=3) of the critical Casimir force [eqn (7)] as obtained from Landau
theory. (a) Normalized 9% shown as a function of Y = sgn(t)L/%, for
A = L/R =1 (full lines) and within the Derjaguin approximation (A = 0,
dashed lines) for four values of A = sgn(hy)L/&,. (b) Normalized
943 shown as a function of A for ) = 1 and for four values of A. The
curves are normalized with the critical Casimir amplitude A{” for the
film.

function of the CCF as function of Ay, along the supercritical
isotherm T, < T = const for various sphere sizes.

For hy, > 0 the variation of 93 with Y resembles the features
observed for vanishing 4, in the case of the sphere-sphere or
film geometry, i.e., 9\:> exhibits a minimum located above 7.
(¥ > 0) [compare Fig. 4(a) with Fig. 2 and 3(a)]. Upon increasing
the bulk field, the magnitude of the scaling function decreases
and the position of the minimum shifts towards larger ). This
is in line with the behavior for the film geometry (Fig. 1).

The behavior of the scaling function for negative bulk fields
is different. For positive ), there is still a residual minimum of
the scaling function located very close to ) = 0, which disap-
pears upon decreasing Ay, This is already the case for A = —2 in
Fig. 4(a). This disappearance is in line with the results for film
geometry. For negative ), at a certain value A < 0, in films
capillary condensation occurs whereas between spherical
colloids a bridging transition takes place.*>***’ Near these phase
transitions, the effective force acting between the confining
surfaces is attractive and becomes extremely strong; the depth
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of the corresponding effective interaction potentials can reach a
few hundred kgT. This concomitant enormous increase of the
strength of the force is also reflected in the universal scaling
function [see the green line A = —2 in Fig. 4(a) for Y < 0]. (For
the film geometry this issue has been discussed in detail in ref.
20; in particular, Fig. 11 in ref. 20 exhibits a cusp in the scaling
function in the vicinity of the capillary condensation; similarly,
upon decreasing ), called ®_ in ref. 20, to negative values the
magnitude of the scaling function increases strongly.)

It is also interesting to note a non-monotonic dependence of
the scaling function ¥%* on A = L/R [Fig. 4(b)]. For positive
bulk fields, |#4:¥)| is stronger for larger A. This is different,
however, for negative bulk fields, for which [9(%?)] is stronger
for smaller A. Such an increase of |[9%:*| upon decreasing A
holds also for zero bulk field [see Fig. 3(b) for A > 1/2].

Finally, for larger values of A = L/R the deficiencies of the
Derjaguin approximation are clearly visible in Fig. 3 and 4.

IV. Comparison with experimental
data

A. Effective interaction potentials

In ref. 10, the pair distribution function g(r) of poly-n-isopropyl-
acrylamide microgel (PNIPAM) colloidal particles immersed in
a near-critical 3-methyl-pyridine (3MP)-heavy water mixture has
been determined experimentally for various deviations AT = T,
— T from the lower critical temperature 7. = 39 °C (of the
miscibility gap of the bulk 3MP-heavy water mixture without
colloidal particles). Here we analyze the experimental data for
the 3MP mass fraction w = 0.28 which is close to the critical
value (see below).

We assume that the solvent-mediated interaction between
the PNIPAM colloids is the sum of a background contribution
Upcr and the critical Casimir potential U.. This assumption is
valid for small salt concentrations® which is the case for the
samples studied in ref. 10. Accordingly, one has

chk(r) = chp(r; AT) - Uc(r; AT): (20)

where r is the center-to-center distance.

Within the studied temperature range AT < 1 K this ‘back-
ground’ contribution is expected to depend only weakly on
temperature and hence we consider it to be temperature inde-
pendent. We use the potential of mean-force in order to extract
the experimentally determined interaction potential Ueyp(r) =
—kgT In[g(r)]. This relation is reliable for small solute densities,
as they have been used in the experiments. Therefore only small
deviations are expected to occur by using more accurate
expressions for the potential, such as the hypernetted chain or
the Percus-Yevick closures.

Since the numerical calculation of the critical Casimir
potential in the bona fide sphere-sphere geometry for all
parameters which are needed for comparison with experiment
is too demanding, here we resort to the Derjaguin approxima-
tion. Within this approximation the critical Casimir potential U,
between two colloids of radius R [eqn (7) and (8)] is*>*"**
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- 2 (D=3)

. R 2 _ -3
U.(r; AT, w) = TthTm Jl dx(x? —x )0\\ (x),2),

(21)

where Y = sgn(¢)(r — 2R) /&, and = = sgn(thy,)é /. The depen-
dence of U, on temperature and on the mass fraction of the
solvent is captured by the bulk correlation lengths &, and &), of
the solvent, respectively [eqn (2) and (3)]. In order to calculate
the scaling function @ﬁD =3) of the critical Casimir force between
two planar walls we use the local functional approach (see
Section IID).

