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ics during stress overshoots in
binary colloidal glasses

T. Sentjabrskaja,a M. Hermes,b W. C. K. Poon,b C. D. Estrada,c R. Castañeda-Priego,c

S. U. Egelhaafa and M. Laurati*a

We investigate, using simultaneous rheology and confocal microscopy, the time-dependent stress

response and transient single-particle dynamics following a step change in shear rate in binary colloidal

glasses with large dynamical asymmetry and different mixing ratios. The transition from solid-like

response to flow is characterised by a stress overshoot, whose magnitude is linked to transient

superdiffusive dynamics as well as cage compression effects. These and the yield strain at which the

overshoot occurs vary with the mixing ratio, and hence the prevailing caging mechanism. The yielding

and stress storage are dominated by dynamics on different time and length scales, the short-time in-

cage dynamics and the long-time structural relaxation respectively. These time scales and their relation

to the characteristic time associated with the applied shear, namely the inverse shear rate, result in two

different and distinct regimes of the shear rate dependencies of the yield strain and the magnitude of the

stress overshoot.
1 Introduction

A wide range of technical applications is based on glassy
materials, including polymeric,1 metallic2 and colloidal
systems.3 One-component dispersions of hard-sphere like
colloids have been intensively used as model systems to study
the glass transition.3 In this system, the volume fraction f is the
only control parameter. The glass state is driven by crowding:
for f > 0.58 particles are permanently localised in cages formed
by their neighbours, which they can only escape through acti-
vated processes.4 Colloidal glasses melt and ow under appli-
cation of shear.5–13 Shear-induced melting is associated with an
irreversible deformation of the cage9,13 and the onset of diffusive
dynamics.8 It occurs via a transient regime in which the system
yields. At yielding a stress overshoot is observed in the rheo-
logical response and reects maximal cage distortion in the
structure and a transient super-diffusive regime in the
dynamics.9,13–15

Many glassy materials used in applications are not one-
component systems, but composed of particles with different
sizes. This raises the question whether, and if so how, the shear-
induced melting process, in particular the transient macro-
scopic rheology and the microscopic structure and dynamics, is
affected by the presence of multiple components. The simplest
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multi-component model system is a binary mixture of colloidal
hard spheres. The phase behavior of binary colloidal hard
spheres has been studied in experiments,16–20 simulations21–23

and theory.23–29 It depends on several parameters, namely the
total volume fraction, the size ratio and the mixing ratio of the
two components. Theory predicts that at small to moderate size
disparities the glass transition shis to larger total volume
fractions, similar to the effect of polydispersity.24,30–32 This
implies that for constant total volume fraction, glass melting
can be induced by mixing. This is reected in the acceleration of
the dynamics measured by light scattering16 as well as the
strong reduction of the viscosity observed by rheology.33 At large
enough size disparities multiple glass states are expected.30

They differ by the mechanism driving the arrest of the large
spheres, either caging or depletion-induced bonding, and the
dynamics of the small spheres, either dynamical arrest or
mobility.25,30 Some of these states have been observed experi-
mentally17–19 and in molecular dynamics simulations.21

The yielding behaviour of binary glasses under oscillatory
shear was recently studied for size ratios d ¼ Rs/RL ¼ 0.38 and
0.2,20 with Rs and RL the radii of the small and large spheres
respectively. At constant total volume fraction f, a decrease of
the yield strain and stress is observed at intermediate mixing
ratios, and is particularly pronounced for the larger size
disparity. This effect has been associated with the variation in
the free volume due to changes in the volume fraction of
random close packing, which also becomes more pronounced
at larger size disparities.

Here, we extend this study to explore the response aer
switch-on of a constant shear rate. In particular the link
This journal is © The Royal Society of Chemistry 2014
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between the macroscopic non-linear rheology and the transient
single-particle dynamics is investigated using confocal micros-
copy. A stress overshoot and super-diffusive transient dynamics
is found to characterise yielding, similar to the behaviour of
one-component systems.9,13–15 However, in binary mixtures the
yield strain and magnitude of the overshoot depend in a
complex and different way on the shear rate and show a
dependence on the composition of the mixture. The composi-
tion determines the caging mechanism, localization length as
well as the short and long-time dynamics, including the degree
of super-diffusion.

The manuscript is structured as follows. Section 2 describes
the experimental systems and methods, namely simultaneous
rheology and confocal microscopy, as well as the simulations. In
Section 3 we rst present the equilibrium structure and
dynamics of the large particles in the mixtures and a resume of
the linear viscoelastic properties of the binary mixtures. Then
we discuss the results of the non-linear rheology and the
dynamics under shear before offering some conclusions in
Section 4.
2 Methods
2.1 Rheology

Rheological measurements are performed using an ARES G2
strain controlled rheometer (TA instruments) with a cone-plate
geometry (diameter 20 mm, cone angle 2�, truncation gap 0.054
mm). A solvent trapminimizes solvent evaporation. Rheological
measurements on colloidal glasses can be affected by loading
effects, shear history and aging. Therefore, before each test a
renjuvenation procedure is performed in order to obtain a
reproducible initial state. First, aer loading we perform a
dynamic strain sweep to estimate the yield strain gyield of the
system. Oscillatory shear at strain amplitude g¼ 300%[ gyield

is applied to induce ow and maintained until the viscoelastic
storage, G0, and loss, G0 0, moduli reach a stationary state, typi-
cally aer 200 s. Aerwards, oscillatory shear in the linear
viscoelastic regime (0.05% < g < 0.1%, depending on sample) is
applied until G0 and G0 0 become stationary, typically for times
200 s < t < 700 s, depending on the sample. The state charac-
terised by the stationary values of G0 and G00 thus represents the
initial reproducible state. The absence of wall slip is veried by
comparison with measurements obtained with roughened
geometries (data not shown).
2.2 Confocal microscopy under shear

