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Interplay between microdynamics and
macrorheology in vesicle suspensions

Badr Kaoui,*ab Ruben J. W. Jonkb and Jens Hartingbc

The microscopic dynamics of objects suspended in a fluid determines the macroscopic rheology of a

suspension. For example, as shown by Danker and Misbah [Phys. Rev. Lett., 2007, 98, 088104], the

viscosity of a dilute suspension of fluid-filled vesicles is a non-monotonic function of the viscosity

contrast (the ratio between the viscosities of the internal encapsulated and the external suspending

fluids) and exhibits a minimum at the critical point of the tank-treading-to-tumbling transition. By

performing numerical simulations, we recover this effect and demonstrate that it persists for a wide

range of vesicle parameters such as the concentration, membrane deformability, or swelling degree. We

also explain why other numerical and experimental studies lead to contradicting results. Furthermore,

our simulations show that this effect even persists in non-dilute and confined suspensions, but that it

becomes less pronounced at higher concentrations and for more swollen vesicles. For dense

suspensions and for spherical (circular in 2D) vesicles, the intrinsic viscosity tends to depend weakly on

the viscosity contrast.
I. Introduction

Rheological properties of complex uids (e.g. suspensions or
emulsions) are not yet fully understood. Their macroscopic
behavior is tightly coupled in a non-trivial way to the dynamics
of their components at the microscale. Understanding this
interplay is of importance for many fundamental and practical
applications. Many constitutive laws have been proposed since
the pioneering works of Einstein1 and Batchelor2 for the
rheology of suspensions, in particular for rigid particles.
Suspensions of uid-lled deformable objects are a sub-class of
complex uids for which rheology depends on the deformability
of the suspended particles and on the nature of the uid they
encapsulate. The most known and studied case is blood. How
blood ows results from the micro-structuration of its compo-
nents, mainly red blood cells (RBCs). For example, the
Fåhræus–Lindqvist3 effect in blood vessels – the blood viscosity
decreases with the vessel width is reduced – is caused by the
lateral migration of RBCs towards the center of the vessel.
Another example is the effect rst proposed by Danker and
Misbah4 which is observed for dilute suspensions of vesicles:
following from the dynamical state of each vesicle at the
microscale, the shear viscosity of the suspension varies in a non-
monotonic way as a function of the viscosity contrast L (the
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ratio between the viscosities of the suspending and the encap-
sulated uids).

Vesicles undergo mainly two states of motion under shear
ow: either tank-treading (the particle assumes a steady angle
with the ow direction, while its membrane undergoes a tank-
treading-like motion) or tumbling (the particle rotates around its
center of mass).5 At lower viscosity contrasts, a particle tank-
treads (TT) and at higher viscosity contrasts it tumbles (TB). One
way to trigger the transition from TT to TB is by solely increasing
L beyond a threshold LC. At this critical point, the viscosity of
the suspension changes from a decreasing to an increasing
function of L. Danker and Misbah predicted this effect theo-
retically4 and it was later conrmed experimentally6 and
numerically using the boundary integral method.7–10 A similar
trend was also observed for RBCs6 and capsules.11 However,
recent numerical simulations by Lamura and Gompper12 (based
on the multi-particle collision dynamics method) did not
capture this effect. Instead, the viscosity is found to be a
monotonically increasing function of the viscosity contrast in
the range 1 # L # 10, somehow similar to the rheological
behavior of an emulsion.7,13 In the same range ofL, experiments
of Kantsler et al.14 revealed also a monotonic behavior of the
viscosity, but as a purely decreasing function of L. Thus, there is
an apparent contradiction between different studies regarding
the dependency of the vesicle suspension viscosity on the
viscosity contrast.