For the amplitude of the thermal bulk correlation length we
take EQO) = 1.5 nm, which we extracted from the experimental
data presented in ref. 51. However, in the literature there are no
well established data for the critical mass fraction w, of the
3MP-heavy water binary liquid mixtures. In ref. 52, the value
w. = 0.28 is quoted while the scaling analysis of the data shown
in Fig. 1 in ref. 52 suggests the value w. = 0.29. The inaccuracy
of the value for w, enters into the reduced order parameter
$ = (w. — w)/Bs; B, is the non-universal amplitude of the bulk
coexistence curve we(t = AT/T, <0) = w, = Bt|t|ﬂ. Thus, via

the equation of state one obtains = = E(|t\‘6§b> [see eqn (A4) in

the first part of ref. 13] so that the critical Casimir potential U,
[eqn (21)] depends sensitively on the value of w,. The function E
is determined by using the equation of state within the linear
parametric model.** Note, that as long as we consider the
reduced order parameter ¢ we do not have to know the non-
universal amplitude B; (or 5510) which is related to B; via
universal amplitude ratios.)

Fig. 5(a) shows the experimentally determined potentials
and the extracted background contributions U, for the critical
composition being w. = 0.28 = w, as stated in ref. 10. In view of
the uncertainty in the value of w,, we used ¢ as a variational
parameter for achieving the weakest variation of the back-
ground potential Upq with temperature. For example, for
¢ = —0.088 the variation of Uy as function of T'is smaller than
0.5kgT and thus comparable with the experimentally induced
inaccuracy [see Fig. 5(b)]. Adopting the value B, =0.5 (which can
be inferred from the experimental data of ref. 52)
¢ = (v — w)/B; = —0.088 corresponds to a critical mass frac-
tion w. = 0.236. This value of w, differs significantly from the
value given in ref. 10. We conclude that either the solvent used
in these experiments was indeed at the critical composition, but
U. does not capture the whole temperature dependence of Uey,
[case (a)]; or that U. does capture the whole temperature
dependence of Ueyp, but w = 0.28 is not the critical composition
[case (b)]. For all tested values of ¢, the potential Uy, which
corresponds to AT/K = 0.2, deviates the most from the other
three curves. Theses deviations might be attributed to the
invalidity of the Derjaguin approximation (compare Section
MIB) or to the overestimation of the CCFs within the local
functional approach (compare Fig. 2). The calculated U. may
suffer from these approximations, and accordingly the obtained
Upek; this may thus also be the cause of the attractive part in
Upek- Moreover, also other physical effects, such as a coupling of
the critical fluctuations to electrostatic interactions or the
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Fig. 5 Effective interaction potential Uexp as determined experimen-
tally in ref. 10 (symbols, dashed lines as a guide to the eye) and its
background contribution Upck (full lines). The experimental system
consists of colloidal particles of radius R = 250 nm immersed in a near
critical binary liquid mixture. The effective potential was determined
for various deviations AT = T. — T from the lower critical point T, at
AT/K = 0.6 (x, magenta), 0.5 ([1, green), 0.4 (O, orange), and 0.3 (A,
blue). Upon approaching T, the minimum of the potential U deepens
due to the attractive Casimir interaction. The ‘background’ part of the
potential is obtained by subtracting the critical Casimir potential U,
[see egn (20) and (21)]. If Upex was temperature independent the
various full lines would collapse. In (a) the binary liquid mixture used in
the experiments (mass fraction w = 0.28) is assumed to be at its critical
composition w = w. = 0.28, whereas (b) corresponds to a slightly off-
critical composition ¢ = (we — w)/B; = —0.088. In (b) one observes a
better collapse of the full lines than in (a). The critical Casimir potential
U depends on =, which is directly related to ¢ via the equation of state
S = E(|t|’p) (see the main text). The curves correspond to the
value £ = 1.5 nm [egn (2)]. The colloidal particles are soft, so that
Uexplr < 2R) > 0 and very large but not infinite.

structural properties of the soft microgel particles, which we
have not included in our analysis [see eqn (20)], might be of
importance for the considered system.

B. Segregation phase diagram

The experiments of ref. 10 indicate that, upon approaching the
critical point of the solvent, a colloidal suspension segregates
into two phases: poor (I) and rich (II) in colloids. Ref. 10 also
provides the experimental data for the colloidal packing
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fractions (n%") in the coexisting phases I and II. In order to
calculate n&;", we use the so-called ‘effective approach,’ within
which one considers a one-component system of colloidal
particles interacting with each other through an effective,
solvent-mediated pair potential U. Thus this approach ignores
that the solvent itself may ‘participate’ in the phase separation
of the colloidal suspension. This approximation allows us,
however, to make full use of the known results of standard
liquid state theory (for more details and concerning the limi-
tations of this approach see ref. 13 and 53).

