
Soft Matter

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
A

pr
il 

20
14

. D
ow

nl
oa

de
d 

on
 7

/3
0/

20
25

 1
1:

26
:2

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
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Tübingen, Germany

Cite this: Soft Matter, 2014, 10, 4717

Received 20th March 2014
Accepted 25th April 2014

DOI: 10.1039/c4sm00612g

www.rsc.org/softmatter

This journal is © The Royal Society of C
Strong effect of weak charging in suspensions of
anisotropic colloids

Sven Dorosz,*a Nikhilesh Shegokar,*b Tanja Schilling*a and Martin Oettel*c

Suspensions of hard colloidal particles frequently serve as model systems in studies on fundamental aspects

of phase transitions. But often colloidal particles that are considered as “hard” are in fact weakly charged. If

the colloids are spherical, weak charging has only a weak effect on the structural properties of the

suspension, which can be easily corrected for. However, this does not hold for anisotropic particles. We

introduce a model for the interaction potential between charged ellipsoids of revolution (spheroids)

based on the Derjaguin approximation of Debye–Hückel theory and present a computer simulation

study on aspects of the system's structural properties and phase behaviour. In line with previous

experimental observations, we find that even a weak surface charge has a strong impact on the

correlation functions. A likewise strong impact is seen on the phase behaviour, in particular, we find

stable cubatic order in suspensions of oblate ellipsoids.
1 Introduction

Colloids are widely used as models to study basic questions of
statistical mechanics. In particular, “hard” particles that only
interact by volume exclusion have been studied intensively
since the 1950s.1 Hard particle systems are appealing because
their phase behaviour is of purely entropic origin and they can
easily be treated by computer simulation. For example, in the
context of liquid crystals, studies of hard ellipsoids, spherocy-
linders and platelets have provided valuable insight into the
basic phase transition mechanisms.2–5

In one of the rst computer simulation studies of a phase
diagram of hard, oblate particles, Veerman and Frenkel5

observed that the particles arranged parallely in stacks which
in turn formed a suprastructure of perpendicular orientations.
They named this phase “cubatic”. The existence of the cubatic
phase has since been under heated debate, and recently
several simulation studies6–8 showed that the cubatic is always
metastable with respect to either the isotropic or the columnar
phase for various round hard platelet models (i.e. platelets
with circular cross section). In contrast, the cubatic phase is
stable for square plates.9 Experimentally cubatic order has
recently been detected in dispersions of hexagonal, charged
plate-like particles.10 We will show below that for oblate
ellipsoids cubatic order becomes stabilized as soon as there is
a small surface charge.
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Over the past years, experimental methods to synthesize and
characterize suspensions of ellipsoidal colloids have been
advanced and theoretical predictions have been tested experi-
mentally.11–16 In 2011, Cohen et al.17 measured the structural
properties of a PMMA ellipsoid system and showed signicant
differences when comparing their data to theoretical predic-
tions for hard ellipsoids given by Percus–Yevick theory18 and
simulations.19 In the following, we will test our theoretical
treatment of weakly charged ellipsoids against the results of
this experimental study. We will show that weak charging, as it
is oen present in PMMA-colloid suspensions, changes the pair
correlations such that they match those observed experimen-
tally and alters the phase diagram considerably.

The paper is organized as follows. We rst derive the inter-
action potential. Then we present simulation results on the
positional correlations in the system and compare them to the
experimental results of ref. 17. Finally we present a scan
through the phase diagram for changing surface charge density
and show that the cubatic phase is stabilized.
2 Derivation of the interaction
potential

The interaction of weakly charged colloids in an electrolyte
suspension can be treated in an adiabatic fashion: one assumes
that co- and counterions instantaneously readjust upon a
change in the colloidal positions, giving rise to an effective
interaction between the colloids, possibly of multi-body nature.
If the Debye–Hückel screening length is smaller than the
extensions of the colloid, then this effective potential can be
well approximated by a sum of two-body terms. For the inter-
action between two colloids, we use the Debye–Hückel
Soft Matter, 2014, 10, 4717–4724 | 4717
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Fig. 1 Two surfaces, separated by the minimal distance H0 ¼ dis-
t(OO0). Around the points O and O0, the surfaces can be approximated
by the quadratic forms zi ¼ (3i/2)xi