In the present paper we recheck independently for the exis-
tence of the Danker–Misbah effect using an alternative simu-
lation technique based on the lattice-Boltzmann and the
immersed boundary methods.15,16 As in ref. 12 we consider a
Soft Matter, 2014, 10, 4735–4742 | 4735
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conned geometry and a non-zero Reynolds number. The main
observable is the intrinsic viscosity h and the main control
parameter is the viscosity contrast L. We study how the depen-
dence of h on L changes when varying the concentration f, the
capillary number Ca (via the membrane rigidity) and the
swelling degree D. We capture the non-monotonic behavior of
the viscosity as proposed by Danker and Misbah and nd that it
persists even when varying f, Ca or D. It only becomes less
pronounced for denser suspensions or for very swollen vesicles,
but it does not show a monotonically increasing/decreasing
behavior with L as reported in ref. 12 and 14. We explain this
disagreement and provide insight into the origins that lead to
this apparent contradiction.
II. Simulation method

We only give a short overview on the algorithm and refer to our
previous articles for more details.15–17
Fluid dynamics

The dynamics of the involved uids is simulated using the
lattice-Boltzmann method (LBM).18,19 The LBM is based on a
discrete version of Boltzmann's equation and recovers the
solutions of the Navier–Stokes equations in the limit of small
Knudsen and Mach numbers. Our implementation combines
the standard nine velocity model in two dimensions (D2Q9)
with a single relaxation time Bathnagar–Gross–Krook collision
scheme. The computational domain is a channel with length Lx
and height Ly. At the inlet and outlet of the channel, periodic
boundary conditions are imposed. At the bottom a mid-grid
bounce back no-slip boundary is set. The top no-slip boundary
is translated from le to right with a steady velocity utw ¼ Lyg,
where g is the shear rate.
Vesicles

Vesicles are closed lipid membranes. They encapsulate an
internal uid and are suspended in an external uid. Their
membrane experiences resistance towards bending and com-
pressing/stretching deformation modes. This gives rise to a
restorative force which in 2D is given by

fðsÞ ¼
�
k

�
v2c

vs2
þ c3

2

�
� cz

�
nþ vz

vs
t: (1)

Here, c is the local membrane curvature, k is the bending
modulus (the membrane rigidity), and s is the arclength coor-
dinate along the membrane. n and t are the normal and
tangential unit vectors, respectively. z is the effective tension
eld that enforces the local inextensible character of the
membrane, which leads to the conservation of the vesicle
perimeter P. A detailed derivation of the membrane force can be
found in ref. 20. In addition, we consider that the uids,
inside and outside the vesicles, to be incompressible Newtonian
uids. This latter leads to the conservation of the vesicle
enclosed area A.
4736 | Soft Matter, 2014, 10, 4735–4742
Viscosity contrast

The viscosity contrast L is dened as the ratio of the internal to
the external uid viscosities. Here, we restrict ourselves to 1# L

# 20. In order to achieve this numerically, the LBM relaxation
time, that is related to the viscosity,19 is adjusted depending on
whether a uid node is located inside or outside a vesicle using
the even-odd rule.16

Vesicle-uid coupling

We couple the uid ow and the vesicle dynamics using the
immersed boundary method (IBM):21 an Eulerian regular xed
mesh represents the uid, while the vesicles are modeled as
Lagrangian moving meshes. The rst step consists in
computing the uid ow with the LBM, as if the membrane
does not exist. Then, the velocity of each membrane point is
computed by interpolation of the velocities of its surrounding
uid nodes. The membrane is advected, deformed and adopts a
new out-of-equilibrium shape. Aerwards, the restoring
membrane force (eqn (1)) is evaluated and exerted on the
surrounding uid. These two steps provide a uid-structure
two-way coupling causing the motion of the vesicles and the
disturbance of the externally applied ow.

Rheology

The effective viscosity h* of a suspension – consisting of the
suspending uid and its suspended vesicles – under shear ow
is calculated using

h*ðtÞ ¼
�
sxyðtÞ

�
g

; (2)

where hsxy(t)i are the hydrodynamic stresses averaged on the
bounding walls,15

�
sxyðtÞ

� ¼ 1

2Lx

ðLx

0

sxyðx; tÞdx: (3)

We introduce the dimensionless quantity,

hðtÞ ¼ h*ðtÞ � h0

h0f
; (4)

where h0 is the viscosity of the external suspending uid and f

the concentration of the vesicles. h(t) measures the deviation of
h* (the viscosity of the uid in the presence of the vesicles) from
h0 (the viscosity of the uid in the absence of vesicles)
normalized by the quantity h0f. Following ref. 6 and 12, we call
this quantity the intrinsic viscosity, even though we use it not
only in the very dilute limit. Other authors rather call it the
normalized effective viscosity10 or the normalized suspension
viscosity.14 We further use the average of h(t) over time

h ¼ hhðtÞi ¼ 1

tf � ts

ðtf
ts

hðtÞdt: (5)