Within the random-phase approximation, the free energy F
of the effective one-component system is given by****

wod 1
— = kgT] ~n,2U, 22
& Frea = kg fhs+2nu Uy, (22)

where v is the volume of the system. For the hard-sphere
reference free energy f,, we adopt the Percus-Yevick expression

- 2-10n, + 51,2

T 3 n
/my =In|—(a/A +ln{ z } . (23
ffe =0 gt/ +in| e | 2SR )
3
where 71, = (%) n= gasg with 7 being the packing fraction

of the colloids, ¢ their number density, and A is the thermal
wavelength. We use for the effective hard-sphere diameter

v :JO {1 —exp[— U/(ksT)] }dr, with U(r = ro) = 0. One can
0

adopt also other definitions of ¢ (for a discussion see ref. 55 and
56). Using the present definition renders a slightly better
agreement with the experimental data than using the one given
in ref. 56.

~ 6 . A
In eqn (22), one has U,o = ——Ua(q = 0), where U,(q =
o

lg]) = [exp(—igr)U,(r)d’r is the Fourier transform of the
attractive part (U,) of the interaction potential,

{ U(r = rmin)
U(r)

for 0=r<rpmi

Ua(r) = (24)

for r=ryp,

where U(r) attains its minimum at 7.

In order to calculate the phase diagram of the effective one-
component system within the RPA approximation, we use the
pair potential U(r) = Upe(r) + Uc(r), where U, is given by eqn
(21), and where the background contribution Uy, is extracted
from the experimental data of ref. 10. As discussed in Section
IVA, there is some inaccuracy in determining the background
potential Up. Following ref. 10 and assuming é = 0, we have
to consider four different Uy, The resulting corresponding
segregation phase diagrams differ from each other qualita-
tively. Interestingly, the attractive part of the background
potentials Upa(r; AT, ¢) corresponding to AT/K = 0.4 and 0.2
[see Fig. 5(a)] is so strong, that for these potentials alone (i.e.,
for U = Uy without U,) the RPA free energy predicts already a
phase segregation. For the background potential Up(r; AT, ¢)
corresponding to AT = 0.6 K and ¢ = 0, the presence of U, is
necessary for the occurrence of phase segregation within RPA.
However, the resulting relative value of the critical temperature
(AT)cerr = 0.39K is much smaller than the experimentally
observed one. On the other hand, for ¢ = —0.088, which
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renders the best expression for Uy out of the experimental
data of ref. 10 (see Fig. 5), the resulting RPA phase segregation
diagrams are consistent with each other. This is visible in
Fig. 6(a), where we compare the coexistence curves 7c(T)
resulting from the four potentials Uy of Fig. 5(b), as well as
from Uy obtained by averaging these four potentials Upcy.
Although these five background potentials look very similar,
they nonetheless lead to coexistence curves the critical
temperatures of which differ noticeably [see Fig. 6(a)].
However, away from their critical point, the various coexistence

»% two-phase
region

¢ = —0.088 ]
homogeneous phase
(b)

0 0.1 0.2
n

Fig. 6 Segregation phase diagram from theory (RPA), experiment, and
simulations (MC). (a) The phase diagram obtained within RPA using the
four available background potentials Upcc from Fig. 5, and their
average. The critical Casimir potential is calculated within the Derja-
guin approximation using the local functional approach (see Section
IVA) for a reduced solvent order parameter ¢ = —0.088. The back-
ground contributions Upck have been extracted from the experimen-
tally determined effective potentials [compare egn (20)] at AT/K = 0.6
(magenta), 0.5 (green), 0.4 (orange), and 0.3 (blue). The thick brown
curve corresponds to the average of the four potentials Upck. The solid
lines show the phase boundaries in terms of the packing fraction n of
the colloids, the dashed lines correspond to the spinodals, and dots
represent critical points. (b) Comparison of the theoretical predictions
for the phase boundaries (based on the average Upi) with Monte Carlo
simulations (&J) and experiments (x, with error bars) of ref. 10. On the
temperature axis AT = T. — T increases from top to bottom in order to
mimic a lower critical point T. (of the solvent) as observed
experimentally.
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curves merge; see the region AT < 0.4 K in Fig. 6(a). This
indicates that for small AT the critical Casimir potential
dominates the background potential, so that the details of the
latter (and thus its inaccuracy) become less important.

