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Mode-coupling analysis of residual stresses in
colloidal glasses

S. Fritschi,a M. Fuchsa and Th. Voigtmann*abc

We present results from computer simulation and mode-coupling theory of the glass transition for the

nonequilibrium relaxation of stresses in a colloidal glass former after the cessation of shear flow. In the

ideal glass, persistent residual stresses are found that depend on the flow history. The partial decay of

stresses from the steady state to this residual stress is governed by the previous shear rate. We

rationalize this observation in a schematic model of mode-coupling theory. The results from Brownian-

dynamics simulations of a glassy two-dimensional hard-disk system are in qualitative agreement with the

predictions of the theory.
1 Introduction

Amorphous so solids that are produced by owing them into
shape (entailing a quench into a nonequilibrium glassy state)
display residual stresses.1,2 The internal stresses that build up
during ow do not relax fully, so that some part of them persists
in the solid that is formed by kinetic arrest in the uid; indef-
initely, in the ideal-glass case. This was recently demonstrated
qualitatively for a simple setup where glass-forming colloidal
suspensions of nearly-hard-sphere particles were observed aer
cessation of steady shear from their nonequilibrium stationary
state (NESS), combining macroscopic and microscopic experi-
ment, computer simulation, and mode-coupling theory of the
glass transition (MCT).1

In fact, the appearance of persistent residual stresses is
known empirically since centuries, and is neither restricted to
so solids, nor to amorphous ones. An early demonstration
involves small drops of molten (ordinary window) glass that fall
into cold water and thus solidify very rapidly. These drops,
known as Prince Rupert's drops or Dutch tears since the 17th
century,3 have a surprisingly shock-resistant body (capable of
withstanding the blow of a hammer) but explode dramatically
upon the slightest damage done to their tail. The high
mechanical stability arises from a shield of compressive
residual stresses along the drop's surface that compensates
high tensile stresses in the less rapidly cooled inner material
and acts to stop crack formation.3–5 Clipping the tail releases
this frozen-in network of residual stresses, rendering the
material less strong, and in this case even unstable.6 Under
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normal conditions, the residual-stress network on the other
hand is stable over decades in time. Safety glass and modern
smartphone cover glasses (where chemical processes are used
to impose residual stresses) exploit this effect to ne-tune the
desired mechanical properties of the product.7–9 Aside from the
amorphous state, residual stresses are decisive for the fatigue
crack growth and hence the long-term stability of railway rails
under the strong external forces caused by trains.10,11 One
encounters residual-stress related material phenomena even in
biophysics. For example the cytoskeleton of cells is prestressed
(mainly due to the action of myosin motors).12 The unsurpassed
material properties of spider silk are attributed to residual
stresses.13 The control of residual stresses during the produc-
tion stage is decisive in tuning the long-term stability of certain
thin polymer lms.14

Shear cessation experiments15,16 arguably provide the clean-
est setup to investigate residual stresses. Close to kinetic arrest,
cessation experiments have addressed the relaxation of
stresses17 and the evolution of linear viscoelastic moduli aer
the cessation of ow18,19 in laponite gels, and aging effects in
depletion gels.20 We consider even simpler model systems with
hard-sphere like interactions, at xed temperature and density,
initially subject to homogeneous, stationary simple-shear ow.
Residual stresses arise when the system does not relax back to
equilibrium aer cessation of the ow, but gets trapped in a
nonergodic state on the way. This is the case for (ideal) glasses,
the quiescent state of which is nonergodic, but which uidize
under shear, allowing the start of the cessation experiment from
a well-dened, unique NESS.

We seek to improve the rst-principles theoretical under-
standing of residual stresses: they are denitely a nonequilib-
rium and nonlinear-response effect, and are found to depend
strongly on the history of past material deformation. For colloidal
suspensions as model so solids, the combination of an inte-
gration-through transients (ITT) approach to the nonlinear
This journal is © The Royal Society of Chemistry 2014
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response with the mode-coupling theory of the glass transition
(MCT)21–24 allows us to address such issues starting from a
particle-based microscopic description. The theory predicts
shear-rate dependent residual stresses aer the cessation of
steady shear,1 in qualitative agreement with experiment and
simulation.

It should be stressed that the theoretical modeling of residual
stresses is far from trivial. A successful model used to describe the
nonlinear time-dependent rheology of so materials is the so
glassy rheology (SGR) model.25 Although it explicitly addresses the
aging dynamics of kinetically arrested solids, it implies the
relaxation of stresses back to zero aer cessation of ow.26

In this article, we discuss residual stresses in model hard-
sphere like glasses as explained by MCT. The theory predicts the
persistence of a non-relaxing component of the stress aer ow
cessation and captures its strong dependence on past ow
history and on the mechanism of yielding. We compare with
Brownian dynamics computer simulations on a two-dimen-
sional hard-sphere glass to test the predictions of the theory,
nding qualitative agreement.

This paper is organized as follows: we describe in Section 2
the schematic-MCT model and give details of the event-driven
Brownian-dynamics (ED-BD) simulations we performed. In
Section 3, the main results for the partial relaxation of stresses,
and their analysis using the schematic-MCT model is given.
Section 4 presents conclusions and outlook.

2 Methods

We discuss the evolution of the shear stress s(t) aer the
cessation of steady simple-shear ow with shear rate _g,
instantaneously switched off at time t¼ 0. The time is measured
in units of the free-particle Brownian relaxation time s0 ¼ d2/D0,
where d is the diameter of the particles (the unit of length) and
D0 is their free diffusion coefficient. Stresses are reported in
these natural units, kBT/d

D, where kBT is the energy associated
with thermal uctuations and D is the dimensionality (D¼ 2 for
our BD simulations, and D ¼ 3 for the theory, although this
difference in dimensionality is not borne out in the schematic-
MCT model).