The rst ts ¼ 3 � 105 timesteps (gts ¼ 62.49) are ignored in
order to assure that the system has reached a quasi-steady
regime. Data is then taken until the nal timestep tf¼ 106 (gtf¼
This journal is © The Royal Society of Chemistry 2014
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208.3). In this time interval [ts, tf] the system is in the quasi-
steady regime in all simulations – independent of the chosen
values of the input parameters. This quasi-steady regime is
characterized by uctuations of the instantaneous intrinsic
viscosity around an average value.
Parameters

We consider a simulation box with size Lx ¼ Ly ¼ 200 (lattice
units) that represents the suspending uid and boundary
conditions as introduced above. In all simulations, we generate
a linear shear ow with a xed shear rate g ¼ 2.083 � 10�4 (lu).
N vesicles which are characterized by their effective radius R0 ¼
20 (lu) and their swelling degree D ¼ 4pA/P2 (in 2D) are placed
inside the box. The swelling degree is kept at D ¼ 0.8 if not
stated otherwise. The conservation of P and A in our numerical
scheme is achieved using: (i) the Lagrangian multiplier eld in
eqn (1): z(s, t)¼ kP[Ds(s, t)� Ds(s, t0)], where Ds(s, t) and Ds(s, t0)
are the distance between two adjacent membrane nodes at time
t and t0, respectively (ii) even though the enclosed uid is to
good approximation an incompressible Newtonian uid, slight
variations of A are observed because of numerical errors.15 To
further ensure the conservation of A an additional term kA(A �
A0)n is introduced in eqn (1), where A0 is the initial area of a
vesicle. We set kP ¼ 3 (lu) and kA ¼ 0.01 (lu).

Below we present our results as a function of six dimen-
sionless control parameters:

(1) The Reynolds number Re¼ r0gR0
2/h0, which quanties the

importance of the inertial forces versus the viscous forces; r0 is
the density of the suspending uid. We keep Re ¼ 0.5 in all
simulations.

(2) The capillary number Ca ¼ h0gR0
3/k, which gives the ratio

between viscous and bending forces. Ca is a measure for the
deformability of a vesicle. Larger Ca leads to larger
deformations.

(3) The viscosity contrast L.
(4) The concentration f of the vesicles in a suspension f¼ NA/

LxLy.
(5) The swelling degree D.
(6) The degree of connement c ¼ 2R0/Ly ¼ 0.2. For this degree

of connement, the tank-treading-to-tumbling transition is
expected to take place at a value of LC ¼ 7.8.16
III. Results
A. Rheology of a uid containing a single vesicle

We validated our computational method against the case of a
single isolated vesicle (N ¼ 1) which corresponds to the limit of
a very dilute suspension (f / 0). This case was previously
studied numerically by Ghigliotti et al.7,22 in 2D and in the limit
of unbounded ow (c ¼ 0).

Here, we place a vesicle with D ¼ 0.8 in a channel with
connement c ¼ 0.2. We use the inclination angle q – the angle
between the ow direction and the main long axis of the vesicle
– as an order parameter to classify if a vesicle is in the TT (q is
steady in time) or in the TB state (q varies periodically in time).
Fig. 1a shows the evolution in time (gt) of the inclination angle q
This journal is © The Royal Society of Chemistry 2014
of a vesicle in the TT state (L ¼ 4) and another one in the TB
state (L¼ 16). We compute the instantaneous intrinsic viscosity
h(t) of the uid suspending each of these two vesicles using eqn
(4) and we show in Fig. 1b how h(t) evolves in time. The vesicle
in the TT state performs a steady motion, therefore, the
hydrodynamic stresses exerted on the bounding walls remain
also steady in time. This is why h(t) does not change in time for a
tank-treading vesicle. For the tumbling vesicle, the hydrody-
namic stresses on the walls vary periodically in time with the
same frequency as the inclination angle q. This is the reason for
the viscosity exhibiting a time-dependent behavior for a
tumbling vesicle. The rheological behavior and its correlation
with the dynamics reported in Fig. 1 are consistent with the
results of ref. 7.

