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Crystalline order and topological charges on
capillary bridges†

Verena Schmida and Axel Voigt*ab

We numerically investigate crystalline order on negative Gaussian curvature capillary bridges. In agreement

with the experimental results in [W. Irvine et al.,Nature, Pleats in crystals on curved surfaces, 2010, 468, 947]

we observe for decreasing integrated Gaussian curvature, a sequence of transitions, from no defects to

isolated dislocations, pleats, scars and isolated sevenfold disclinations. We especially focus on the

dependency of topological charge on the integrated Gaussian curvature, for which we observe, again in

agreement with the experimental results, no net disclination for an integrated curvature down to �10,

and an approximately linear behavior from there on until the disclinations match the integrated curvature

of �12. In contrast to previous studies in which ground states for each geometry are searched for, we

here show that the experimental results, which are likely to be in a metastable state, can be best

resembled by mimicking the experimental settings and continuously changing the geometry. The

obtained configurations are only low energy local minima. The results are computed using a phase field

crystal approach on catenoid-like surfaces and are highly sensitive to the initialization.
When somaterials assemble in the presence of geometric and
topological constraints, the regular order favored by local
interactions is frustrated, which leads to defect structures in the
ground state. The capsid of a spherical virus provides an
example. Here proteins form subunits, which arrange in an
icosahedral shape, constructed from varying numbers of hex-
amers and 12 pentamers. On more general surfaces with
spatially varying positive and negative curvature the geometric
and topological constraints lead to more complex defect struc-
tures. These defects can be chemically functionalized1,2 and
provide the key to self-assembly into complex hierarchical
structures with emergent novel macroscopic properties.
Geometric and topological constraints thus provide a route to
control the self-assembly process and an understanding of the
interplay of geometry, topology and defects is therefore of
utmost importance, if this route to design novel materials will
be explored. See e.g. the themed collection on The geometry and
topology of so materials3 for a broader discussion.

Besides this practical motivation, crystalline order on curved
surfaces is also a rich academic problem. Various theoretical
results are known. Topological constraints are considered in a
classic theorem of Euler, which shows for a triangulation of the
surface that

X
i

ð6� iÞvi ¼ 6x, with vi as the number of vertices
en, 01062 Dresden, Germany

n, TU Dresden, 01062 Dresden, Germany.

(ESI) available: Animation of the
with increasingly negative integrated
m00228h

9

with i nearest neighbors and x as the Euler characteristic of the
surface. Thus for surfaces with the topology of a sphere (x ¼ 2)
the total charge must be 12. One realization is again the spher-
ical virus, considered as a triangular lattice with sixfold coordi-
nation, with 12vefold disclinations present. However, there are
many other possibilities to fulll the theorem of Euler and it is
energetics that determines the number, type and arrangement
of defects. With each disclination a stretching energy is associ-
ated (relative to a perfect triangular lattice in at space) which
grows proportional to R2, with R as the radius of the sphere. For a
xed lattice constant awehaveN� (R/a)2, whereN is the number
of particles. Thus for large N, mechanisms are expected which
reduce this extra energy by changing the ground-state congu-
ration. This can be done by surface buckling as considered e.g. in
ref. 4 and 5. However, in cases where buckling is limited, the
energy is reduced by introducing dislocations and grain-
boundary scars, see ref. 6. Realizations of water droplets in oil,
which are coated with colloidal particles7 show that these excess
dislocations grow linearly with the system size.

The same arguments hold for toroidal crystals and capillary
bridges with the topology of a cylinder (x ¼ 0). In these cases,
there is no topological need for disclinations and all defects are
introduced to relieve the strain induced by the curvature. For
toroidal geometries it is found that excess disclinations are
energetically favorable for fat torii8 and that the number of excess
disclinations is controlled primarily by the aspect ratio of the
torus.9 Experiments for colloidal particles on oil–glycerol capil-
lary bridges10 show a more complex behavior. No net topological
charge is found on the surface for an integrated Gaussian
This journal is © The Royal Society of Chemistry 2014
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curvature down to U ¼ �10, with U ¼ 3=p
ð
G

GdG and Gaussian

curvature G. For U beyond the threshold of �10, disclinations
rapidly ll the surface until 12 disclinations approximately match
the integrated curvature of �12. A sequence of transitions is
observed, fromno defects to isolated dislocations, which organize
into pleats, and nally form scars and isolated sevenfold dis-
clinations, see Fig. 1 for an explanation of the various defect types.

If the presence of topological grain-boundary scars for
spheres and torii is surprising and unexpected, the occurrence
of pleats on capillary bridges is even more surprising. It has
been explained in ref. 11 in terms of a curvature screening
provided by the stress free boundary.