2 + (3 0
i /2)yi

2 where 3i, 3
0
i are the

principal curvatures of surface i at point O resp. O0 and xi, yi are
coordinate axes in the direction of the principal curvatures. Most
generally, the coordinate axes x1 and x2 include an angle u.
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approximation (linearized Poisson–Boltzmann (PB) theory). For
two spheroids (ellipsoids with one rotational symmetry axis),
the effective potential depends on four variables (the center-to-
center distance and three angles) such that an explicit tabula-
tion of the PB solutions, let alone the determination of PB
solutions “on the y” in a simulation code appears forbid-
ding.20,21 Here, we resort to the venerable Derjaguin approxima-
tion which has been oen used to calculate effective colloid-wall
or colloid–colloid interactions in the literature but we are not
aware of its practical use in further simulation or theoretical
studies of concentrated solutions involving anisotropic particles.
The Derjaguin approximation rests upon the following argument:
suppose the free energy of the interaction between two planar
walls is known, and its density will be denoted by f(h) where h is
the distance between the walls. The interaction potential between
two convex bodies (of the same type as the walls) can be
approximated by just integrating over geometrically opposing
area elements dA (at distance h) where the free energy of inter-
action between the area elements is given by the wall free energy
f(h)dA. The mathematical elaboration of this approximation is
given in Appendix A and results in the following expression for
the free energy of interaction F(H0) between two convex bodies
with the minimal distance H0 between their surfaces

FðH0Þ ¼ 2pffiffiffiffiffiffi
330

p
ðN
H0

f ðhÞdh: (1)

Here, the product 330 is given by

330 ¼ 313
0
1 + 323

0
2 + (3132 + 3

0
13

0
2)sin

2 u

+ (313
0
2 + 3

0
132)cos

2 u. (2)

It involves the principal curvatures 3i, 3
0
i of the surface of

body i ¼ 1, 2 in the planes tangential to the distance vector
between the bodies, and also the angle u between the coordi-
nate systems in the tangential planes with coordinate axes given
by the directions of the principal curvatures. For these
geometric denitions, see Fig. 1.
2.1 Charged ellipsoids

We will apply these ideas to the interaction between hard,
charged ellipsoids (spheroids) with main axes a and b where b is
the main axis in the plane perpendicular to the rotational
symmetry axis. The aspect ratio is given by t ¼ a/b. In Debye–
Hückel approximation, the electrostatic potential j fullls

Dj � k2j ¼ 0, (3)

where k�1 is the Debye–Hückel screening length. For a charged
wall with charge density s, the solution is

fw(z) ¼ f0 exp(�kz) (4)

with the wall contact potential f0 ¼ s/(3sk) (3s is the dielectric
constant of the solvent). We approximate the solution for two
charged walls at distance h by

f2w(z) z fw(z) + fw(h � z) (5)
4718 | Soft Matter, 2014, 10, 4717–4724
and the pressure (force density per unit area between the plates)
~f 2w is obtained most easily by evaluating the stress tensor at the
midplane z ¼ h/2 which has there only a contribution from the
ion osmotic pressure:

~f 2wðhÞ ¼
3s

2
k2f2w

2ðh=2Þ ¼ 2s2

3s
expð�khÞ: (6)

The free energy density f is then found through integration

f ðhÞ ¼ �
ðh
N

dz~f 2wðzÞ ¼
2s2

3sk
expð�khÞ: (7)

Using this, the Derjaguin free energy (1) becomes

F ¼ 2pffiffiffiffiffiffi
330

p 2s2

3sk2
expð�kH0Þ: (8)

The Derjaguin free energy decays exponentially with H0, as
expected for the Debye–Hückel approximation. This decay is
fast enough that the approximation is accurate enough for
practical purposes, see Appendix B for a discussion. Note that
the anisotropy in the free energy has two sources: H0 depends
on the different orientations as well as the curvature term
1=

ffiffiffiffiffiffi
330

p
. The latter one has a strong inuence on the interaction

of oblate ellipsoids (see below). We write the Derjaguin free
energy as

FðH0Þ ¼ 2s2b

3sk2
VðH0Þ; (9)