Flow cessation is implemented in the theory by assuming
that instantaneously, for all t > 0, the (assumed) homogeneous
velocity-gradient eld vanishes everywhere. In our Brownian-
dynamics simulations, this is reected, but in comparison with
molecular-dynamics (MD) computer simulations in general, and
with experiment, one has to keep in mind that this is a simpli-
cation. If shear ow is imposed by moving boundaries, our
discussion refers to the case where these boundaries are
suddenly xed at their current position, and held there so that
no further strain relaxation is allowed. This is to be distin-
guished from zero-stress boundary conditions, where stress
relaxation by adjusting the total strain would occur in addi-
tion.27,28 We also neglect the effect of transiently inhomogeneous
ow elds as they might arise shortly aer stopping the ow.29

The transients should be associated with a comparatively short
timescale of transverse-momentum diffusion, as conrmed by
thermostatted MD simulations.30,31
This journal is © The Royal Society of Chemistry 2014
2.1 Theory

The integration-through transient32,33 approach to colloidal
rheology assumes that the system is at rest and in Boltzmann
equilibrium for the innitely distant past, t / �N. The ow is
subsequently switched on and causes a nonequilibrium
perturbation of the Smoluchwoski operator describing the
temporal evolution of the N-particle distribution function. A
formal manipulation allows us to derive the nonequilibrium,
nonlinear generalization of the Green–Kubo relationship for the
stress tensor.23,24 MCT inspires the subsequent approximation
in terms of density uctuations to wave vector~k. For the shear
stress in simple shear ow along the x-direction and with
gradient in the y-direction, one gets

sðtÞ
kBT

¼
ðt
�N

dt0
ð

d~k

16p3
_gðt0Þ kx

2kykyðt; t0Þ
kkðt; t0Þ

S0
kS

0
kðt; t0Þ

Sk
2

f
k
/ðt; t0Þ

2ðt; t0Þ:

(1)

Here, ~k(t, t0) ¼ ~k + kx~eygtt0 is the shear-advected wave vector,
describing the affine deformation of a plane-wave uctuation

through the accumulated strain gtt0 ¼
ðt
t0
_gðsÞds between two

points in time, t0 # t. For the case of shear cessation, we set
_g(t) ¼ _gQ(�t) with the Heaviside step function Q. Eqn (1)
consists of a history integral over transient density-correlation
functions f~k(t,t0)(t, t0) involving strain-dependent density–stress
coupling vertices that are given in terms of the quiescent static
structure factor Sk. The transient correlation function is dened
as the equilibrium average of uctuations evolved with the
nonequilibrium dynamics. An important asset is that transient
correlation functions only depend on the ow history between
their two time arguments t0 and t, and are oblivious of any
changes in the ow before t0.

Eqn (1), together with the ITT-MCT equations for f~k(t, t0),
allows us in principle to calculate the time-dependent shear
stress in response to an arbitrary time-dependent shear ow
_g(t), given the static structural factors of the system. To reduce the
computational effort, one oen employs an additional isotropic
approximation; in ref. 1 such an isotropically sheared hard-sphere
model (ISHSM) was solved for the case of shear cessation.

In schematic-MCT models, the full equations of motion of
the theory are simplied ad hoc, dropping the dependence on
wave vectors. This emphasizes the temporal correlations as the
main origin for nonlinear rheology close to the mode-coupling
glass transition. One possible schematic simplication of eqn
(1), in the following referred to as model A, reads34

sðtÞ ¼
ðt
�N

dt0 _gðt0ÞGðt; t0Þ; (2)

with the schematic version of the generalized dynamic shear
modulus

G(t, t0) ¼ vsf(t, t
0)2. (3)

Here, vs is a coupling constant that adjusts the energy scale of
the schematic model. For a quantitative comparison with
experimental data on hard-sphere suspensions in three
Soft Matter, 2014, 10, 4822–4832 | 4823
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dimensions, vs ¼ 100kBT/d
3 has been suggested.34 Since we are

mainly interested in a qualitative discussion here, we stick to
this value even though our Brownian dynamics simulations are
performed in 2D.

The dynamic shear modulus G(t, t0) entering eqn (1) is in the
schematic model replaced by the square of the density corre-
lation function. As a consequence, the integrand in eqn (2) is
manifestly positive under steady shear. Yet, in many dense
glass-forming systems, so-called stress overshoots are observed
aer the startup of steady shear for accumulated strains g ¼ _gt
of a few percentage (assuming shear ow to be started at t0 ¼ 0).
The resulting stress–strain curves s(g) display an intermediate
maximum before decreasing towards the steady-state value, at
about g z 0.1 for hard-sphere systems. The position and
strength of this overshoot depend on the details of the inter-
action and the sample preparation and age.30,35,36 The overshoot
corresponds to stress-over relaxation visible as a negative dip in
G(t, 0) during the structural-relaxation process. It describes the
capability of the viscoelastic system to transiently store more
elastic energy than is maintained during plastic ow, and an
elastic recoil process during yielding. Comparing the ITT
Green–Kubo relationship, eqn (1), with its schematic simpli-
cation, eqn (2), one recognizes that reduction of the coupling
coefficients driven by shear advection is missing from the
schematic model. In the microscopic MCT model, a certain
amount of negative coupling of density uctuations into the
stress can occur. One can interpret this reversible suppression
as the effect of anelasticity on the average structure, rather than
that of plasticity, which is expressed through the strain-induced
irreversible decay of the correlation function.

For the purpose of quantitative ts to such stress–strain
curves, a schematic model (here referred to as model B) has
been proposed, including an empirical term that captures the
strain dependence of density-uctuation–stress couplings by
setting,37 with G(t, t0) ¼ vs(t, t0)f(t, t0)

2,

vs(t, t
0) ¼ v0s(1 � (gtt0/g*)

4)exp[�(gtt0/g**)
4]. (4)

We denote here the obvious generalization of ref. 37 to non-
steady shear. The parameters g* and g** model the position and
width of the overshoot, and are adjusted to t the experimental
data. They show a weak dependence on the shear rate them-
selves in ts of the steady-shear rheology of a hard-sphere
suspension.37 To keep the discussion simple, we neglect this
and set g* ¼ 0.105gc and g** ¼ 0.14gc. This produces a
pronounced stress overshoot in startup ow, allowing us to
discuss the inuence of the elastic-recoil effect on the stress
relaxation aer cessation in a qualitative way. The scale
parameter v0s is adjusted to match the dynamic yield stress with
that of model A with a xed vs.