Confocal microscopy measurements under shear are per-
formed with a confocal rheoscope, which is a combination of
an MCR301 WSP rheometer (Anton Paar) and a fast-scanning
VT-Eye confocal scanner (Visitech), mounted on a Nikon Ti-U
inverted microscope with a Nikon Plan Apo 60� objective (NA
¼ 1.40). Details of the setup can be found in previous work.34

We use a cone-plate geometry with diameter 50 mm, cone
angle 1� and truncation gap 0.10 mm. To minimise wall-slip
the cone is sandblasted, while the bottom plate, consisting of a
thin glass plate, is coated with PMMA particles of size
This journal is © The Royal Society of Chemistry 2014
0.885 mm and 0.174 mm.35 A solvent trap is used to reduce
solvent evaporation. Images of the samples (512 � 512 pixels,
corresponding to about 48 mm � 48 mm for samples with 0.3 <
xs < 0.9, 51 mm � 51 mm for xs ¼ 0.0, and 53 mm � 53 mm for
xs ¼ 0.1) are acquired at a depth of 30 mm from the bottom
plate and at a distance of about 6 mm from the center. Time
series of 2D images are taken at a rate of 31 or 67 frames per
second, depending on the sample. Particle coordinates and
trajectories are extracted from the pictures using previously-
explained routines.36
2.3 Samples

We use suspensions of polymethylmethacrylate (PMMA)
colloids, sterically stabilized with polyhydroxystearic acid (PHS)
and dispersed in a solvent mixture of cis-decalin and cycloheptyl
bromide (CHB). The solvent mixture matches the density and
almost the refractive index of the particles. The charge that the
particles acquire in the CHB/decalin solvent is screened by
adding 4 mM tetrabutylammoniumchloride (TBAC).37 Under
these conditions the interactions in the system are hard-sphere-
like.38 For the most sensitive rheological measurements we use
particles with radii Rrheo

L ¼ 0.304 mm and Rrheo
s ¼ 0.063 mm, and

polydispersities of approximately 10% and 15%, respectively.
The size ratio of the mixture is drheo ¼ 0.207. The high energy
density of these small particles leads to a strong rheological
signal. The sample set corresponding to these particles is
referred to as RH in the following. For measurements on the
confocal rheoscope, a mixture of PMMA particles with radii
Rmic
L ¼ 0.885 mm (6% polydispersity) and Rmic

s ¼ 0.174 mm (15%
polydispersity) is prepared resulting in dmic ¼ 0.197. The large
spheres with radius Rmic

L are uorescently labelled with nitro-
benzoxadiazole (NBD) and can be observed with the confocal
microscope using a solid state laser with wavelength l ¼ 488
nm. This sample set is referred to as CO in the following. The
particle radii and polydispersities are determined by static and
dynamic light scattering with an uncertainty in the radius of
about 2%.

The volume fraction of the sediment of the large spheres is
determined by imaging the sample by confocal microscopy and
using the Voronoi construction to estimate the mean Voronoi
volume per particle. The procedure of determining the volume
fraction is described in detail in20 and leads to the estimate
fRCP
L z 0.68. A one-component sample with f ¼ 0.61 is

prepared by diluting the sediment. This sample is used as a
reference. The volume fractions of the samples containing the
small particles are adjusted in order to obtain comparable
linear viscoelastic moduli in units of the energy density 3kBT/
4pR3, where kB is the Boltzmann constant, T the temperature
and R the particles' radius, while multiplying the frequency by
the free-diffusion Brownian time s0 ¼ 6phR3/kBT, where h ¼
2.2 mPa s is the solvent viscosity. In this way we obtain samples
with comparable dynamics, according to the generalised
Stokes–Einstein relation.39 Samples with constant total volume
fraction f ¼ 0.61 and different compositions, namely fractions
of small particles xs ¼ fs/f, where fs is the volume fraction of
small particles, are prepared by mixing the stock solutions.
Soft Matter, 2014, 10, 6546–6555 | 6547
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Fig. 1 Pair distribution function g(r) of large particles Rmic
L in mixtures

with f ¼ 0.61, d ¼ 0.2 and different compositions xs ¼ 0.0 ( ), 0.1 ( ),
0.3 ( ), 0.5 ( ), 0.7 ( ), 0.9 ( ). Data for xs > 0 are shifted vertically.
Dashed lines indicate particle–particle distances r ¼ 2(RL + Rs) and r ¼
2(RL + 2Rs), corresponding to configurations in which two large
particles are separated by one or two small particles, respectively.
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2.4 Simulations

Event-driven molecular dynamics simulations are performed to
investigate the dynamics of binary hard spheres with the same
size ratio d ¼ 0.2 as in the experiments. To render simulations
with this size disparity feasible, we applied the double-cell
scheme,23 which uses a combination of large cells with a size
just above 2RL and small cells with a size just above 2Rs. This
allows us to compute long enough sequences of particle
congurations. Due to the nature of the hard-sphere potential,
the system is conservative and additionally the temperature is
constant. Thus, its evolution can be determined by calculating a
sequence of elastic collisions; the particles move in a straight
line before any collision. Given the positions,~ri, and velocities,
~vi, of each pair (i, j) of particles at time t, the collision time Dt is
determined by the physical solution (real and positive) of the
quadratic equation~rij

2(t + Dt)¼ [~rij(t) +~vij(t)Dt]
2¼ [(2Ri + 2Rj)/2]