Using eqn (5) we obtain the average intrinsic viscosity h

which is reported as a function ofL in Fig. 2. The horizontal line
at h ¼ 2 is the Einstein coefficient ref. 1 in 2D (ref. 7) (the
intrinsic viscosity of an unbounded uid suspending a single
rigid spherical particle). We see that h behaves differently
depending on whether the vesicle performs TT or TB. h

decreases with L in the TT regime, because q decreases with L.
The vesicle aligns with the ow direction and thus its
surrounding uid experiences less resistance. h continues to
decrease with L until it drops down to a minimum at exactly LC,
the critical viscosity contrast at which the TT–TB transition
occurs. Beyond this critical point, in the tumbling regime, h
increases again with L. For a tumbling vesicle, the viscous
dissipation and the stresses on the walls increase with L. This
leads to the increase of h with L. Fig. 2 clearly shows that the
intrinsic viscosity h of a uid containing a single vesicle is a
non-monotonic function of the viscosity contrast L. It is a
decreasing function in the TT regime and an increasing func-
tion in the TB regime. It changes its behavior at a minimum that
coincides with the critical transition point of the TT–TB tran-
sition. This observation agrees (qualitatively) with the previous
analytical work of Danker and Misbah4 and the numerical work
of Ghigliotti et al.7 In contrast to the work of those authors our
Reynolds number Re ¼ 0.5 is not zero and the vesicle is
conned (c ¼ 0.2), but we also recover the predicted non-
monotonic behavior of h versus L.
B. Effect of concentration f

The concentration f of a suspension is varied by increasing/
decreasing the number of its vesicles N, while keeping the size
of the simulation box constant. We consider three suspensions
with concentrations f ¼ 7.5%, 15.1% and 22.6% corresponding
to 3, 6 and 9 vesicles, respectively. Aer the system has reached
a quasi steady state, we measure the intrinsic viscosity h(t).
Fig. 3 depicts how h(t) evolves in time for two suspensions
having the same f¼ 15.1%, but different viscosity contrast: L¼
4 and 16. For both cases, h(t) evolves in an unsteady way, even
for the non-tumbling vesicles (for L ¼ 4). It largely uctuates
and sometimes shows higher sharp peaks. These uctuations
are correlated with how the vesicles rearrange themselves in
response to the applied ow. Fig. 4 shows snapshots taken at
equal time intervals displaying the motion of vesicles with L ¼
Soft Matter, 2014, 10, 4735–4742 | 4737
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Fig. 1 (a) Evolution in time (rescaled time gt) of the inclination angle q (in degrees) of two vesicles: one in the TT state (L¼ 4) and the other one in
the TB state (L ¼ 16). The tank-treading vesicle assumes a steady inclination angle while the tumbling vesicle assumes a periodic angle. (b) The
corresponding evolution in time of the instantaneous intrinsic viscosity h(t) in the TT state (L¼ 4) and in the TB state (L¼ 16). The vesicle in the TT
regime performs steady motion and so does its viscosity. For the TB vesicle, the viscosity evolves in a periodic manner in time. The two figures
recover qualitatively the same behavior as reported in ref. 7 computed with 2D boundary integral method simulations, in the limit of an
unbounded suspending fluid (c ¼ 0). Here, the confinement is set to c ¼ 0.2. Other parameters are: Re ¼ 0.5, Ca ¼ 10, D ¼ 0.8.

Fig. 2 The intrinsic viscosity h of a fluid suspending a single vesicle
versus the viscosity contrast L. As L increases in the TT regime h

decreases until it reaches a minimum at a value of L that corresponds
to the point of the transition from TT to TB. Beyond this critical value, h
increases with L in the TB regime. This non-monotonic behavior of h
towards increasing L agrees with the analytical and numerical works
performed in the unbounded limit (c¼ 0) and for a single vesicle (dilute
limit f/ 0).4,7 The horizontal line at h ¼ 2 is the Einstein coefficient in
2D.1,7 Other parameters: Re ¼ 0.5, Ca ¼ 10, D ¼ 0.8 and c ¼ 0.2.