The equation of motion for the transient density correlation
functions in the schematic MCT (for both models) reads34

vtfðt; t0Þ þ fðt; t0Þ þ
ðt
t0
m
�
t; t00; t0

� c
f
�
t00; t0

�
dt00 ¼ 0; (5)

where we have set the initial relaxation time to unity dening
the unit of time. The memory kernel m(t, t0 0, t0) describes
4824 | Soft Matter, 2014, 10, 4822–4832
structural relaxation and its modication through the applied
ow. The mode-coupling theory of the glass transition closes
the equation of motion by approximating the memory kernel as
a quadratic functional of the density correlation functions
themselves, assuming density uctuations to be the dominant
slow dynamical variable. Mimicking the microscopic-MCT
expression, we employ the common F12 model for time-depen-
dent shear,34

m(t, t00, t0) ¼ h(t, t0)h(t, t0 0)[v1f(t, t00) + v2f(t, t
0 0)2]. (6)

Here, h(t, t0) is a function describing the suppression due to
shear of the memory effects that cause the slow structural
relaxation. v1 and v2 are the coupling coefficients of the model.
They describe the thermodynamic state of the system. For small
coupling coefficients, the quiescent solution of the F12 model is
liquid like, where density uctuations fully relax: f(t, t0) / 0 as
t � t0 / N. There is a line of critical coupling coefficients
(v1

c, v2
c) identied as the ideal glass transition of the model,

where a nonergodic solution f(t, t0) / f > 0 rst appears.38

Choosing the point determined by v2
c ¼ 2 ensures that the

asymptotic dynamics of the F12 model matches with that
expected for hard-sphere-like suspensions. For simplicity, we
set v2 ¼ 2 throughout. We introduce a separation parameter 3
to indicate the distance to the glass transition:
v1 ¼ v1c þ 3=ð ffiffiffi

2
p � 1Þ, where 3 > 0 indicates glassy states with

v1 > v1
c, and 3 < 0 liquid states with v1 < v1

c.
Accumulated strain decorrelates the MCT memory kernel;

this is described by the empirical strain-reduction function
h(t, t0) ¼ 1/[1 + (gtt0/gc)

2]. Here, gc ¼ 0.1 is a parameter that sets
the scale for the elastic limit of the solid.

The ITT-MCT equations of motion are solved numerically.
We need to keep the full dependence of correlation functions on
their two time arguments. However, for the transient correla-
tion functions the calculation is eased by noting that for
cessation of steady ow at t¼ 0, the time half-plane (t, t0 < t) can
be split into three regions. In particular, for the two regions t > t0

> 0 and t0 < t < 0, the equations for the transient correlation
functions restore time-translational invariance since the shear rate
is constant between any pair (t0, t) there. The nontrivial predictions
of the model all stem from the behavior of the two-time
correlation functions spanning the cessation point, t0 < 0 < t.
A numerical scheme to deal with these correlation functions in the
case of step changes in shear rate has been devised.39

2.2 Simulation

We perform event-driven Brownian dynamics simulations40 for
a 2D binary mixture of hard disks. The system consists of NA ¼
500 particles with diameter d ¼ 1, and NB ¼ 500 particles with
diameter dB ¼ 1.4, and has been widely studied as a model glass
former,41,42 including its nonlinear rheology in the steady state,
large-amplitude oscillatory shear, and the transient dynamics
aer shear startup.37,43–46 The only control parameter is the
packing fraction 4 giving the ratio of the volume occupied by all
the disks to the volume of the system. The mode-coupling glass
transition point of this binary mixture has been determined
from extensive simulations,41 4c z 0.795. For comparison,
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Time-dependent shear stress s(t) from ED-BD simulations of a
2D hard-disk system at packing fraction 4 ¼ 0.81, for various
shear rates as labeled. Steady shear with rate _g is switched off after
an accumulated strain g ¼ 1 is reached. The time of switch-off defines
t ¼ 0.
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jamming in this system occurs around 4rcp z 0.84,47 signi-
cantly above the density regime we are interested in.

In this contribution, we focus on the shear-cessation
dynamics of a glassy state, and set 4 ¼ 0.81 throughout.
Brownian dynamics is approximated by a sequence of event-
driven simulation steps of length sB, ensuring that no particle
overlaps occur, aer which the particles are assigned to new
Gaussian random displacement vectors.40 For times t[ sB, the
dynamics reects that expected from the N-particle diffusion
equation for hard spheres with a free-diffusion coefficient
D0¼ sB/2 in simulation units. We set sB¼ 0.01. The shear ow is
imposed on the simulation by Lees–Edwards periodic boundary
conditions,48 and by imposing a corresponding deterministic
bias for the random displacements. The resulting stationary
state is homogeneous for all the shear rates considered below.

Stresses are measured in ED-BD by associating with each
“collision” of two Brownian particles i and j a momentum
transfer D~vij, where each Brownian displacement D~xi is assigned
to a velocity~vi ¼ D~xi/sB. The shear stress is then given by

s ¼ 1

V

*
1

Dt

X
i\j

X
ftcg

DvxijðtcÞDryijðtcÞ
+
; (7)

where D~rij(tc) is the separation vector between two particles
during their collision. The sum runs over all collision times tc in
a small time interval Dt used to smoothen the result. We choose
Dt in the range [25sB, 150sB]h [0.00125s0, 0.75s0] depending on
the shear rate, and the time aer startup and cessation (using
smaller time intervals close to the points where the shear rate
changes). To improve statistics at the largest shear rates ( _gs0 $
4� 10�1), averaging intervals up to Dt¼ 10s0 have been used.

Aer startup of shear from a well-aged glassy conguration,
the simulations were run up to an accumulated strain of g ¼ 1
to ensure that a steady state had been reached. The nal steady-
state conguration is used to set the origin of time thereaer.
Aer cessation, runs were performed with up to 5 � 106 BD
simulation steps, corresponding to a time t/s0 ¼ 2.5 � 104. To
obtain sufficient statistics for the stresses, a large number Nr of
independent simulation runs is required. We have used Nr ¼
393 (524, 801, 615, 392) runs for the calculation of s(t) aer
cessation from shear rates _gs0 ¼ 4 � 10�n with n ¼ 0 (1, 2, 3, 4),
supplemented with 359 (200, 187, 193) shorter runs (with 1 �
106 BD steps) for n ¼ 1 (2, 3, 4).