2.
The set of collision times of each particle is stored in an ordered
list to monitor its trajectory with a nonuniform time step
sequence. In each collision, the change in the velocities of the
colliding particles is obtained by the energy and momentum
conservation laws as D~vi ¼ �2mjð~vij$~rijÞr̂ij=ðmi þmjÞ. Hence,
the next collision can be predicted. Thus, the simulations
provide particle trajectories, based on which the mean squared
displacement can be determined, as well as, e.g., the mean free
path l0 and the mean time between collisions, T short

s . With
increasing volume fraction, T short

s approaches zero and thus the
rate of collisions quickly grows. With our computing resources
we can investigate volume fractions f # 0.58, i.e. below the
experimental volume fraction. Experiments with f ¼ 0.61
(Fig. 2) and f ¼ 0.58 (ref. 40) indicate that the qualitative vari-
ations of the dynamics, quantied by the mean squared
displacements, as a function of mixing ratio are comparable for
the two volume fractions. We thus compare our experimental
ndings to simulation results for f ¼ 0.58. The simulations
cover 0.1# xs # 0.7 and the one-component limits xs ¼ 0.0 and
1.0. The numbers of large particles are 125 (xs ¼ 0.7), 250 (xs ¼
0.5), 500 (other xs) and according numbers of small particles.
The large and small spheres have the same mass density and
the two populations are monodisperse. The simulations start
with random particle congurations. At least 10 different runs
are averaged for each xs to reduce statistical uncertainties.
3 Results and discussion
3.1 Quiescent structure

Binary mixtures with a size ratio d ¼ 0.2, a total volume fraction
f¼ 0.61 and different compositions 0# xs # 1 are investigated.
The pair distribution functions g(r) of the large particles in the
quiescent state were determined by confocal microscopy
(Fig. 1). They indicate an amorphous structure for all xs. Similar
data were reported and discussed in detail in ref. 19. We thus
only recall the main ndings. The one-component glass of large
spheres shows a uid-like structure typical of a colloidal glass; a
main peak corresponding to the rst shell of nearest neigh-
bours at distance r ¼ 2RL (the caging particles) and additional
peaks indicating the successive shells of nearest neighbours.
6548 | Soft Matter, 2014, 10, 6546–6555
Upon addition of small spheres, additional particle congura-
tions appear due to the intercalation of small spheres between
large spheres. While a small shoulder at r ¼ 2RL + 2Rs is already
visible for xs ¼ 0.1, peaks at this distance and also at r ¼ 2RL +
4Rs are observed for xs ¼ 0.3, which correspond to congura-
tions in which two large particles are separated by one or two
small particles, respectively (Fig. 1, dashed lines). This indicates
a loosening of the cage of large particles with increasing xs,
which leads to a transition in caging at xs ¼ 0.5, as indicated by
the disappearing rst peak at r ¼ 2RL and the pronounced peak
at r ¼ 2RL + 2Rs. Hence, at xs ¼ 0.5 the large spheres are prev-
alently caged by small spheres. Upon further increasing xs the
large particles, still caged by small particles, become increas-
ingly more dilute. Particle congurations in which small parti-
cles intercalate between large particles were not observed in
mixtures with larger d ¼ 0.67,41 in agreement with geometrical
arguments20 predicting a limiting value d # 0.41.

3.2 Quiescent dynamics

The mean squared displacement (MSD) of the large particles in
one direction is:

dy2(t) ¼ h(yi(t + t0) � yi(t0))
2ii,t0 , (1)

where t is the delay time, t0 a selected time along the trajectory
of particle i and h ii,t0 indicates the average over all particles i in
the eld of view and all times t0. It is determined from time
series of 3D stacks in the quiescent state before applying shear
(Fig. 2). For xs ¼ 0.0 and 0.1 the MSDs are at, indicating
localisation of particles in cages and absence of long-time
diffusion within the measurement window. The localisation
length L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dy2ðt1Þ
p

; with t1 the shortest delay time measured,
corresponds to that expected for a cage of large particles. For
xs ¼ 0.3 the large-particle dynamics become diffusive at long
times. Similarly, for xs ¼ 0.5 mobility is observed at long times
This journal is © The Royal Society of Chemistry 2014
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Fig. 2 Quiescent mean squared displacement in one direction dy2 of
large particles Rmic

L in mixtures with f ¼ 0.61, d ¼ 0.2 and different
compositions xs ¼ 0.0 ( ), 0.1 ( ), 0.3 ( ), 0.5 ( ), 0.7 ( ), 0.9 ( ). The
delay time t is normalised by the composition-averaged short-time
Brownian time hsshorti. (Inset) The xs-dependence of the localisation
length L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dy2ðt1Þ
p

in units of Rmic
L (left y-axis) and Rmic

s (right y-axis),
where t1 is the shortest delay time measured.

Fig. 3 Long-time structural relaxation times of large, slongL ( ), and
small, slongs ( ), spheres as a function of composition xs, obtained from
MD simulations of binary hard sphere mixtures with size ratio d ¼ 0.2
and total volume fraction f ¼ 0.58. The relaxation times are normal-
ised by the mean free time of the small spheres sshorts . The dashed and
solid lines indicate the number-averaged, hslongi, and dominant, ~tlong,
structural relaxation times, respectively.
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even though no diffusive regime is visible within the experi-
mental time window. In addition, the localisation length L is
reduced, indicating the presence of small particles around the
large particles, hindering their motions. This is consistent with
the pair distribution function of the large particles (Fig. 1),
which shows an increasingly more pronounced shoulder at a
distance corresponding to the sum of a large and small
particle.19,20 For larger fractions of small particles, xs > 0.5, the
long-time dynamics again slow down and particles continue to
become increasingly localised in the cage of small particles. This
transition in caging and the faster dynamics at intermediate
compositions have been observed previously for the same d.19

However, the acceleration of the dynamics in the present
mixtures is much more pronounced than at larger d.16,20,31,32,42,43