Fig. 3 Evolution in time of the instantaneous intrinsic viscosity h(t) of
two suspensions with the same concentration f ¼ 15.1% (that corre-
sponds to 6 vesicles), but with different viscosity contrast: L ¼ 4 and L

¼ 16. h(t) fluctuates because of the motion and the ordering of the
vesicles in response to the applied external shear flow. The large peaks
in h(t) are caused by the events of the vesicle–vesicle and vesicle–wall
hydrodynamic collisions. Other parameters: Re¼ 0.5, Ca¼ 10,D¼ 0.8
and c ¼ 0.2.
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4. For this low viscosity contrast, vesicles are in the tank-
treading state. They pass each other while assuming almost the
same steady inclination angle. Collisions of hydrodynamic
nature occur occasionally and become more frequent upon
increasing concentration f. When two vesicles collide, as is the
case for the red- and the blue-colored vesicles in Fig. 4, their
respective inclination angle reaches a maximum at the moment
of the collision (see Fig. 4c and d) as observed also experi-
mentally.14,23 This event increases the ow resistance, which is
amplied by the presence of the bounding walls. Here, the two
interacting vesicles have no way to move farther away from each
4738 | Soft Matter, 2014, 10, 4735–4742
other, in contrast to the case of unbounded suspensions. Thus,
they collide later with other neighboring vesicles or with the
walls. This latter effect results in exerting rm stresses upon the
walls and causes the peaks of h(t) observed in Fig. 3. In Fig. 5, we
show snapshots for the suspension with L ¼ 16, a higher value
for which vesicles are expected to undergo tumbling. However,
we can clearly see that vesicles do not have sufficient free space
around them to tumble. Each vesicle is surrounded and
hindered by others. Thus, vesicles are forced to undergo the
tank-treading motion, although they would tumble in free
space. The area available for vesicles to tumble reduces
dramatically when increasing f. In the time window
This journal is © The Royal Society of Chemistry 2014
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Fig. 4 Snapshots taken at equal time intervals showing the motion of six vesicles (f ¼ 15.1%) with a viscosity contrast L ¼ 4 in shear flow. The
flow direction is from left to right. The background color map shows the pressure field that develops around the vesicles. Red-colored regions
correspond to regions with higher pressure, while blue-colored ones corresponds to lower pressure. The two blue- and red-colored vesicles
undergo a hydrodynamic collision. All vesicles perform TT with a steady prolate shape and assume almost the same steady positive inclination
angle. Only the angles of the colliding vesicles vary and reach amaximum at themoment of the collision (d). Other parameters: Re¼ 0.5, Ca¼ 10,
D ¼ 0.8 and c ¼ 0.2.

Fig. 5 Snapshots taken at equal time intervals showing the motion of six vesicles (f ¼ 15.1%) with viscosity contrast L ¼ 16 in shear flow. The
background color map shows the pressure field that develops around the vesicles. In the time window shown here, all vesicles undergo TT
except the one colored in red. For L ¼ 16, vesicles are expected to tumble, but because of the confinement and the vesicle–vesicle hydro-
dynamical interaction, the tumbling motion is inhibited. All vesicles adhere to shapes which largely deviate from the prolate shape a free vesicle
would adopt. These shapes result on the one hand from the collisions that lead to deformations and on the other hand from the long time they
require to recover their equilibrium shape. Another observed feature is the formation of a rouleau-like structure of a given number of vesicles that
performs a collective tumbling motion. When the main axis (dashed line) of this chain of vesicles is perpendicular to the bounding walls it results
in an increased effective viscosity.
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represented in Fig. 5 only one vesicle is tumbling (the red-
colored vesicle in the top-half of the simulation box). Another
observed feature in Fig. 5 is the formation of a rouleau-like
structure of a given number of vesicles that performs a collective
tumbling motion. When the main axis (dashed line) of this
chain of vesicles is perpendicular to the bounding walls it
results in an increased effective viscosity. The formation of the
rouleau-like structure is not a usual behavior. For example, it
has not taken place in the simulation presented in Fig. 4.