VðH0Þ ¼ 2p

b
ffiffiffiffiffiffi
330

p expð�kH0Þ: (10)

Note that V(H0) is dimensionless in the last equation. The
prefactor (with dimension of energy) in eqn (9), V0 ¼ 2s2b/(3sk

2),
This journal is © The Royal Society of Chemistry 2014
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contains the charge density s as a parameter. It is advantageous
to introduce the dimensionless charge density ~s ¼ seb/(k3s)
(where e is the elementary charge and b ¼ 1/(kBT) is the inverse
temperature) as well as the Bjerrum length of the solvent, lB ¼
be2/(4p3s). With these denitions the prefactor becomes

bV0 ¼ ~s2

2p

b

lB
: (11)

Below, in the comparison with the experiments of ref. 17, we
will treat ~s as a tting parameter. Regarding the interpretation
of this value one should keep in mind that it is an effective or
renormalized charge density. For ~s ( 1, the bare and the
renormalized charge density are approximately the same,
whereas in the limit of very large bare charge densities the
renormalized charge density approaches a constant, ~s / 4.22

Thus the approach is consistent only for ~s < 4.
2.2 Numerical implementation

We computed numerically the dimensionless, exponentiated
free energy exp(�V(H0)) (eqn (9)) on a 4-dimensional grid with
axes characterizing the relative congurational state of two
ellipsoids (center-to-center distance and three angles). For each
conguration, the minimal distance H0 was determined by a
conjugate gradient routine and the radii and directions of
principal curvature were determined through the rst and
second fundamental form of the ellipsoid surfaces at the two
points O and O0 (whose distance is H0, see Fig. 1). In the Monte
Carlo simulations (see below), the such tabulated free energy
was used as the acting potential between pairs of ellipsoids,
together with linear interpolation to determine the potential at
off-grid values of the variables characterizing the relative
congurational state.

We also tested a further approximation to the Derjaguin free
energy in which the curvature term 1=

ffiffiffiffiffiffi
330

p
is replaced by a

constant, the average radius of the ellipsoid. Then V(H0) only
depends on the minimal distance H0, which can be well
approximated by an extension of the Perram–Wertheim
routine23 frequently used for checking overlap of hard ellipsoids
(see Appendix C). In this way, the potential can be determined
“on the y”, and it works reasonably well for aspect ratios 0.8(

t ( 2. Note, however, that the short-range anisotropy of the
potential increases rapidly with the aspect ratio becoming
small. For oblate ellipsoids (t < 1, disk-like particles), the ratio
between the potential at contact in side–side conguration
(at sides of the disk touching) and in edge–edge conguration
(rims of the disk are touching) is (t2 + 1)/(2t3) and thus scales for
small t as 1/t3. Therefore, this further approximation to the
Derjaguin free energy is not applicable to at oblates.
Fig. 2 Radial positional distribution function of ellipsoids with aspect
ratio t¼ 1.6 and packing fractions f¼ 0.26 (top) and f¼ 0.31 (bottom),
simulation data (circles), experimental data (triangles) and data for
hard prolate ellipsoids (HPE, dashed line) taken from Fig. 2(a) and (b) in
ref. 17.
3 Simulation results

We have carried out Monte Carlo simulations at constant
temperature T, constant number of particles N and volume V
with periodic boundary conditions, and computed equilibrium
structural properties of the system as a function of the effective
This journal is © The Royal Society of Chemistry 2014
surface charge density and the packing fraction. The particle
number N ranged from 3000 to 3840, T was set to 300 K.

First, we discuss the structure of the isotropic phase. This
part of our work has been inspired by recent experimental
measurements of the radial, orientation-averaged pair correla-
tion function g(r) in suspensions of prolate ellipsoids (aspect
ratio t ¼ 1.6, a ¼ 3.2 mm, b ¼ 2.0 mm) and oblate ellipsoids (t z
0.25, az 0.96 mm bz 3.8 mm, with a considerable experimental
uncertainty on the polydispersity and thus on the value of t).17

The structural correlations that are presented in ref. 17 are
much stronger than one would expect for a system of hard
ellipsoids, and this was taken as an indication that on the
theory side, the correlations in suspensions of ellipsoids are not
sufficiently well understood. However, the experimental
suspension was additionally stabilized by a surfactant which
introduced a small amount of charge on the particles. In a later
study,12 the authors investigated the inuence of charge on g(r)
for the prolate particles by simulation and found it non-negli-
gible: with a small charge density of s z 9e mm�2 (where e ¼
1.6 � 10�19 C is the elementary charge), distributed on particles
modelled by an assembly of three cut spheres to approximate
the shape of the ellipsoids, the experimental g(r) could be
reproduced. No corresponding results for the oblate particles
have been reported, though.