The results for s(t) from the ED-BD simulations are shown in
Fig. 1. The region _gt < 0 corresponds to simulations of startup
shear, as discussed previously for this system37 and for MD
simulations of similar model glass formers.30 This initial part of
the s-versus- _gt curves reects the stress–strain curves s(g) dis-
cussed in these references. They exhibit pronounced stress
overshoot phenomena, a fact that will be related to the stress
relaxation aer cessation below. At the highest shear rate, _gs0 ¼
4, one notices a small undershoot aer the maximum in the
stress–strain curve, and some smaller oscillations in s(t) until
the point where the shear was switched off. Therefore, some
care has to be taken to interpret the results for this shear rate,
and we will only discuss generic features that are qualitatively
identical also for the lower shear rates. While the present ED-BD
This journal is © The Royal Society of Chemistry 2014
simulation algorithm remains a well-dened, overlap-free,
rejection-free Monte Carlo scheme,40 its approximation of the
Smoluchowski equation for the Brownian-particle motion
becomes questionable for shear rates much larger than _gs0z 4.
3 Results and discussion

We rst present results for the stress relaxation aer simple-
shear cessation in our two-dimensional Brownian dynamics
simulation. Fig. 2 shows the shear stress s(t) as a function of
time t since cessation, for various shear rates. With increasing
shear rate, the steady-state shear stress sss( _g) increases; this is
seen as the initial value of the s(t) curves in Fig. 2. Some of this
shear stress relaxes aer cessation of ow, on a time scale set by
the past shear rate. This is evidenced by the lower panel in the
gure, where scaling of the normalized s(t)/sss-versus- _gt curves
onto an apparent master curve is observed for an initial time
window, _gt( 0.1. Curves for lower pre-shear rates deviate from
the master curve at previous rescaled times. For the highest
shear rates, the decay at intermediate times is approximately
described by a 1/ _gt form (dash-dotted line in the gure).

For long times, a nonzero plateau value is indicated in the
simulations. Note that large uctuations hamper the explora-
tion of the long-time regime in the simulation; this is in
particular true for the larger shear rates shown in Fig. 2. Here,
the initial part of the relaxation covers around two orders of
magnitude in stress, and hence reaches the noise limit of the
statistical sampling. Nevertheless, the simulation data are
compatible with the emergence of a nite long-time limit in the
ideal glass, sN( _g) ¼ limt/Ns( _g;t) > 0 i.e., a persistent residual
stress. To demonstrate this, we have shown in Fig. 2 as dashed
lines the time-averaged stress �s over the interval t/s0 ˛ [9800,
25 000] for the simulations with shear rates _gs0 # 4 � 10�2. For
these cases, �s is signicantly different from zero. Dotted lines in
the upper panel of Fig. 2 show exemplary results from sche-
matic MCT, discussed in more detail below, to highlight the
Soft Matter, 2014, 10, 4822–4832 | 4825
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Fig. 2 Upper panel: stress relaxation s(t) after cessation of shear flow
from the nonequilibrium stationary state, for a two-dimensional
Brownian dynamics simulation of a binary hard-disk system, at packing
fraction 4 ¼ 0.81, for the shear rates from Fig. 1 as indicated. Dotted
lines: results from a schematic-MCT model with a strain-dependent
stress–density coupling vertex (model B, see text) for _gs0 ¼ 4 � 10�4

and 4 � 10�3 and separation from the glass transition 3 ¼ 0.0001.
Dashed lines indicate the residual stress sN (shown in Fig. 5) estimated
from the simulation, see text. Lower panel: the same data, normalized
to the steady-state stress (flowcurve) and as a function of rescaled
time _gt. The dash-dotted line indicates a 1/ _gt law.

Fig. 3 Stress relaxation s(t) following cessation of stationary shear
flow, calculated within schematic MCT for a state in the ideal glass
(distance parameter 3 ¼ 0.01; solid lines), and in the liquid (3 ¼ �0.01;
dashed lines). Shear rates _gs0 ¼ 10�4, 4 � 10�4, 4 � 10�3, and 4 �
10�2, as indicated by labels. Upper panel: with a strain-independent
coupling coefficient in the schematic Green–Kubo relationship (model
A). Lower panel: with strain-dependent coupling vs(t, t0), eqn (4), as
discussed in the text (model B).
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expected behavior in the ideal glass. The theory result over-
estimates the amount of residual stress that persists in the
glass, but describes the partial relaxation from the steady state.
Our result corroborates previous MD simulation results for a
binary Yukawa mixture with a dissipative-particle-dynamics
thermostat and temperature as the control variable.1

In MCT, a nite residual stress emerges since s(t) is deter-
mined from the past ow history, and innitely long-lasting
memory effects in the ideal glass cause a nonvanishing contri-
bution to the generalized dynamical modulus G(t, t0) from times
t0 < 0 (i.e., before cessation) even as t / N. We will investigate
the shape of these correlation functions in more detail below.
Fig. 3 demonstrates the stress relaxation aer the cessation of
ow in the schematic-MCT models introduced above. A state in
the ideal glass (distance parameter 3 ¼ 0.01; solid lines) was
chosen. For comparison, we also show stress relaxation curves
for a state point in the liquid (3 ¼ �0.01; dashed lines). There,
4826 | Soft Matter, 2014, 10, 4822–4832
stresses ultimately relax to zero as the system reaches an equi-
librium state again. This nal relaxation is determined by the
structural-relaxation time scale sa of the quiescent equilibrium
correlation function, which is independent of the pre-shear rate
_g. Since the simulation data shown in Fig. 2 show relaxation
essentially only on a time scale connected with _g, this can be
taken as an indicator that they are not connected with equi-
librium-liquid like relaxation.

Comparing with the simulation results, Fig. 2, one recog-
nizes two main differences from schematic model A: in the
simulation, the initial transient stress relaxation is stronger, so
that the nal residual-stress plateau is hardly discernible in a
semi-log representation (upper panel of Fig. 2); only in a double-
logarithmic representation (lower panel), the nite residual
stress becomes apparent. The second difference concerns the
dependence of the residual stress on the pre-shear rate: in the
simulations, we observe sN( _g) to be a decreasing function of
increasing _g. In schematic model A with xed vertex vs, the
residual stress sN instead increases with increasing pre-shear
This journal is © The Royal Society of Chemistry 2014
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Fig. 4 Double-logarithmic representation of the normalized stress
relaxation function s(t)/sss as a function of rescaled time _gt, from
schematic MCT in the glass (solid lines, 3 ¼ 0.01) and in the liquid
(dashed line, 3¼�0.01). Shear rates are _gs0¼ 10�4, 4� 10�4, 10�3, 4�
10�3, and 10�2. Upper panel: model A with a fixed stress–density
vertex vs. Lower panel: model B including a strain-dependent vertex
vs(t, t0), see text. The dashed lines indicate ( _gt)�0.33 (upper panel) and
1/ _gt (lower panel).
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rate; this is also the case in the isotropic approximation to the
microscopic ITT-MCT.1