In Fig. 6 we report the intrinsic viscosity h versus the viscosity
contrast L for three different concentrations: f ¼ 7.5%, 15.1%
and 22.6%. Further, we provide the data corresponding to the
case of a single vesicle (f ¼ 2.5%) as a reference. We observe
that by increasing the concentration, the intrinsic viscosity
increases. The curve of h versusL shis towards higher values of
h. The more vesicles we have, the higher is the chance for
This journal is © The Royal Society of Chemistry 2014
vesicle–vesicle and vesicle–wall collisions, which leads to an
increase of the ow resistance. By increasing f, L at which h

reaches a minimum changes the value without a clear trend.
This is not consistent with the observation in ref. 9 stating that
the minimum of h occurs at higher L with increasing f.
However, Fig. 1 in ref. 6 clearly demonstrates that the minimum
of the viscosity of red blood cell suspensions occurs at lower L
with increasing f. The non-increasing behavior of h as a
function of f observed here and in ref. 6 maybe attributed to the
low swelling degree of our vesicles D ¼ 0.8 and of the red blood
cells D ¼ 0.65, in contrast to the vesicles used in ref. 9 which
have D ¼ 0.90.

The transition from decreasing to increasing behavior of h as
a function of L becomes less pronounced for larger f. If we
extrapolate the trend of h versus L to higher values of f (the
limit of dense suspensions) we expect h to be an almost
Soft Matter, 2014, 10, 4735–4742 | 4739
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Fig. 6 The intrinsic viscosity h versus the viscosity contrast L of four
suspensions with concentrations f ¼ 2.5%, 7.5%, 15.1% and 22.6%. The
vertical lines denote the minima of the curves. For every given value of
L, a suspension becomes more and more viscous with increasing f.
For the dense suspension (f¼ 22.6%), the non-monotonic behavior of
h with L is less pronounced. Furthermore, the viscosity contrast of the
minimum of h does not vary in a monotonic way with f. Other
parameters: Re ¼ 0.5, Ca ¼ 10, D ¼ 0.8 and c ¼ 0.2.

Fig. 7 The rescaled vesicle-free boundary layer d/R0 versus the
viscosity contrast L of three suspensions with concentrations f ¼
7.5%, 15.1% and 22.6%. For all three concentrations, d/R0 increases for
low L and then decreases for high L. Its maximum coincides neither
with the critical viscosity contrast of the tank-treading-to-tumbling
transition nor with the minimum of the intrinsic viscosity. It does shift
towards lower values of L with increasing f. Other parameters: Re ¼
0.5, Ca ¼ 10, D ¼ 0.8 and c ¼ 0.2.
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constant function that does not depend on L. At a higher
concentration (f ¼ 22.6%), we observe a continuous cross-over
from vesicles with lower to the ones with higher viscosity
contrast. For denser suspensions, the tumbling is inhibited
because of the vesicle–vesicle and vesicle–wall hydrodynamic
interactions (collisions) that become more frequent. In this
limit, the details of the dynamics of each individual vesicle are
irrelevant to the rheology of vesicle suspensions.

For each concentration, we also measure the thickness of the
vesicle-free boundary layer d dened as the thickness of the gap
that develops between the wall and the core vesicle-rich region
of a suspension. The vesicle-free boundary layer is due to the
wall-induced li force that pushes vesicles away from the wall
and results in their complete absence close to the wall. In Fig. 7
we report d (averaged in time and scaled by the vesicle size)
versus the viscosity contrast L for three suspensions with
concentrations f ¼ 7.5%, 15.1% and 22.6%. For these three
concentrations, d/R0 is a non-monotonic function of L. It
increases for low L and then decreases for high L. Its maximum
increases with increasing f and it does shi towards lower
values of L. The maximum of d coincides neither with the
critical viscosity contrast of the tank-treading-to-tumbling
transition nor with the minimum of the intrinsic viscosity. This
means that the intrinsic viscosity and the vesicle-free layer
thickness are not correlated. Therefore, the non-monotonic
behavior of h with L, which we capture in our study, is tightly
correlated with the vesicle dynamics and not with the vesicle-
free boundary layer thickness as is the case in ref. 12.
Fig. 8 The intrinsic viscosity h versus the viscosity contrast L of four
suspensions with different capillary numbers Ca: 0.5, 1, 5 and 10. The
deformability of the vesicles does not have any notable effect on the
macroscopic viscosity of the suspension. Other parameters: Re ¼ 0.5,
D ¼ 0.8, c ¼ 0.2 and f ¼ 15.1%.
C. Effect of deformability Ca