In order to model the experiment of ref. 17, we set lB z
22 nm appropriate for a solvent with an average dielectric
constant of 3s ¼ 2.5 and k�1 ¼ 0.3 mm for the Debye–Hückel
screening length. We only vary the effective surface charge
density to reproduce the experimental data. Fig. 2(top) shows
the radial positional distribution function g(r) of ellipsoids
(circles) for an aspect ratio t ¼ 1.6 and a packing fraction f ¼
0.31. The simulation data perfectly match the experimental data
(triangles, from Fig. 2 in ref. 17). The corresponding dimen-
sionless charge density is given by ~s ¼ 0.83, i.e. the effective
charge density is s ¼ 10e mm�2. This value is reasonable for the
experimental system used in ref. 17, it is in good agreement with
Soft Matter, 2014, 10, 4717–4724 | 4719
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the deduced effective charge on the colloids of ref. 12, and it
justies in retrospect the assumption of the Debye–Hückel
approximation used to derive the interaction potential. (Note
that the modelling of the electrostatic particle interactions in
ref. 12 approximately corresponds to the Derjaguin free energy
with curvature neglected (see Section 2.2 above)) which works
well for the moderate aspect ratio of 1.6 but not for particles
with larger curvatures. This rationalizes the good agreement
between our results and those of ref. 12 for s and g(r).

The second data set discussed in ref. 17 has been measured
in a more dilute suspension of prolate ellipsoids at a packing
fraction f ¼ 0.26. Using the same system parameters for lB, k

�1

and even s as for f¼ 0.31, we again obtain very good agreement
of the radial distribution functions, see Fig. 2(bottom). The data
set for hard ellipsoids from ref. 17 is presented as well for
comparison.

The last radial distribution function that is presented in ref.
17, was measured in a suspension of oblate ellipsoids of an
aspect ratio of “t z 0.25” (with a larger polydispersity than in
the prolate case). As explained in Section 2.2, the curvature
around the rim of the particles in this case is important for the
electrostatic interactions, hence the approach of ref. 12 could
not be applied here. Fig. 3 shows our simulation results for
oblate ellipsoids. We set again the same value for lB, k

�1 and s.
The experimental and theoretical data agree reasonably well
given the uncertainty of the aspect ratio of the experimental
system.

To conclude this section, we validated the Derjaguin
approximation for the electrostatic interaction of charged
ellipsoids. A small amount of surface charge has a strong
inuence on the pair correlations, due to the small dielectric
constant (large Bjerrum length) of the solvent. The short-range
anisotropy of the electrostatic interaction is especially impor-
tant for oblate ellipsoids.
Fig. 3 Radial positional distribution function of oblate ellipsoids with a
packing fraction of f ¼ 0.35, simulation data (circles) for t ¼ 0.35,
experimental data for “t z 0.25” (triangles) and data for hard oblate
ellipsoids (HOE) taken from Fig. 3 in ref. 17 (dashed line, data on the
abscissa is multiplied by a factor 1.4 with respect to ref. 17 to undo the
rescaling and recover units of b.).

4720 | Soft Matter, 2014, 10, 4717–4724
4 Impact of the surface charges on
the nematic phase

We now consider oblate ellipsoids of aspect ratio t ¼ 0.25 at a
packing fraction of f ¼ 0.48. In suspensions of hard ellipsoids
the nematic phase is located at packing fractions f > 0.42. We
study the effect of increasing surface charge density, ranging
from s ¼ 0.00002e mm�2 to s ¼ 2.0e mm�2, on the structural
properties of the liquid. Note that these surface charge densities
are even lower than the value that was needed to reproduce the
experimental ndings of ref. 17. The Bjerrum length lB and the
Debye–Hückel screening length k�1 are not modied with
respect to the previous section.