This could result from the melting of the cage of large spheres,
which accompanies the glass–glass transition observed at xs ¼
0.5 in our system. This appears to affect the particle dynamics
more than the smaller cage polydispersity inmixtures of particles
withmore comparable sizes. Furthermore, the dependence of the
MSD on xs can be related to the available free volume in the
mixtures, which can be estimated on the basis of the xs depen-
dence of the volume fraction of random close packing, fRCP.19,20

The intrinsic time scales of the samples can be obtained
from the corresponding short- and long-time diffusion coeffi-
cients. The short-time Brownian time of the small particles,
sshorts ¼ Rs

2/Dshort
s with the short-time diffusion coefficient

Dshort
s ¼ fD0,s. It is related to the free (dilute) diffusion coefficient

D0,s ¼ kBT/6phRs by the f-dependent factor f. In a one-compo-
nent system, f can be estimated by extrapolating the data in
Fig. 8 of ref. 44 to f ¼ 0.61, yielding f z 1/32. Similarly, the
short-time Brownian time of the large particles, sshortL ¼ sshorts /d3,
can be determined. For binary mixtures, the composition-
averaged short-time Brownian time in the dilute limit is
hsshort0 i ¼ 6phhR3i/kBT and at a volume fraction f we obtain
hsshorti ¼ hsshort0 i/f, where hR3i ¼ RL

3/[1 � xs(1 � 1/d3)] is the
number-averaged cube of the radius.
This journal is © The Royal Society of Chemistry 2014
We studied the long-time dynamics using event-driven
molecular dynamics simulations of binary mixtures of hard-
spheres23 with the same size ratio d ¼ 0.2, but a reduced total
volume fraction f ¼ 0.58 to keep the simulation times reason-
able (Section 2.4). Although the simulations do not consider a
solvent and thus do not include Brownian motion at short
times, an effective short-time diffusion coefficient D0

s can be
determined; D0

s ¼ l0
2/T short

s with themean free path l0 andmean
free time T short

s .45 With this rescaling the ratio D*
s is equivalent

to that obtained in a system with Brownian dynamics; D*
s ¼

Dlong
s /Dshort

s , with Dshort
s the short-time Brownian diffusion

coefficient.45 The same equivalence applies to the ratio of the
long time relaxation time T long

s and the mean free time T short
s .

Then D*
s for the small (and, similarly, the large) spheres can be

extracted from the MSDs rescaled by l0
2 with times rescaled by

T short
s . To simplify the comparison with experiments, in what

follows we will indicate the ratio T long
s /T short

s using the equiv-
alent ratio of the Brownian relaxation times slongs /sshorts . From D*

s,
the normalised long-time structural relaxation time of the small
spheres, slongs /sshorts ¼ 1/D*

s, and, similarly, of the large spheres,
slongL /sshorts ¼ 1/(d3D*

L), can be calculated (Fig. 3).
The structural relaxation time of the small spheres, slongs ,

monotonously increases with xs indicating the progressive
arrest of the small spheres. However, the structural relaxation
time of the large spheres, slongL , exhibits an intermediate
minimum (xs ¼ 0.1) consistent with the melting of the one-
component glasses as a second species is added. While the
addition of small spheres to the glass of large spheres melts the
glass, the addition of large spheres not only melts the glass of
small spheres, but also induces obstacles.46 This leads to the
asymmetric dependence of slongL on xs. We expect the minimum
to be more pronounced for the higher f ¼ 0.61 of the experi-
ments, since the large and small spheres are deeper in the
glassy state at xs < 0.3 and xs $ 0.7 than at f ¼ 0.58. Previous
experimental work on binary mixtures with the same size ratio
and comparable xs ¼ 0.7 indicates glass states for f > 0.57 and
Soft Matter, 2014, 10, 6546–6555 | 6549
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Fig. 5 Stress s scaled by the average energy density kBT/hR3i vs. strain
gmeasured in step rate experiments for samples with compositions xs
(as indicated) and Péclet numbers Pe _g ¼ 0.03, 0.24, 0.64, 1.20, 2.40
and 4.70 (bottom to top).
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uid states for f # 0.57.20 In addition, the number-averaged
long-time structural relaxation time at a volume fraction f ¼
0.58 can be calculated according to hslongi ¼ [(1 � xs)d

3slongL +
xss

long
s ]/[(1 � xs)d

3 + xs] (Fig. 3, dashed line). This exhibits a
minimum at xs z 0.3. The minimum is shied with respect to
the minimum of slongL (xs z 0.1) due to the increasing weight of
the smaller slongs . As mentioned above, a transition in caging is
expected at xs z 0.5 with caging by large and small spheres at
small and large xs, respectively.20 Thus, the systems are expected
to be dominated by slongL and slongs for xs ( 0.5 and xs T 0.5,
respectively, which we denote by ~tlongs (Fig. 3, solid line).

3.3 Linear viscoelasticity

The storage modulus, G0, as a function of composition xs is
extracted from the linear viscoelastic regime of dynamic strain
sweeps (0.5% < g < 1%, depending on sample), Fig. 4. Values ofG0

are determined for an oscillatory Péclet number Peu ¼ 1.2 with
Peu ¼ uhsshorti, where u is the oscillation frequency. They are
reported in units of the composition-averaged energy density,
kBT/hR3i, to remove the trivial dependence on the particle size.
The large values of G0 at xs ¼ 0.0 and 1.0 are consistent with their
one-component glass states. By adding a second species, G0

decreases, indicating glass soening with the results for both
sample sets, RH (radii 0.304 mm, 0.063 mm) and CO (radii
0.885 mm, 0.174 mm) being comparable. The glass soening is
thought to result from the transition in caging and the faster
long-time dynamics at intermediate compositions (Fig. 2).19 It is
particularly pronounced for 0.1# xs# 0.5, i.e. upon adding small
particles to large particles. This reects the asymmetry observed
in the dynamics. The dependence of G0 on xs hence appears
related to changes in the microscopic dynamics.19,20