The capillary number, Ca ¼ h0gR0
3/k, controls how the shape of

a vesicle deforms in response to an applied external ow.
Vesicles deform less when Ca � 1 (limit of stiffer vesicles) and
4740 | Soft Matter, 2014, 10, 4735–4742
undergo larger deformation when Ca [ 1. We vary Ca by
varying only the membrane rigidity k. In this way, all other
parameters and in particular the shear rate g are hold constant
assuring also a constant Reynolds number (Re ¼ 0.5).

In Fig. 8, we report the intrinsic viscosity h versus the
viscosity contrast L, for suspensions with concentration f ¼
15.1% and with different capillary numbers: Ca ¼ 0.5, 1, 5 and
10. It appears that the vesicle deformability (Ca) does not have
any substantial effect on the viscosity of a suspension. h still
varies in a non-monotonic way with L, but without any signif-
icant quantitative change when varying Ca. This is consistent
with the results of ref. 7 and 9. Stiffer vesicles assume almost a
similar steady inclination angle as deformable vesicles when
This journal is © The Royal Society of Chemistry 2014
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tank-treading. For deformable vesicles, they tumble in an
almost similar manner as stiffer vesicles; their tumbling
period is less affected by the shape deformability. Ca affects
the shape deformation but not as much the dynamics. More-
over, in 2D simulations, perfectly inextensible vesicles (the
perimeter is kept constant) do not exhibit vacillating-
breathing motion (trembling) observed theoretically and
numerically for their 3D counterparts. The absence of this
dynamical state of motion in 2D (direct transition from TT to
TB even at higher Ca) is a further explanation of why h is
insensitive to variations in Ca. That h does not depend on Ca
means that the vesicle suspensions we study behave like a
Newtonian uid. A Ca-induced dynamical transition or Ca-
induced variation of the free-vesicle boundary thickness are
expected to lead to non-Newtonian behavior. For example, the
vesicle suspensions studied in ref. 12 are non-Newtonian
uids exhibiting shear-thinning behavior.
D. Effect of the swelling degree D

To investigate how the rheology of a suspension of vesicles is
affected by varying the swelling degree D, we consider mono-
disperse suspensions consisting of 6 vesicles with size R0. The
swelling degree D ¼ 4pA/P2 is varied by swelling (deating)
vesicles, that is in 2D, by increasing (decreasing) A while
holding the perimeter P of the vesicles constant. This
change in the enclosed area effectively leads to a slight
modication of the concentration: f ¼ 0.13% for D ¼ 0.7, f ¼
0.15% for D ¼ 0.8, f ¼ 0.17% for D ¼ 0.9 and f ¼ 0.19% for D
¼ 1. All other parameters are similar to the above sections,
except for Ca. Here, we opt for a smaller value (Ca ¼ 0.5) in
order to be able to capture the effect of vesicle shape (via D)
while excluding the contribution of the shape deformation
(induced by larger Ca).

In Fig. 9 the intrinsic viscosity h versus the viscosity contrast
L is reported for various swelling degrees D: 0.7, 0.8, 0.9 and 1.
Fig. 9 The intrinsic viscosity h versus the viscosity contrast L of four
suspensions with swelling degrees D ¼ 0.7, 0.8, 0.9 and 1. h increases
withD and its minimum shifts towards higher values ofL. ForD¼ 1, h is
a constant and does not depend on L. Other parameters: Re ¼ 0.5, Ca
¼ 0.5, and c ¼ 0.2.