Fig. 6(b) compares the RPA predictions for the segregation
phase diagram with the experimental data and with the Monte
Carlo simulation data provided by ref. 10. The pair potentials
used in these MC simulations are the sum of an attractive and a
repulsive exponential function and thus they differ from the
ones used here. At high colloidal densities, the RPA is in
surprisingly good agreement with the experimental data. On the
other hand, at low densities the RPA agrees well with the Monte
Carlo simulations, but both theoretical results underestimate
the experimental values which, in turn, agree well with the low-n
branch of the RPA-spinodal (an observation also observed for
¢ = 0). While this latter ‘agreement’ might be accidental, it
nevertheless raises the question whether the experimental
system has actually been fully equilibrated at the time of the
measurements.

V. Summary

Critical Casimir forces act between surfaces confining a near-
critical medium. For instance, colloidal particles suspended
in a binary liquid mixture act as cavities in this solvent. Thus
near its critical point of demixing the suspended colloids
interact via an effective, solvent-mediated force, the so-called
critical Casimir force (CCF). We have analyzed the depen-
dence of the CCFs on the bulk ordering field (A;,) conjugate to
the order parameter of the solvent. For a binary liquid mixture,
hy is proportional to the deviation of the difference of the
chemical potentials of the two species from its critical value. In
the presence of &, we have used the mean-field approximation
for the Landau-Ginsburg-Wilson theory to calculate the CCFs
between parallel plates and between two spherical colloids, as
well as the local functional approach of Fisher and de Gennes
for parallel plates. We have shown that the CCF is asymmetric
around the consolute point of the solvent, and that it is stronger
for compositions slightly poor in that species of the mixture
which preferentially adsorbs at the surfaces of the colloids [see
Fig. 1, 2(a), (b) and 4].

For two three-dimensional spherical particles posing as
hypercylinders (H,3) in spatial dimension D = 4 we observe a
non-monotonic dependence of the scaling function of the CCF
on the scaling variable A = L/R, where L is the surface-to-surface
distance and R is the radius of monodisperse colloids [see
Fig. 3(b) as well as Fig. 4]. Unlike four-dimensional spherical
particles (H,, 4) in D = 4, the scaling functions for H, ; exhibit a
maximum at A = 1/2 before decreasing upon increasing A [see
Fig. 3(b)]. This different behavior may be attributed to the extra
macroscopic extension of the hypercylinders H, ;. This raises
the question whether H,; or H,, is the better mean-field
approximation for the physically relevant case of three-
dimensional particles H; ; in D = 3. Due to this uncertainty,
and in view of the limited reliability of the Derjaguin approxi-
mation (see Fig. 3 and 4), more accurate theoretical approaches
are highly desirable. Because the local functional approach is
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computational less demanding than Monte Carlo simulations
and it is reliable for &, = 0, it would be very useful to improve
this approach for #;, # 0 and to generalize it to more complex
geometries, in particular to spherical objects.

In addition, due to numerical difficulties the behavior of the
scaling function of the CCF for A — o remains as an open
issue. Since one faces similar numerical difficulties for A — 0,
we conclude that within Landau theory, the numerical solution
finds its useful place in between small and large colloid sepa-
rations. The small separations are captured well by the Derja-
guin approximation. For Hp, s-particles with d > 6D/v, the large
separations can be investigated by the so-called small radius
expansion. However, the case H,; represents a ‘marginal’
perturbation for which the small radius expansion is not valid.*>”
Therefore, it would be interesting to study the asymptotic
behavior of the scaling function of the CCF for large colloid
separations by other means.

We have compared our theoretical results for the critical
Casimir potential [within the Derjaguin approximation and the
local functional approach, see eqn (21)] with experimental data
taken from ref. 10 (see Fig. 5). Concerning the potentials we find
a fair agreement, however their detailed behavior calls for
further, more elaborate experimental and theoretical
investigations.

As a consequence of the emergence of CCFs, a colloidal
suspension thermodynamically close to the critical point of its
solvent undergoes phase separation into a phase dense in
colloids and a phase dilute in colloids. Using the random phase
approximation for an effective one-component system, we have
calculated the phase diagram for this segregation in terms of
the colloidal packing fraction and of the deviation of tempera-
ture from the critical temperature of the solvent. Surprisingly,
despite resorting to these approximations, the calculated phase
diagram agrees fairly well with the corresponding experimental
and Monte Carlo data (Fig. 6). Both the RPA calculations and the
Monte Carlo simulations are based on the so-called effective
approach and compare similarly well with the experimental
data. However, in order to achieve an even better agreement
with the experimental data, it is likely that models have to be
considered which take into account the truly ternary character
of the colloidal suspension.
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