As the initial conguration of a rst set of simulation runs we
used an fcc crystal in which the ellipsoids were oriented in
parallel. We let the system relax until its energy had reached a
stable value. In the case of perfect charge screening (i.e. almost
hard ellipsoids) the system relaxed into the expected nematic
phase, see Fig. 4. A similar degree of nematic ordering formed
for a surface charge density of s ¼ 0.02e mm�2. In contrast we
observe qualitatively different behaviour for surface charge
densities s ¼ 0.2e mm�2 and s ¼ 2.0e mm�2, see snapshots in
Fig. 5 and Fig. 6. Note that these congurations evolved from an
initial fcc conguration with parallel orientation of the
ellipsoids.

Fig. 7 shows g(r) for different surface charge densities s at f
¼ 0.48. In the nematic phase, g(r) has a cusp at a distance r that
corresponds to in-plane rim–rim congurations. In contrast, at
s ¼ 0.2e mm�2 there is pronounced positional order with peak
positions at multiples of the length of the small axis a plus a
small distance to account for the electrostatic repulsion.

Fig. 8 shows the orientational distribution function

g2ðrÞ ¼ 1

gðrÞ
1

2

�
3uiuj � 1

�
;

Fig. 4 Snapshot of the suspension of almost hard oblates (s ¼
0.00002e mm�2) (aspect ratio t¼ 0.25) at a packing fraction f¼ 0.48 in
the nematic phase. Colour code according to orientation.

This journal is © The Royal Society of Chemistry 2014
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Fig. 5 Snapshot of the suspension of charged oblates at surface
charge density s ¼ 0.2e mm�2 (aspect ratio t ¼ 0.25) at a packing
fraction f ¼ 0.48. Colour code according to orientation.

Fig. 6 Snapshot of the suspension of charged oblates at surface
charge density s ¼ 2.0e mm�2 (aspect ratio t ¼ 0.25) at a packing
fraction f ¼ 0.48. Colour code according to orientation.

Fig. 7 Radial positional distribution, aspect ratio t ¼ 0.25, for different
surface charge densities s at a packing fraction f ¼ 0.48.

Fig. 8 Radial orientational distribution, aspect ratio t ¼ 0.25, for
different surface charge densities s at a packing fraction f ¼ 0.48.

Fig. 9 For given configurations of two prolates of aspect ratio t ¼ 1.6,
we plot the minimal distance relative to the Perram–Wertheim
distance.
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where ui is the unit vector along the axis of particle i and the
average is over all pairs of particles and the canonical ensemble.
At small s g2(r) decays smoothly to a non-vanishing value at
large distances, which is characteristic for nematic ordering. At
s ¼ 0.2e mm�2 and above there is parallel order at short
distances and random orientation at large distances, i.e. g2(r)
decays to zero. The rst “perpendicular peak” with g2 <
0 appears at the distance that corresponds to a conguration in
which the rim of one ellipsoid points to the pole of the other.
This peak is superposed with the second layer of parallel
stacking in g(r). We conclude that stacks of ellipsoids are
arranged perpendicular to each other to form cubatic order.

To test whether this phase is metastable, we then initialized
simulations in the nematic phase, the columnar phase and a
This journal is © The Royal Society of Chemistry 2014 Soft Matter, 2014, 10, 4717–4724 | 4721
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perfect long-range cubatic phase. All runs equilibrated into the
phase discussed above, thus we conclude that it is the most
stable.

5 Conclusion

We have added surface charges to hard ellipsoids and treated
them numerically using the Derjaguin approximation. With the
Derjaguin approximation, the short-range anisotropy of the
electrostatic interactions is captured quantitatively correctly as
long as the screening length is smaller than the extensions of
the particles. Even very small surface charges, as they oen are
present in experiments on “hard” particles have a strong effect
on the structure of the suspension.

We showed for charged oblate ellipsoids that a phase of
perpendicularly oriented short stacks (a cubatic) is thermody-
namically more stable than the nematic phase, which is stable
for uncharged ellipsoids at the same packing fraction. The
cubatic phase is also more stable than the crystal and the
columnar phase. It should be accessible to experiments on
suspensions of PMMA ellipsoids.