3.4 Non-linear stress response

In a step rate experiment, a constant shear rate _g is applied to
the initially quiescent sample and the evolution of the stress s
as a function of time t or, equivalently, strain g ¼ _gt is
measured. The dependence of the measured stress on strain is
presented in Fig. 5 for binary mixtures with size ratio d ¼ 0.2,
total volume fraction f ¼ 0.61 and different compositions xs as
Fig. 4 Storage modulus G0/(kBT/hR3i) in the linear viscoelastic regime,
extracted from dynamic strain sweep measurements at oscillatory
Péclet numbers Peu¼ 1.2 for two sample sets with f¼ 0.61, d¼ 0.2: ( )
CO (larger spheres, also used for microscopy) and ( ) RH (smaller
spheres, only used for rheology).

6550 | Soft Matter, 2014, 10, 6546–6555
well as different shear rates _g or Péclet numbers Pe _g ¼ _ghsshorti.
For these values of Pe _g and f, homogeneous ow, i.e. laminar
ow in the absence of shear banding, is expected for one
component systems.35,47 In order to compare different mixing
ratios, the stress s is scaled by the composition-averaged energy
density. For all xs and Pe _g, at small strains g the stress increases
almost linearly and reaches a maximum or overshoot, speak, at a
strain gpeak. Subsequently the stress decreases to a constant
value, ssteady, which is the steady state value of the stress when
the system ows. The noise in the measurements is seen to
decrease with increasing xs as a result of the increasingly larger
energy density of the mixtures as the fraction of small spheres
increases. From the curves in Fig. 5 we extract the value of the
strain at the peak, gpeak and the magnitude of the stress over-
shoot speak/ssteady � 1 to quantify the stress overshoot as a
function of xs and Pe _g. For one-component hard-sphere glasses
(xs ¼ 0 and 1) this stress response, in particular the stress
overshoot, has previously been observed and studied as a
function of Pe _g.9,13–15,48 It has been associated with the maximal
cage distortion before the cage breaks.9,13During cage distortion
stress is stored, and is only released when the deformation of
the cage is partially relaxed by out-of-cage motion, resulting in
the overshoot. Moreover, the overshoot is linked to super-
diffusive particle motion observed in experiments and simula-
tions, and predicted by mode coupling theory.13–15

The strain at the overshoot, gpeak, is associated with the yield
strain. It exhibits a dependence on composition xs, which is
comparable for all Pe _g (Fig. 6a). The yield strain gpeak initially
decreases until it reaches a minimum at xs ¼ 0.3 and then
increases again. This xs dependence reects the xs dependence
of the number-averaged long-time structural relaxation time
hslongi (Fig. 3), which is associated with the distance to the glass
transition. This suggests that the yield strain is larger for systems
This journal is © The Royal Society of Chemistry 2014
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Fig. 6 (a) Strain at the stress overshoot, gpeak, which can be taken as
the yield strain, and (b) magnitude of the stress overshoot, speak/ssteady
� 1, as a function of composition xs for Péclet numbers Pe _g ¼ 0.03 ( ),
0.24 ( ), 0.64 ( ), 1.20 ( ), 2.40 ( ) and 4.70 ( ).

Fig. 7 (a) Strain at the stress overshoot, gpeak, and (b) magnitude of the
stress overshoot, speak/ssteady � 1, as a function of Péclet number Pe _g

and (c) rescaled yield strain, gpeak/Z(xs), and (d) rescaled magnitude of
the stress overshoot, (speak/ssteady � 1)/Y(xs), as a function of rescaled
shear rate, X(xs) _g, for compositions xs ¼ 0.1 ( ), 0.3 ( ), 0.5 ( ), 0.7 ( ),
0.9 ( ), 1.0 ( ). The data in (c) and (d) are the same as in (a) and (b),
respectively. The inset to (a) shows the same data as in the main plot,
but superimposed along the ordinate using the scaling factor Z0(xs).
The line indicates a slope of 1. (See text for details on the rescaling.)
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which are deeper in the glass state. It might also be related to
variations in the localisation length of the caging species.

In samples for which a broad range of Pe _g values is explored,
namely xs ¼ 0.5 and 0.7, two regimes in the Pe _g dependence of
the yield strain gpeak are observed (Fig. 7a). The yield strain gpeak

remains approximately constant at gpeak z 10% for Pe _g ( 1, in
agreement with MCT predictions for one-component glasses,48

but increases for larger Pe _g, similar to experimental results on
one-component colloidal glasses of hard-sphere like parti-
cles.9,15 This behaviour becomes clearer by rescaling the yield
strain gpeak with a scaling factor Z0(xs) (Fig. 7, inset), which is the
average of the gpeak values obtained for the different Pe values at
a given composition xs (Fig. 6a). As expected, the scaling factor
Z0(xs) (Fig. 8) follows the xs dependence of gpeak and hence also
hslongi, similar to the data in Fig. 6a.