This journal is © The Royal Society of Chemistry 2014
Again, we observe the same non-monotonic trend of h as a
function of L with a minimum. Here, h shis upwards when
increasing D. This is due to the increase of the ow resistance
for more swollen vesicles D / 1 (the limit of circular-shaped
vesicles in 2D). This observation agrees perfectly with the
rheology of a single vesicle without viscosity contrast (L ¼ 1): h
is an increasing function of D.22 This was explained by the fact
that the steady inclination of a tank-treading vesicle increases
with D. However, for tumbling vesicles with viscosity contrast
(see Fig. 9), the increase in h for larger D maybe attributed to
the high tumbling frequency of less deated vesicles, which
favors rotation of vesicles and thus decreases the ow resis-
tance. Moreover, we observe that the point of the minimum
shis to the right for larger D: deated vesicles are more
subject to tumbling motion than swollen vesicles. This agrees
with the fact that the critical viscosity for a single vesicle
increases with D.5 For D ¼ 1 (circular vesicles in 2D), vesicles
behave like rigid (circular) particles for which TT or TB states
are meaningless, therefore, h does not exhibit the non-
monotonic behavior with L. Instead, it assumes a constant
value that is larger than the Einstein coefficient (h ¼ 2),
because of the inuence of connement and interaction
between particles.

IV. Discussions and conclusions

In this article, we presented numerical simulations of the
rheological behavior of vesicle suspensions under shear ow as
a function of the viscosity contrast (the ratio between the
viscosities of the encapsulated and the suspending uids). Our
two-dimensional uid-structure simulations are based on a
combination of the lattice-Boltzmann and the immersed
boundary methods. The method has been benchmarked
against previous works performed for the case of a single iso-
lated vesicle suspended in unbounded creeping ow.4,7 As those
authors, we recover the non-monotonic behavior of the intrinsic
viscosity versus the viscosity contrast – even in the presence of
bounding walls and at non-zero Reynold number. In contrast to
a recent work by Lamura and Gompper12 we found that the
effect proposed by Danker and Misbah4 persists even for non-
dilute suspensions of vesicles and when we vary the deform-
ability and the swelling degree of the vesicles. The effect
becomes less pronounced at higher swelling degrees and at
higher concentrations (limit of dense suspensions) where the
tumblingmotion is inhibited. This can be understood by means
of the vesicle–vesicle and vesicle–wall hydrodynamic collisions
that then become more important.

Let us now close the question about the origin of the
apparent contradicting behaviors of the intrinsic viscosity
versus the viscosity contrast (1 # L # 10) reported in different
studies:4,6–10,12,14 if we disregard errors in the measurements,
numerical artifacts or the contribution of thermal uctuations,
the inuence of the wall connement remains the main
possible origin. Weak connements, for example, c ¼ 0 in ref. 7
and 9 or c¼ 0.2 in the present work, allow for the tank-treading-
to-tumbling transition to take place. This dynamical transition,
triggered solely by increasing the viscosity contrast, is the main
Soft Matter, 2014, 10, 4735–4742 | 4741
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responsible mechanism for the non-monotonic behavior of the
intrinsic viscosity we observe. Increasing connement delays
the transition to the tumbling motion,16 as for example, in cone-
plate rheometers.24 This explains why in ref. 14 the intrinsic
viscosity does not show an increasing behavior. The minimum
(the transition point) is in fact expected to occur at higher values
of the viscosity contrast. The authors even mentioned that their
last data point, taken at L ¼ 10, deviates from the decreasing
monotonic behavior of the viscosity. For these experiments, one
would capture the minimum and the increasing behavior of the
intrinsic viscosity just by further increasing the viscosity
contrast beyond L ¼ 10. However, the data in ref. 12 are
obtained at higher degrees of connement (c ¼ 0.30 and 0.35).
The walls are so close that they strongly inuence the dynamics
and the microstructures formed by the vesicles. In our case,
such higher connements do not even allow for the tank-
treading-to-tumbling transition to take place at L < 7.8.16 In ref.
12 the interplay between the wall-induced li force and
increasing the viscosity contrast causes the vesicle-free
boundary layer to become narrower, and results in higher
intrinsic viscosity. This is similar to the Fåhræus–Lindqvist
effect.3 Therefore, the observed monotonic increasing behavior
of the intrinsic viscosity with the viscosity contrast in ref. 12 is
mainly due to the variation of the vesicle-free boundary layer
thickness, and not due to the vesicle dynamical transition as is
the case for the Danker–Misbah effect. For these simulations,
the wall effects are dominant and hide the contribution of the
vesicle dynamical transition. Thus, in order to capture the
Danker–Misbah effect one should decrease connement to
lower values, as is done in the present work.
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