Appendix
A Derjaguin approximation: mathematical derivation

The Derjaguin approximation24 involves the following steps:
suppose the free energy of the interaction between two planar
walls is known, and its density will be denoted by f(h) where h is
the distance between the walls. For calculating the interaction
potential between two convex bodies (of the same type as the
walls) one determines the minimal distance H0 between the two
surfaces and the tangential planes (see Fig. 1). The free energy
of interaction between the two bodies is approximated by

F ¼ Ð Ð
dxdyf(H0 + z1 + z2), (12)

where the integral runs over (one of) the tangential planes and
z1, z2 are the distances of the point on surface i described by zi(x,
y) to their respective tangential plane (see Fig. 1). If f(h) quickly
decays to zero, it is safe to integrate over the whole plane.

This integral is greatly simplied if we approximate the
surfaces by quadratic forms around the points O and O0

respectively:

z1 ¼ 31

2
x1

2 þ 301
2
y1

2 (13)

z2 ¼ 32

2
x2

2 þ 302
2
y2

2; (14)

where 31, 3
0
1 are the principal curvatures of surface 1 at point O

and x1, y1 are coordinates in the tangential plane in the direc-
tion of the principal curvatures. Likewise for surface 2. The
directions of the principal curvatures of surface 1 and 2 do not
agree but include an angle u, thus:�

x2

y2

�
¼

�
cos u sin u

�sin u cos u

��
x1

y1

�
: (15)
4722 | Soft Matter, 2014, 10, 4717–4724
The distance z1 + z2 becomes

z1 þ z2 ¼ 1

2
ð x1 y1 Þ

�
A C

C B

��
x1

y1

�
with (16)

A ¼ 31 + 32 cos
2 u + 3

0
2 sin

2 u (17)

B ¼ 3
0
1 + 3

0
2 cos

2 u + 32 sin
2 u (18)

C ¼ (32 � 3
0
2)cos usin u . (19)

This distance is a quadratic form. Wemay perform a rotation
to another coordinate system x, y where the off-diagonal matrix
elements become zero, i.e.

z1 þ z2 ¼ 1

2
ðx y Þ

�
3 0

0 30

��
x

y

�
: (20)

Using that result, the free energy becomes

F ¼ Ð Ð
dxdyf(H0 + 3x2/2 + 30y2/2). (21)

Introducing new coordinates r, f via x ¼ rcos f=
ffiffi
3

p
and

y ¼ rsinf=
ffiffiffiffi
30

p
:

F ¼
ðN
0

rdr

ð2p
0

dff
�
H0 þ r2

�
2
	

(22)

F ¼ 2pffiffiffiffiffiffi
330

p
ðN
H0

f ðhÞdh (23)

where the second line (which is eqn (1)) follows from the
substitution h ¼ H0 + r2/2. The force (in direction of OO0)
between the two bodies is just given by

K ¼ � vF

vH0

¼ 2pffiffiffiffiffiffi
330

p f ðH0Þ: (24)

The product 330 is the determinant of the matrix in eqn (20)
and must be equal to the determinant of the matrix in eqn (16).
Thus we nd:

330 ¼ 313
0
1 + 323

0
2 + (3132 + 3

0
13

0
2)sin

2 u

+ (313
0
2 + 3

0
132)cos

2 u (25)

which is eqn (2).
B Validity of the Derjaguin approximation

We can estimate the validity of the Derjaguin approximation by
considering the example of two interacting, charged spheres
with radius r0 and charge density s at center distance d for
which we can compare the “exact”Debye–Hückel result with the
corresponding Derjaguin approximated result. In Debye–
Hückel approximation, the potential of a single sphere is
given by

FsðrÞ ¼ Qeff

4p3s

expð�krÞ
r

; (26)
This journal is © The Royal Society of Chemistry 2014
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and the charge Qeff is determined through the boundary
condition vF/vr|r¼r0 ¼ �s/3s, giving

Qeff ¼ 4pr0
2 expðkr0Þ
1þ kr0

s: (27)

In superposition approximation (as before), the interaction
free energy of two such spheres is given by