The behaviour in the two regimes can be understood by
considering the relevant time scales; the characteristic time
scale of shear, sshear ¼ 1/ _g, and the inherent time scale of the
sample, namely the number-averaged short-time Brownian time
hsshorti (dened in Section 3.2). If sshear > hsshorti, i.e. Pe _g < 1, the
shear-induced deformation is slow compared to the Brownian
dynamics. Therefore structural rearrangements and yielding
can occur once the shear-induced cage deformation is suffi-
ciently large to facilitate escape through Brownian motion. This
cage deformation is expected to be similar to the size of the cage
in a glass or dense uid (Fig. 2, inset), consistent with the
observed gpeak z 10%. At larger shear rates _g, when sshear (
hsshorti or equivalently Pe _g T 1, the probability of cage escape
due to Brownian motion decreases. With increasing Pe _g, the
particle displacements are increasingly dominated by the affine
motion imposed by shear while the contribution by (random)
Brownian motion decreases and thus particle collisions become
less probable. Therefore, before yielding occurs the cage is
deformed more, i.e. gpeak increases. The rescaled yield strain
gpeak/Z0 is found to increase linearly with Pe _g for Pe _g T 1
(Fig. 7a, inset). Thus gpeak ¼ _gtpeak ¼ 0.1Pe _g ¼ 0.1 _ghsshorti and
This journal is © The Royal Society of Chemistry 2014
hence tpeak ¼ 0.1hsshorti. Therefore, independent of _g or,
equivalently, Pe _g, yielding occurs aer the same time, about
0.1hsshorti. This suggests that for yielding to occur, at least a
shear-induced (affine) displacement of about 10% and a
minimum Brownian (random) displacement are required. The
minimum mean squared displacement dypeak

2 ¼ 2Dsheartpeak ¼
2Dshear0.1hsshorti ( 0.2hR2i, where the last relation provides an
upper boundary since the diffusion coefficient under shear,
Dshear (Section 3.5), is smaller than the one in the quiescent
state, which is implicitly contained in hsshorti. The minimum
displacement hence is about the size of the cage. A more
quantitative comparison needs to consider the anisotropic
structure of the sheared cages.9,13
Soft Matter, 2014, 10, 6546–6555 | 6551
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Fig. 8 Composition dependence of the scaling factors of the shear
rate, X (solid line), of the strain at the stress overshoot, Y (dashed-
dotted line), and of the magnitude of the stress overshoot, Z0 (dotted
line). The scaling factor X represents a characteristic time and is
normalized by the short-time Brownian time of the small spheres
sshorts . (For details on the scaling factors see text.)
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Two regimes are also observed for the shear rate dependence
of the magnitude of the stress overshoot, quantied by speak/
ssteady � 1, for xs ¼ 0.5 and 0.7 (Fig. 7b). At small Pe _g, the
magnitude of the stress overshoot increases with increasing
Pe _g, as already observed in experiments on thermosensitive
pNIPAM particles and as predicted by MCT for one-component
systems.48 It then reaches a maximum and decreases for large
Pe _g, similar to one-component glasses of hard-sphere like
PMMA particles.9,49 The transition between the two regimes
occurs at transitional Péclet numbers which depend on xs, in
contrast to the dependence of gpeak on Pe. In particular, the
speak/ssteady � 1 dependence for xs ¼ 0.5 (Fig. 7b, ) is shied to
considerably larger values of Pe _g compared to dependencies
observed for other xs. That the transitional Péclet number
depends on xs implies that the time at which the transition
occurs does not scale with the composition-averaged short-time
Brownian time hsshorti, which determines Pe _g.

To determine the appropriate characteristic time of the
transition in speak/ssteady � 1 as a function of xs, the data in
Fig. 7b are rescaled as (speak/ssteady � 1)/Y(xs) versus X(xs) _g,
where the scaling factors X(xs) and Y(xs) are chosen such that
the resulting curves superimpose (Fig. 7d), that is the curves are
shied horizontally such that the transition occurs at X(xs) _g¼ 1
and vertically that the curves overlap. The scaling factor X(xs)
hence represents the characteristic time of the transition
between the increasing and the decreasing branches of speak/
ssteady � 1 for the different xs. It exhibits a pronounced
minimum at xs ¼ 0.5 (Fig. 8, solid line). The xs dependence is
thus qualitatively different from the monotonously decreasing
hsshorti. However, the dependence appears similar to the one of
the dominant structural relaxation time in the quiescent state,
~tlong (Fig. 3, solid line), which is the relaxation time of the
relevant caging species, i.e. the large particles for xs # 0.3 and
the small particles for xs > 0.3.

Therefore, the transition between the two regimes depends
on the balance between sshear and the dominant structural
relaxation time �slong. This indicates that the processes relevant
for stress transmission involve particle movements on length
6552 | Soft Matter, 2014, 10, 6546–6555
scales of out-of-cage diffusion. This is consistent with the fact
that in one-component systems the overshoot has been asso-
ciated with the yielding of the cage.9,13 The out-of-cage move-
ments are longer than those required for cage deformation,
which determine gpeak, and hence the timescale of out-of-cage
diffusion is not relevant for the transition between the two
regimes of the Péclet number dependence of gpeak. This is
supported by the poor overlap of the gpeak curves if scaled by the
same X(xs) used for scaling the stresses (Fig. 7c). The overlap is
not signicantly improved by also scaling gpeak by Z(xs) such
that all curves superimpose in the ordinate and on the right
branch of the curve with xs ¼ 1.0 in the abscissa (Fig. 7c).

The value of Y(xs) (Fig. 8) corresponds to the average value of
speak/ssteady � 1 for a given xs. The magnitude of the overshoot,
speak/ssteady � 1 (Fig. 6b) increases from xs ¼ 0.1, attains a
maximum at xs ¼ 0.3 and reaches a minimum at xs ¼ 0.5.
Subsequently it stays about constant for large Pe _g (2.40 to 4.70)
or increases to an also approximately constant value for small
Pe _g (0.03 to 1.20). The difference between small and large Pe _g is
related to the two regimes of the stress response discussed
above (Fig. 7a and b).