The trend exhibited by the simulation results typically leads
to a crossing of s(t)-versus-t curves belonging to different _g.
Stronger shear causes higher steady-state stresses (so that the
initial value of the s(t) curve increases), but a larger amount of
these stresses can relax aer cessation from strong pre-shear,
than from weaker pre-shear. Intuitively, stronger shear uidizes
the glassy structure more severely, allowing for more effective
particle rearrangements in order to relax stresses aer the
driving is switched off. Note however that the decrease of sN
with increasing pre-shear rate is a general, but not a universal
effect; it is observed in the MD simulations mentioned above, in
experiments on hard-sphere-like suspensions of core–shell PS-
PNIPAM particles, and also for hard-sphere suspensions of
PMMA particles close to the glass transition.1 However, these
PMMA suspensions at higher packing fraction displayed an
increase of the residual stress with increasing pre-shear rate.
Coincidentally, the systems for which a decreasing sN( _g) was
observed are also those with strong stress overshoot
phenomena under startup ow.

The different trends of sN( _g) can indeed be connected to the
amount of elastic recoil that causes the stress overshoots under
startup ow. As explained above, schematic model A does not
contain this mechanism. It only describes the relaxation of
stresses due to irreversible, plastic rearrangements, in the
theory identied as those that cause strain-induced decorrela-
tion of advected density uctuations. The introduction of a
time-dependent coupling between stresses and those density
modes, introduced into the schematic model by a time-depen-
dent vertex vs(t, t0), accounts for a further relaxation caused by
anelastic deformation due to the affine effects of shear.
Including this mechanism of stress overshoots indeed has the
effect of reducing the residual stress sN( _g) such that it becomes
a decreasing function of increasing _g. The lower panel of Fig. 3
demonstrates this for model B with the time-dependent vertex
with parameters g* and g** from eqn (4). With this choice,
schematic model B reproduces the crossing of s-versus-t curves
observed in the simulation. Curves from model B correspond-
ing to two shear rates used in the simulation, _gs0 ¼ 4 � 10�4

and 4 � 10�3, albeit at a smaller distance parameter 3 ¼ 0.0001
(corresponding to the simulated state which is rather close to
the glass transition), have also been added to the simulation
results for comparison (the dotted line in Fig. 2). Note that we
did not attempt to t the simulation data by adjusting the
model parameters.

The qualitative similarity between the MCT model and the
simulation results becomes clearer in a double-logarithmic
representation of s(t) as a function of t or rescaled time _gt. This
is shown for the schematic-MCT models in Fig. 4. As in the
simulation results, one notes reasonably good data collapse for
the normalized stress s(t)/sss for intermediate rescaled times _gt:
all liquid- and glass-state curves for the shear rates shown
almost coincide with their initial relaxation from the steady-
state value. It should however be noted that in the schematic-
MCT models, this scaling does not hold strictly. This can in
particular be noted for model B with the strain-dependent
This journal is © The Royal Society of Chemistry 2014
vertex, shown in the lower panel of Fig. 4. The relative amount of
stress relaxation aer cessation, DsN ¼ (sss � sN)/sss, is
described qualitatively and correctly by both variants of the
schematic model: DsN increases as a function of increasing pre-
shear rate, in agreement with all known experimental and
simulation data.

While the simulation results shown in Fig. 2 show indica-
tions of a decay �1/ _gt, the schematic-MCT curves are signi-
cantly less steep. In model A with a xed vs, the initial decay
approximately follows s � t�a with a z 0.33 as expected from
the asymptotic power law for relaxation onto the nonergodic
plateau derived in MCT.38 The s(t)/sss-versus- _gt curves from the
experimental data of ref. 1 similarly show a power-law-like
relaxation regime, s(t) � ( _gt)�x. For the PS-PNIPAM system, one
estimates x z 0.5, while the PMMA suspension is described by
an exponent x T 0.67 close to the glass transition (4 ¼ 0.587),
and x z 0.4 for the state that was investigated deeper in the
glass (4 ¼ 0.614).

It is worth noting that the so glassy rheology model predicts
such power law decay, with an exponent x that is identical to the
Soft Matter, 2014, 10, 4822–4832 | 4827
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SGR's effective temperature parameter,26 and independent of
the shear rate. In the SGR model, one thus expects the stress
relaxation to be slower and deeper in the glass, with xz 1 close
to the transition. In this respect, the initial decay of s(t)
observed in our simulations and in the PMMA suspensions
follow this expectation, while the value xz 0.5 observed for the
PS-PNIPAM system is lower than expected (given that these
experimental data correspond to a state not too far from the
glass transition). The _g-dependent slowing down of the stress
relaxation (visible, e.g., in the lower panel of Fig. 2) interpreted
as the approach to a nite residual stress is a feature that differs
signicantly from SGR.

Fig. 5 shows the dependence of the residual stress sN ¼
s( _g;t ¼ N) as a function of the previous shear rate _g. Symbols
show experimental and simulation data. Values for sN for three
different hard-sphere-like colloidal suspensions were taken
from ref. 1, where they had been determined as the stress
reached at a xed time towards the end of themeasurement. We
add our results from ED-BD computer simulations of the 2D
hard-disk mixture (square symbols in the gure). Here, to
determine sN, the simulated s(t) curves have been averaged
over a certain time window, as explained in connection with
Fig. 2 (dashed lines here). In line with the discussion above, the
residual stress values sN( _g) decrease with increasing pre-shear
rate for most experimental and simulation data, with the
exception of the highest-density PMMA suspension where an
increase is observed. Note again that this latter result is a direct
consequence of the experimental protocol, i.e., of keeping the
overall strain xed aer ow cessation. Otherwise, the system
should start to ow since the frozen-in residual stress sN

exceeds the dynamic yield stress – and hence likely also the
static yield stress that determines the maximum stress the solid
Fig. 5 Residual stress sN as a function of pre-shear rate _g, in thermal
units kBT/d

D (D is the spatial dimension, separation parameters 3 as
labeled). Solid lines are sN( _g) including a strain-dependent vertex in
the Green–Kubo relationship (model B, separation parameters 3 as
labeled); dashed lines correspond to model A with a fixed vertex vs.
Dotted lines are the flow curves (steady-state stress sss as a function of
shear rate) for model A. Filled symbols: sN from experiment in D ¼ 3
(PMMA suspensions at 4 ¼ 0.587: diamonds; at 4 ¼ 0.614: triangles;
PS-PNIPAM suspensions close to the glass transition: circles), all from
ref. 1, and from ED-BD simulations in D ¼ 2 (squares). For the PS-
PNIPAM data at the four lowest shear rates, open circles indicate sss.