Fs ¼ Qeff
2

4p3s

expð�kdÞ
d

¼ 4pr0
4

ð1þ kr0Þ2
s2

3s

expð�kH0Þ
H0 þ 2r0

; (28)

where H0 ¼ d � 2r0 is the minimal surface-to-surface distance.
The Derjaguin approximated free energy follows from eqn (8)
using 330 ¼ 4/r0

2:

FD ¼ 2pr0
k2

s2

3s
expð�kH0Þ: (29)

It is the limit kr0 [ 1, H0 � r0 of eqn (28). The ratio is given
by

FD

Fs

¼
�
1þ H0

2r0

��
1þ 1

kr0

�2

: (30)

From this equation one sees that the Derjaguin approxima-
tion produces a large relative error for H0 T 2r0. Appropriate for
the examples studied in Section 3, we set r0 ¼ 1 mm and the
screening length k�1 ¼ 300 nm. Thus, kr0 z 1/3, and the Der-
jaguin approximation overestimates the free energy by a factor
3.4 at H0 ¼ 2r0 ¼ 2 mm. However, at that distance the potential
has dropped by a factor exp(�2kr0) z 0.0013 compared to its
value at contact, so the free energy itself at that distance is small
and likewise the absolute error the Derjaguin approximation
produces is small. The effect is presumably negligible in our
simulations which are sensitive to the short-range behaviour of
the effective free energy between the particles.
C Perram–Wertheim approximation for the minimal
distance

Perram and Wertheim23 developed a criterion to check for
overlap of two ellipsoids. The algorithm can also be used to
compute an approximate minimal distance. We summarize this
approach as follows: suppose we have two ellipsoids with half
axes a1, a2, a3 and corresponding axis orientation vectors (of
unit length) in a lab-xed coordinate system u1, u2, u3 (ellipsoid
1) and v1,v2, v3 (ellipsoid 2). One denes two matrices:

A ¼
X3

k¼1

ak
�2 uk uk

T ; (31)

B ¼
X3

k¼1

ak
�2 vkvk

T : (32)

Let ra and rb denote the center positions of ellipsoid 1 and 2,
respectively. We dene quadratic forms
This journal is © The Royal Society of Chemistry 2014
FA ¼ (r � ra)
TA(r � ra), (33)

FB ¼ (r � rb)
TB(r � rb), (34)

and the ellipsoid surfaces are given by the solutions to the
equations FA¼ 1 and FB¼ 1. For points inside the ellipsoid, FA[B]
< 1, for points outside FA[B] > 1. Further we dene a quadratic
form

F(r, l) ¼ lFA + (1 � l)FB. (35)

and its minimum, depending on l ˛ [0, 1]:

F(r(l), l) ¼ minrF(r, l). (36)

For l ¼ 0, r(0) ¼ rb and for l ¼ 1, r(1) ¼ ra. Thus as l varies
from 0 to 1, then r(l) moves from the center of ellipsoid 2 to the
center of ellipsoid 1. If the two ellipsoids do not overlap, then
there exists a particular l for sure for which r(l) is outside both
ellipsoids and F(r(l), l) > 1 there. If the ellipsoids overlap, then
F(r, l) < 1 in the overlap region and thus for each l the minimal
point r(l) can not lie outside both ellipsoids since there F(r, l) >
1. Therefore a useful overlap criterion is formulated with
introducing

s ¼ maxl˛(0,1)F(r(l), l) (37)

which fullls

s

8<
:

. 1 overlap

¼ 1 tangent
\1 no overlap

: (38)

This criterion is convenient to use due to the explicit form for
F(r(l), l) which Perram and Wertheim provide:23

F(r(l), l) ¼ l(1 � l)(rb � ra)
TC(rb � ra), (39)

C ¼ (lB�1 + (1 � l)A�1)�1. (40)

The maximization needed in eqn (37) has to be done
numerically, though.