3.5 Dynamics under shear

We aim to link the effects observed in the rheological
measurements to the individual-particle dynamics under shear
determined by confocal microscopy. Confocal microscopy
allows us to image colloids during the step rate experiments and
hence to follow shear-induced changes in the dynamics of the
large particles, which are uorescently labelled. Based on the
particle trajectories in the velocity-vorticity plane, (xi(t), yi(t)),
transient mean squared displacements in the vorticity direc-
tion, dy2, are calculated for different waiting times tw aer
application of shear:

dy2(t, tw) ¼ h(yi(t + tw) � yi(tw))
2ii, (2)

where the average runs over all large particles i in the eld of
view, but not the waiting time tw (eqn (1)). In the vorticity
(neutral) direction contributions of affine particle motions are
absent, and thus do not affect an investigation of the effects of
shear on the Brownian motion of the particles. The particle
dynamics can only reliably be determined using particle
tracking if the particles move less than about a tenth of their
radius between two successive frames. This limits the shear
rates _g or Péclet numbers Pe _g to 10�2 < Pe _g < 1, which corre-
sponds to the regime where Brownian motion signicantly
contributes to yielding and stress relaxation (Fig. 7a and b).

Aer shear is switched on, a steady-state develops. The cor-
respondingMSDs in the steady-state are reported in Fig. 9 (thick
color lines), together with the MSDs in the quiescent state (thick
black lines). Compared to the quiescent state, the steady-state
MSDs exhibit stronger localization at short times, but also faster
long-time dynamics, namely a signicantly increased long-time
diffusion coefficient Dsteady

L , which increases with increasing Pe _g

for all compositions xs (Fig. 10a). The increase in Dsteady
L corre-

sponds to shear thinning and is in agreement with previous
studies on one-component glasses8,9,14,15,50 and measurements
This journal is © The Royal Society of Chemistry 2014
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Fig. 9 Mean squared displacement in the vorticity direction dy2 for
different compositions xs and Péclet numbers. (a) xs ¼ 0.1, Pe _g ¼ 0.24
(red), (b) xs ¼ 0.3, Pe _g ¼ 0.24 (red), 0.08 (blue), (c) xs ¼ 0.5, Pe _g ¼ 0.24
(red), 0.005 (blue), (d) xs ¼ 0.7, Pe _g¼ 0.035, and (e) xs¼ 0.9, Pe _g¼ 0.28
(red), 0.028 (blue), 0.003 (violet). The black lines correspond to the
MSDs in the quiescent state, thick lines to theMSDs in the steady-state,
and thin lines to transient MSDs at waiting time tw ¼ 0 and, where
present, at longer tw, increasing from bottom to top.

Fig. 10 (a) Steady-state diffusion coefficient Dsteady
L of the large

spheres, (b) amount of superdiffusion Dsteady
L /Dsdiff

L � 1 of the large
spheres at waiting time tw ¼ 0, and (c) magnitude of the cage
compression K ¼ dyshear

2/dyrest
2 � 1, as a function of xs. Different Pe _g

values are indicated according to the color scale. The error bars
represent variations between repeated measurements with same xs
and Pe _g.
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of a two-component glass with d ¼ 0.2 and xs ¼ 0.9.19 For the
largest Pe _g values, Dsteady

L as a function of xs presents a weak
maximum, and hence the fastest shear-induced dynamics, at
xs ¼ 0.3 (Fig. 10a). The same composition also exhibits the
fastest long-time dynamics of the large particles in the quies-
cent state (Fig. 2 and 3). In addition, this composition shows the
smallest gpeak (Fig. 6a), which indicates a link between facili-
tated yielding, i.e. a smaller yield strain, and fast dynamics in
the steady-state, i.e. a larger diffusion coefficient. This is
consistent with the observation that yielding requires a
minimum mean squared displacement, which is reached
earlier for faster dynamics. For the group of data at smaller Pe _g,
This journal is © The Royal Society of Chemistry 2014
Dsteady
L slightly decreases for xs $ 0.3, i.e. the steady-state

dynamics slows down with increasing xs. This seems to be
consistent with the slow-down of the dynamics in the quiescent
state and corresponds to the increase of gpeak (Fig. 6a), in
agreement with the proposed link between yielding and
dynamics in the steady-state.

In addition to the steady-state, the transient state following
switch-on of shear is investigated (Fig. 9, thin color lines). At
short delay times the transient MSDs moderately increase,
associated with a slight expansion of the cage, but they remain
below the quiescent MSD indicating tighter localization. At long
delay times, and for all waiting times, we observe relatively fast
diffusion, already with the steady-state diffusion coefficient
Dsteady
L . While Dsteady

L is reached already at the shortest waiting
time tw, it is reached at a relatively late delay time t, which
becomes increasingly shorter as tw increases. The steady-state
MSDs are recovered aer a waiting time t*w which depends on
the mixing ratio xs, and has apparently no relation with sshear,
different from one-component systems.13–15

At intermediate delay times a super-linear increase of the
MSDs is observed which indicates superdiffusion. The time
range with superdiffusion progressively disappears as tw
increases, but also depends on Pe _g and xs. The amount of
superdiffusion is quantied by Dsteady

L /Dsdiff
L � 1 with Dsdiff

L the
apparent diffusion coefficient at maximum superdiffusion,
estimated from the minimum of dy2/t vs. t (not shown). With
increasing xs, the amount of superdiffusion, Dsteady

L /Dsdiff
L � 1

increases for (almost) constant, large Pe _g (Pe _g ¼ 0.24 for xs ¼
0.1, 0.3, 0.5 and Pe _g ¼ 0.28 for xs ¼ 0.9, Fig. 10b orange/red
Soft Matter, 2014, 10, 6546–6555 | 6553
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color). As expected, this does not reect the dependence of the
stress overshoot, speak/ssteady � 1 (Fig. 6b), since the large
particles, whose dynamics is studied here, dominate the rheo-
logical response only for xs ( 0.5 (Section 3.4). However, the
increase in Dsteady