4828 | Soft Matter, 2014, 10, 4822–4832
can sustain. Even for the cases where sN < sss, slow creep
should be the result of free-strain boundary conditions, leading
to additional relaxation phenomena.36,49

Lines in Fig. 5 show the results for the schematic-MCTmodel
for several state points in the ideal glass as labeled by their
distance parameter 3. As observed above, model A with a
constant vs predicts an increase of the residual stress with
increasing pre-shear rate (dashed lines). Including the strain-
dependent correction to the vertex according to eqn (4), model B
predicts the observed decrease of sN as a function of increasing
_g (solid lines). Note that with our choice of model parameters g*

and g**, eqn (4) produces a marked stress overshoot in startup
ow. As the density increases beyond the glass transition, the
magnitude of this stress overshoot in hard-sphere colloidal
suspensions diminishes;36 a feature that is likely connected to
the approach to random-close packing in these systems. Hence,
g* and g** should acquire a density dependence that we have
not accounted for. Let us further note that with our choice of
xed g* and g**, the integral in eqn (2) together with eqn (4) is
no longer guaranteed to be positive at large shear rates. The
corresponding sN curves in Fig. 5 have thus been restricted to
_gs0 < 0.05. The agreement between the schematic-MCT model
and the available experimental and simulation data is surpris-
ingly good, although this may be fortuitous.

Independent of quantitative details, there are two asymptotic
regimes for sN( _g) that are predicted by schematic MCT. As
_g / 0, the residual stress approaches the yield stress
sy ¼ lim _g/0sss( _g) > 0. This is also indicated in the experiment
(cf. open and lled circles in Fig. 5). For large pre-shear rates, on
the other hand, sss is predicted to reach a second plateau as
_g / N. Experimental data for the PS-PNIPAM suspension are
compatible with these predictions. But note that the high-shear
limit entails physics of particle contacts and solvent-induced
interactions that are not captured in the present MCT. For the
cases where sN grows with increasing _g, this growth is much
slower than that of the corresponding ow curve. The latter
(dotted lines in Fig. 5) approaches a high-shear Newtonian
regime (sss � _g for _g / N) in the schematic-MCT model. As a
result, aer the cessation of stronger shear ow, a larger
amount of stress is released than for weak ow.

The fact that the residual stress sN approaches a constant for
both _g / 0 and _g / N can be understood on the basis of the
ITT formula and an asymptotic consideration of the schematic-
MCT correlation functions. For this, note that the ITT-MCT
description is based on transient correlation functions f(t, t0)
that are modied solely by deformations occurring between
their two time arguments t0 # t. This is in distinct difference to
the waiting-time dependent correlation functions F(t + tw, tw)
measured in nonequilibrium since there, the nonequilibrium
distribution function at time tw determines the ensemble
average, while for the transient correlators it is always the
(deformation-independent) equilibrium distribution function.

In the integral determining s(t) aer cessation, eqn (2), only
the regime t0 < 0 t enters. Schematically, this is represented
as the shaded area in Fig. 6. The MCT equation of motion for
f(t, t0) is dominated by the history-dependent contribution
arising through the memory-kernel integral involving m(t, t0 0, t0)
This journal is © The Royal Society of Chemistry 2014
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and _f(t00, t0) for t0 0 ˛ [t0, t], eqn (5). The paths for t0 0 followed in
this integral are indicated in Fig. 6 by dashed lines for the
two functions. Fig. 7 shows the two-time “cessation correlator”
f(t, t0) for t > 0 and t0 < 0 for an exemplary case.

The qualitative behavior of this correlation function can be
understood from the structure of the memory-kernel equation
and from the boundary conditions. Note that correlation func-
tions are at least continuous, so that for t0 ¼ 0 the cessation
correlator equals the quiescent equilibrium one (cf. Fig. 6),
f(t, 0) ¼ feq(t). For t ¼ 0, on the other hand, f(0, t0) ¼ fss

( _g)(|t0|),
the transient correlation function under steady shear rate _g.
These two boundary cases are shown in Fig. 7 as the red lines
towards the back of the plot.

The MCT expression for s(t) suggests discussion of correla-
tion functions at xed rst argument t, as a function of �t0 > 0.
Exemplary results are shown in Fig. 8. Since the accumulated
Fig. 6 Schematic representation of the time domains in the (t, t0) plane
relevant for the transient correlation functions in flow cessation.
Steady flow is switched off at time t ¼ 0. Dashed lines indicate the
integration paths in the MCT memory expression along which the
memory kernel m(t, t0 0, t0) respectively the derivative of the correlation
function _f(t0 0, t0) enter the equation of motion for f(t, t0) at fixed (t, t0)
(circle symbol).

Fig. 7 Two-time transient correlation function f(t, �t0) for the sche-
matic MCT model after cessation of flow at time t, for distance
parameters 3 ¼ 0.01 (glass; upper surface) and 3 ¼ �0.01 (liquid; lower
surface), and pre-shear rate _gs0 ¼ 10�8.

This journal is © The Royal Society of Chemistry 2014
strain that decorrelates the MCT memory kernel increases with
increasing |t0|, one expects the correlation functions to mono-
tonically decay from their initial value for each t with increasing
|t0|. (The situation may be different when, say, considering
cessation of a large-amplitude oscillatory ow, where the tran-
sient correlation functions are nonmonotonic.43)

For liquid states (3 < 0 in the model), the equilibrium
correlation function decays to zero on a structural-relaxation
time scale sa. Hence, for t [ sa, the transient correlator f(t, t0)
for t0 < 0 vanishes, and there is no contribution to s(t) in eqn (2).
This explains the observation shown in Fig. 3 that in the liquid,
stresses relax back to zero aer cessation on the time scale sa,
independent of the previous shear rate.