The value of s can also be used to calculate an approximative
minimal distance through

dPW ¼ |rb � ra|

�
1� 1ffiffi

s
p

�
: (41)

The interpretation, according to Paramonov and Yaliraki,25 is
as follows. First, the geometrical meaning of the lmaximization
in eqn (37) becomes clear by looking at

dFðrðlÞ; lÞ
dl

¼ FAðrðlÞ; lÞ � FBðrðlÞ; lÞ þ dr

dl
$VFðrðlÞ; lÞ: (42)

The term VF is zero by virtue of the denition of F(r(l), l) in
eqn (36) and thus the derivative above is zero when s ¼ FA(r(l-

max), lmax) ¼ FB(r(lmax), lmax). This, however, describes the
tangential contact between ellipsoids with scaled half-axes
Soft Matter, 2014, 10, 4717–4724 | 4723
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ffiffi
s

p
a1;

ffiffi
s

p
a2;

ffiffi
s

p
a3. (r(lmax) is the tangential contact point since

VFA || VFB there.) Then the points sa, sb dened by

sa � ra ¼ 1ffiffi
s

p ðrðlmaxÞ � raÞ (43)

(likewise for a / b) lie on the surface of ellipsoid 1 and 2,
respectively. We see that sb, sa is parallel to the center distance
vector rb � ra and that dPW ¼ |sb, sa|. Thus dPW is the minimal
directional distance between the ellipsoids (i.e. minimal
distance between two points on the surfaces of ellipsoid 1 and 2
in the direction of the center distance vector.

This approximation is not exact but as presented in Fig. 9 the
error is small and hence the approach using the simple deter-
mination of the Perram–Wertheim distance justied for the
calculation.

The relation is not one to one because of the different relative
orientations but there is agreement for moderate aspect ratios.
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J. Chem. Phys., 2013, 138, 064501.

4 L. Onsager, Ann. N. Y. Acad. Sci., 1949, 51, 627–659.
5 J. A. C. Veerman and D. Frenkel, Phys. Rev. A: At., Mol., Opt.
Phys., 1992, 45, 5632–5648.

6 P. D. Duncan, A. J. Masters and M. R. Wilson, Phys. Rev. E:
Stat., Nonlinear, So Matter Phys., 2011, 84, 011702.
4724 | Soft Matter, 2014, 10, 4717–4724
7 M. Marechal, A. Patti, M. Dennison and M. Dijkstra, Phys.
Rev. Lett., 2012, 108, 206101.

8 P. D. Duncan, M. Dennison, A. J. Masters and M. R. Wilson,
Phys. Rev. E: Stat., Nonlinear, So Matter Phys., 2009, 79,
031702.

9 M. R. Wilson, P. D. Duncan, M. Dennison and A. J. Masters,
So Matter, 2012, 8, 3348–3356.

10 S. J. S. Qazi, G. Karlsson and A. R. Rennie, J. Colloid Interface
Sci., 2010, 348, 80–84.

11 Z. Zhang, P. Peiderer, A. B. Schoeld, C. Clasen and
J. Vermant, J. Am. Chem. Soc., 2011, 133, 392–395.

12 A. P. Cohen, E. Janai, D. C. Rapaport, A. B. Schoeld and
E. Sloutskin, J. Chem. Phys., 2012, 137, 184505.

13 J.-W. Kim, R. J. Larsen and D. A. Weitz, Adv. Mater., 2007, 19,
2005–2009.

14 J. J. Crassous, H. Dietsch, P. Peiderer, V. Malik, A. Diaz,
L. A. Hirshi, M. Drechsler and P. Schurtenberger, So
Matter, 2012, 8, 3538–3548.

15 I. Martchenko, H. Dietsch, C. Moitzi and P. Schurtenberger,
J. Phys. Chem. B, 2011, 115, 14838–14845.

16 A. Mohraz and M. J. Solomon, Langmuir, 2005, 21, 5298–
5306.

17 A. P. Cohen, E. Janai, E. Mogilko, A. B. Schoeld and
E. Sloutskin, Phys. Rev. Lett., 2011, 107, 238301.

18 M. Letz and A. Latz, Phys. Rev. E: Stat. Phys., Plasmas, Fluids,
Relat. Interdiscip. Top., 1999, 60, 5865–5871.

19 J. Talbot, D. Kivelson, M. P. Allen, G. T. Evans and D. Frenkel,
J. Chem. Phys., 1990, 92, 3048–3057.

20 D. Chapot, L. Bocquet and E. Trizac, J. Chem. Phys., 2004,
120, 3969.
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