L /Dsdiff
L � 1 with xs might reect the decrease of

the localisation length at rest (Fig. 2, inset). This suggests that a
tighter localisation at rest leads to a more abrupt and
pronounced transition to ow once shear sufficiently deforms
the cage to allow particles to escape. The increase of the degree
of super-diffusion with increasing xs seems to become more
pronounced with increasing Pe _g (Fig. 10b). With increasing Pe _g,
Dsteady
L /Dsdiff

L � 1 increases for all xs and tw ¼ 0 s (Fig. 10b,
different colors). The Pe dependence is similar to the one of
Dsteady
L and the magnitude of the stress overshoot, speak/ssteady�

1 (Fig. 7b). This is consistent with the idea that speak/ssteady � 1
is related to the probability of particle collisions, which occur
more frequent as the dynamics becomes faster. Furthermore, it
suggests that a larger stored stress results in a more
pronounced super-diffusive response, in agreement with
similar ndings for one-component systems.15

At short delay times (t ( 1 s, range decreasing with
increasing tw), the MSDs are dominated by caging (Fig. 9). At
these times, the transient MSDs under shear remain below the
quiescent state, although they slightly increase with waiting
time tw toward the steady-state. Thus, shear results in a stronger
localisation of the large particles in the vorticity direction. The
magnitude of cage compression in the vorticity direction is
quantied by K¼ dyshear

2/dyrest
2 � 1, where dyshear

2 and dyrest
2 are

the value of the MSD under shear and at rest, respectively, at the
same time 0.015 s # t # 0.030 s (Fig. 10c). The magnitude of the
cage compression, |K| decreases from xs ¼ 0.1 to 0.3 and 0.5 to
0.9. Increasing xs from 0.1 to 0.3, and from 0.5 to 0.9, the local-
ization length of the large spheres at rest decreases (Fig. 2a,
inset). This implies that the cage is tighter and a smaller free
volume is available for compressing the cage, accordingly |K|
decreases. However, at xs ¼ 0.5, the cage is strongly compressed
although the localisation length at xs ¼ 0.5 is comparable to that
at xs ¼ 0.3 in the quiescent state (Fig. 2, inset). Nevertheless, for
xs ¼ 0.5 the cage is composed of small spheres which might
easier rearrange under shear and closely pack around the large
spheres than large spheres can. This supports the suggestion that
a qualitative change in caging occurs at xs z 0.5.

Moreover, K closely resembles the stress overshoot, speak/
ssteady � 1 (Fig. 6b), with both exhibiting only a limited
dependence on Pe _g (within the limited range of Pe _g investigated
by confocal microscopy). In particular, a large |K| corresponds
to a small speak/ssteady � 1 and vice versa. This suggests that
stress is partially released through irreversible cage compres-
sion, resulting in a smaller stress overshoot. In contrast, if stress
can not sufficiently be released through cage compression, it is
stored in the system. This storage of stress requires particle
movements beyond the cage size and involves several particles.
These large movements are related to the long-time diffusion of
the cage particles. Hence the relevant timescale is the dominant
long-time structural relaxation time ~tlong, consistent with the
conclusions based on the xs dependence of speak/ssteady � 1
(Section 3.4). This illustrates the importance of caging and the
6554 | Soft Matter, 2014, 10, 6546–6555
transition in caging. In contrast, yielding requires many parti-
cles to move, although each particle might only move on the
length scale of the cage. Moreover, the yield strain gpeak is a
relative, dimensionless quantity and hence insensitive to
whether the cage is formed by large or small spheres.

4 Conclusions

The addition of a second species to a one-component glass
results in the loosening of the cage. The transition between
caging by small and large particles, respectively, occurs at xs z
0.5.19,20 The degree of arrest is reected in the dynamics at
rest,19,20 and, as shown here, also under shear. We have shown
that under both conditions, at rest and under shear, the
mobility is maximum at xs z 0.3 (Fig. 2 and 10a).

The change in caging also affects the shear-induced cage
compression in vorticity direction, with the strongest compres-
sion at xsz 0.5 (Fig. 10c). This is attributed to the highmobility of
the small particles at xs z 0.5 allowing them to realize their
higher packing ability in the mixtures. In addition to this partic-
ular behaviour, in general the cage compression decreases upon
addition of small spheres, which is attributed to an increasingly
tighter cage at rest that leaves space for small cage compressions
only (Fig. 2, inset). A tight localisation at rest results in an abrupt
and pronounced transition to ow once shear-induced cage
deformations allow particles to escape. This transition is charac-
terised by transient superdiffusion (Fig. 9 and 10b).

Yielding appears to require Brownian motion beyond a
minimum excursion. When this excursion is reached depends
on the composition-averaged dynamics of the samples and the
shear rate. Slow glassy dynamics thus results in larger yield
strains gpeak, which is found to increase linearly with the shear
rate as long as _g hsshorti T 1 (Fig. 7a, inset). For the Brownian
motion to be effective, an affine shear deformation with gpeak T

10% seems necessary, which limits yielding at small shear rates.
We therefore suggest that different processes set a lower limit to
the yield strain gpeak at small and large shear rates, respectively.

Since stress is released during cage compression, the
magnitude of the stress overshoot is inversely related to the
degree of compression and the overshoot linked to super-
diffusion. Storage of stress requires rearrangements and
particle movements which, in contrast to the processes during
yielding, extend signicantly beyond the cage and thus occur on
the structural relaxation time ~tlong of the caging species, that is
the large spheres for xs( 0.5 and the small spheres for xsT 0.5.

In future work, the macroscopic rheological behaviour and
the microscopic single-particle dynamics need to be related to
the evolution of the microscopic structure during the applica-
tion of shear, similar to the link established in one-component
glasses.9
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