In the glass, the quiescent correlator decays to a nite
plateau, the nonergodicity parameter f ¼ limt/Nfeq(t). For a
sufficiently large t, the cessation correlator f(t, t0), viewed as a
function of |t0|, hence has an initial value f. To understand its
decay to zero, note rst that the steady-state transient correla-
tion function in the shear-melted glass features a decay to zero
on a time scale s _g� 1/ _g (up to a prefactor set in themodel by gc),
as long as _gs0 � 1.

For _g / 0, a scaling limit is approached where fss(t) �
~fss( _gt) for t / N. In this scaling limit, the short-time decay of
the correlator on the time scale s0 becomes irrelevant, and the
scaling function obeys ~fss(s)¼ f for s/ 0. Since the steady-state
stress sss is then determined essentially only by the integral over
~fss( _gt), a dynamic yield stress arises that is qualitatively given by
vs f

2.
For times _gt0 � 1, fss(t0) (or eqiuvalently f(0, �t0)) remains

close to the equilibrium curve. The decay of f(t, t0) for t / N

can now be understood considering the structure of the MCT
memory integral shown in Fig. 6. At large t and small |t0|, the
integral is dominated by equilibrium-correlator contributions,
and extends the latter. The contributions only change signi-
cantly once |t0| ¼ O(s _g), since then the contribution to the
Fig. 8 Constant-t cuts through Fig. 7: transient two-time correlation
function f(t, t0) of the schematic-MCTmodel for t0 < 0 < t, as a function
of � _gt0 for fixed t for a distance parameter 3 ¼ 0.01. Solid lines
correspond to _gs0 ¼ 10�4, at t ¼ 0 (identical to the nonequilibrium-
steady-state correlator), t ¼ 3.6s0, and t ¼N (numerically obtained for
t/s0 > 109) as labeled. Dashed lines: the same curves for _gs0 ¼ 10.

Soft Matter, 2014, 10, 4822–4832 | 4829
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Fig. 9 Transient two-time correlation function f(t, t0) of the sche-
matic-MCT model as a function of t � t0 for fixed t0 < 0, for distance
parameter 3¼ 0.01 and shear rate _gs0¼ 10�4. Solid lines correspond to
t0 as labeled, | _gt0| ¼ N is the steady-state correlation function under
shear. The dotted line marked _gt0 ¼ 0 corresponds to the quiescent
equilibrium curve. Inset: results for the liquid, 3 ¼ �0.01.
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memory kernel arising from _f(t0 0, t0) (the horizontal dashed line
in Fig. 6) starts to decay. Therefore, also f(t, t0) decays to zero on
a time scale s 0

_g ¼ O(s _g). If t [ s0, the two-time correlator hence
resembles the scaling curve ~fss( _gt) that determines the yield
stress. This is visualized in Fig. 7 where we show f(t, t0) as a
function of the two time arguments t > 0 and t0 < 0. At t0, t / 0,
the microscopic relaxation from unity to f can be seen. For the
small pre-shear rate chosen in the gure, this microscopic
relaxation has a small weight in the integral determining s(t).
For a large |t0|, the correlator becomes effectively independent
of t, featuring decay on the time scale s _g. This explains that for
_g/ 0, both the residual stress sN and the steady-state stress sss
approach the dynamic yield stress.

For large _gs0, the shear-induced relaxation of the steady-state
correlator no longer obeys s _g � 1/ _g. In the schematic model, it
instead approaches s _g / N � s0. As a result, sss f _g, and the
owcurve exhibits a high-shear Newtonian regime. The two-
time cessation correlator f(t, t0) is still governed by the same
qualitative argument as given above: the initial value for t/N

is still f, and the memory integral is still cut off by the decay of
the steady-state correlator on a time scale O(1/ _g) (the horizontal
dashed line in Fig. 6). Thus, sN is still determined by the
integral over a function whose decay scales as 1/ _g, resulting in a
constant expression in eqn (2). The numerical value of sN will
differ somewhat from the yield stress sy, since the shape of the
cessation correlator for t / N changes somewhat with
changing _g.

The situation is demonstrated for two different shear rates,
_gs0¼ 10�4 and _gs0¼ 10, in Fig. 8 (solid and dashed lines). Here,
the cessation correlator f(t, t0) is shown for xed t > 0 as a
function of rescaled second time argument, | _gt0|. For the lower
shear rate, the nal decay to zero is set by s _g for all t, which is
also the case demonstrated in Fig. 7. For _gs0 [ 1, the steady-
shear correlation function decays on the microscopic time scale
s0, and hence does not scale with _g. As however t increases, the
microscopic contributions disappear from f(t, t0), and a decay
on a shear-induced time scale, s 0

_g � 1/ _g re-emerges. In this case
one notices that s 0

_g > s _g, since the memory integral picks up
microscopic transients that are, in the case of strong shear, no
longer negligible. As a result, the irreversible plastic relaxation
described by the transient correlation functions describe a
residual stress that increases with increasing _g, as noted above,
but becomes independent of the pre-shear rate as _g / N.

So far, we have discussed constant-t cuts of the transient
correlation functions, i.e., those that determine the shear stress
within ITT-MCT. On discussing two-time-dependent correlation
functions, it is oen more convenient to consider cuts for the
xed second argument, i.e., constant-t0 cuts, since this facili-
tates the interpretation of t0 as a waiting time from which
correlations into the future are measured. For the case of shear
cessation, the transient correlation functions are of interest
only for t0 < 0. Fig. 9 shows an exemplary case for the schematic-
MCT model. The qualitative behavior can again be understood
from Fig. 7. For |t0| z 0, the quiescent correlator is recovered,
while for |t0|/N, one approaches the steady-shear correlation
function. Since this steady-state correlator decays on the time
scale s _g, the region of nontrivial t0-dependence is | _gt0|( 0.1. By
4830 | Soft Matter, 2014, 10, 4822–4832
continuity, the transient correlator then follows the steady-state
correlator initially (for t < 0). Since for t > 0, no further relaxation
mechanisms contribute to its decay, the transient two-time
correlator then quickly crosses over to a t0-dependent plateau
where f(t, t0) is independent of t. In Fig. 7, this is exhibited by
the fact that for a |t0| large enough such that the transient
correlation function assumes a value less than the plateau f, it is
independent of t in the glass. The curves shown in the main
panel of Fig. 9 hence obey f(t, t0)/ ~f (t0) < f for t/N and xed
t0 < 0. In the non-ideal glass, one expects this plateau to ulti-
mately decay due to relaxation processes that are not captured
in the MCT approximation. In the liquid, the curves are
modulated by the nal decay on the structural-relaxation time
scale sa. This is demonstrated in the inset of Fig. 9, where we
show the same constant-t0 cuts as in the main panel, but for the
liquid state with separation parameter 3 ¼ �0.01.

The transient cessation correlators are not straightforwardly
accessible in molecular-dynamics simulations, since they
require averaging over the equilibrium distribution function
while the trajectories correspond to those inuenced by the past
shear rate. In the simulation, the averaging is performed over a
set of congurations that one assumes to be representative of
the statistical ensemble as it evolves over time. This a priori only
gives access to the waiting-time dependent correlation function
F(t + tw, tw). Evaluating this quantity within ITT-MCT involves
additional approximations (see ESI of ref. 1) and is outside the
scope of the present discussion.
4 Conclusions

We have analyzed the transient decay of the shear stress aer
the cessation of steady shear ow in an ideal-glass model using
schematic models of the mode-coupling theory combined with
the integration-through transients framework (ITT-MCT). The
theory predicts the partial relaxation of stresses to a long-time
This journal is © The Royal Society of Chemistry 2014
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plateau value: a ow-history dependent residual stress sN

emerges that is sustained by the glass produced from the shear-
melted initial steady state. Brownian-dynamics computer
simulations of a two-dimensional hard-disk mixture in the glass
conrm this picture qualitatively. Our simulation results
further corroborate similar results from previous experiments
and 3D molecular-dynamics simulations.1

The residual stress depends on the preparation history of the
glass, in our case exemplied by its dependence on the pre-
shear rate _g. Two variants of the schematic-MCT model have
been discussed that differ by whether or not they take account
of anelastic strain-induced decorrelation of the overlap between
stress and density uctuations. Taking into account only the
relaxation of stresses through irreversible decorrelation of
density uctuations caused by thermal noise (model A), residual
stresses remain that are larger than the dynamical yield stress
sy. Further stress relaxation is provided by reduction of stress–
density couplings that originate in the affine shear advection
and is also the cause of pronounced stress overshoots in startup
ow. In the schematic model, it needs to be captured empiri-
cally (model B), guided by a numerical discussion of the full,
wave-vector dependent ITT-MCT.37

The yield stress is the smallest stress the shear-melted glassy
state needs to maintain in order to ow homogeneously. In the
limit of innitesimally slow ow, none of this stress can relax.
For faster ow, the steady-state stress rises above the dynamic
yield stress, and for models with no or sufficiently weak startup-
stress-overshoot phenomena, these additional stresses only
relax partially, due to the effect of irreversible thermal motion. A
further stress-relaxation mechanism is provided by the same
mechanism that is responsible for stress overshoots in ow
startup: the capability of cages to transiently store a large
amount of elastic energy that is released under plastic defor-
mation. In the case of shear cessation, this mechanism allows
for a further relaxation of past-ow-induced stresses, so that the
remaining residual stresses decrease with increasing shear rate.
Nevertheless, a certain amount of stresses never relaxes in the
arrested glass, signalling the nonequilibrium nature of the
amorphous solid that is being produced.

From the point of view of statistical physics, the appearance
of persistent residual stresses is a clear deviation from Onsag-
er's regression hypothesis, and hence a genuine nonlinear-
response effect. Consider Onsager's reasoning in the present
context:50 if an external perturbing eld h0 coupling to the
dynamical variable X, is switched on adiabatically in the innite
past, h(t)¼ h0 exp[3t] (with 3/ 0+), the normalized deviation in
X obeys: hDX(t)ine/hDX(t ¼ 0)ine ¼ Fx(t) + O(h0), where the
relaxation function, Fx(t), is the normalized correlation func-
tion of the uctuations of the variable X in the unperturbed
system. It is thus independent of the external eld. In our case,
the imposed shear ow with the rate _g couples to the shear
stress, yet we nd that the normalized deviatoric shear stress
s(t)/sss sensitively depends on small shear rates, even in the
asymptotic long-time limit. The origin of the violation of
Onsager's result lies in the time-dependence of the initial
stationary state. Its decay is shear-induced and thus becomes
arbitrarily slow in the limit of _g / 0. In ITT-MCT this slow
This journal is © The Royal Society of Chemistry 2014
decay is the origin of a dynamic yield stress in the steady state,
and of the persistent residual stress aer ow cessation.

The ITT-MCT theory describes time-dependent single-point
averages (such as the macroscopic stress s(t)) in nonequilib-
rium through Green–Kubo-like integrals, based on two-point
transient correlation functions f(t, t0). The latter are a conve-
nient tool for theoretical analysis, but one has to keep in mind
that they do not correspond to the correlation functions
accessible in experiment or simulation. Since they are formed
with the Boltzmann equilibrium distribution by denition, they
describe the nonequilibrium evolution contingent on only
those external elds that are present between their two time
arguments t0 and t. In ordinary correlation functions, averaging
is performed with the time-dependent nonequilibrium distri-
bution function at time t0, which is then denoted as a waiting
time tw. The nonequilibrium distribution function contains a
further ow-history dependence, so that the correlation func-
tions F(t + tw, tw) seen in experiment and simulation depend
also on perturbations at times t0 0 < tw. The ITT formalism can in
principle be extended to describe these waiting-time dependent
correlators, as has been demonstrated for the case of theMSD at
tw ¼ 0 aer cessation.1 We leave a more in-depth discussion of
waiting-time dependences for a future publication.51

Since glassy states contain internal stresses caused by past
perturbations, they are no longer characterized solely in terms of
the thermodynamic state variables. One expects them to show
material properties that again depend on the past ow history;
for example, the Maxwell shear modulus depends on the pre-
strain applied to the glass,18,52,53 and also on the thermal history
of the glass.54 The time-dependent changes observed in the
(frequency-dependent) dynamical shear moduli aer cessation
provide a rheological probe of aging-like phenomena.55 Under-
standing the dependence ofmaterial coefficients on the previous
strain history is of great conceptual importance for applications.
The further development of rst-principles microscopic theory
will provide a basis for improving the predictability of materials-
design processes.
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