While the linear increase of excess dislocations and the
formation of scars on a sphere and a torus is well understood
and reproduced quantitatively by various theoretical
approaches and simulation techniques, see e.g., ref. 9 and 12–16
and the review, ref. 17, the behavior on capillary bridges is less
understood. In ref. 18 the problem is addressed by mapping the
microscopic interacting particle problem to the problem of
discrete interacting defects in a continuum elastic background.
The critical value for the transition between congurations with
and without disclinations or scars is deduced for catenoids.
Three different ways are considered. In the rst approach the
critical value corresponds to the catenoid for which the inte-
grated Gaussian curvature of the geodesic disc matches the
curvature, which would be screened by a sevenfold disclination.
Using the denition in ref. 10, in which the integrated Gaussian
curvature is dened in units of disclinations as above, the
obtained critical waist size c* ¼ 0.85 corresponds to U* ¼ �6.3.
The second approach uses an effective screened disclination
charge, for which c* ¼ 0.87, corresponding to U* ¼ �6.0. The
third approach uses an energetic argument. The transition
point for the emergence of a disclination in the interior is found
to be c* ¼ 0.8, corresponding to U* ¼ �7.2. All values are
signicantly larger than the experimentally obtained U* ¼ �10.
The same approach is used in ref. 11 and validated against a
numerical energy minimization of a discrete spring model. The
results are in qualitative agreement with ref. 10 but no quanti-
tative estimate for U* is given. Simulation results for electro-
statically charged particles are obtained for a wide range of
system sizes, curvature and interaction potentials, including
Yukawa, Coulomb and Lennard-Jones in ref. 19 and 20. The
results qualitatively agree with the continuum theory and the
Fig. 1 Defect types: (a) sevenfold disclination, (b) dislocation, (c) pleat
consisting of two dislocations, and (d) scar with topological charge of
�1. The colour coding corresponds to the number of neighbors: green
(5), yellow (6) and red (7), within Fig. 3 we will find dark blue (3) and light
blue (4) at the boundary.

This journal is © The Royal Society of Chemistry 2014
experimental data. Depending on U dislocations, pleats, scars
and sevenfold disclinations are found, independent of the used
potential. The supplemental material in ref. 19 also provides
tabulated numbers of positive and negative topological charges
and a critical waist size c*, which here correspond to the tran-
sition to isolated sevenfold disclinations. It seems to be only
weakly dependent on the number of particles, but sensitive to
the considered potential. For the Coulomb potential, a critical
waist size c* ¼ 0.55 is found, corresponding to U* ¼ �10.01.
However, the tabulated charges indicate the presence of
charged defects as scars already above that value, in disagree-
ment with the experimental results in ref. 10. The data also
strongly depend on the considered constant mean curvature
(Delaunay) surface. Within the experiments, the capillary bridge
is obtained through a sequence of Delaunay surfaces (unduloids,
catenoids and nodoids) each with different geometrical parame-
ters, such as aspect ratio, mean curvature and maximal Gaussian
curvature. Such different Delaunay surfaces are considered in ref.
20. However, quantitative results for U* are not given.

Here, instead of a coarse grained elasticity problem for the
defects or a discrete particle simulation for the position of N
particles, we consider a continuous optimization problem for a
number density, with N maxima representing the N particles.
The idea is to nd a free energy, which is minimized for a
conguration, which corresponds to the minimum of the orig-
inal problem. We consider the Swi–Hohenberg free energy on
the surface G with VG and DG the corresponding surface
gradient and surface Laplacian. We dene

F G½r� ¼
ð
G

� jVGrj2 þ 1

2
jDGrj2 þ f ðrÞdG: (1)

Thereby r denotes a number density of the particles and

f ðrÞ ¼ 1
2
ð1� 3Þ r2 þ 1

4
r4 can have a double-well structure,

depending on the parameter 3. Within various parameter
regimes, the minimizers of this energy are periodic solutions
with a hexagonal structure in a at space, which are geometri-
cally frustrated in the considered setting on G. We here have an
interplay between the tendency to form periodic solutions and
the geometric frustration which prevents such a periodicity. We
consider the H�1 gradient ow of this energy, which can be
viewed as an extension of the phase-eld-crystal (PFC) model,
introduced in ref. 21 to surfaces. From

vtr ¼ DG

dF G½r�
dr

(2)

we obtain the following system of surface partial differential
equations

vtr ¼ DGm (3)

m ¼ 2n + DGn + f0(r) (4)

n ¼ DGr (5)

The system is solved towards the steady state and each
maximum in the computed number density is identied with a
Soft Matter, 2014, 10, 4694–4699 | 4695
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Fig. 2 Schematic figure of a catenoid (a) and the considered

approximation (b), for which r0 ¼ s ¼ 4
5
c.

‡ The considered particle density r is more precisely a non-dimensional density
difference with a reference state of an averaged density in the liquid state, see
ref. 21.
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particle. In ref. 16 this phenomenological approach is vali-
dated for the Thomson problem22 by computing minimal
energy congurations for various numbers of N and comparing
the resulting congurations and Coulomb energies, which are

computed as E1 ¼
X

1#i\j#N

1
���pi � pj

�� with i-th particle position

pi and the distance measured in R
3, with known results for N ˛

[12, 2790]. However, the approach is also quantitatively related
to discrete particle simulations. In ref. 23 the equations are
derived from a discrete particle setting via classical dynamic
density functional theory, following the derivation in ref. 24 for
the at space. Numerical results on a sphere have shown that
the obtained minimal energy congurations are insensitive to
the specic underlying interparticle potential. These results are
in agreement with ref. 19 where ve different potentials are
considered and qualitatively the same defect motifs are found.
Both results indicate that the geometric frustration is much
stronger than the inuence of the interparticle potential. We
therefore stick to the phenomenological model above. Besides
this qualitative and quantitative comparison of the phase eld
crystal approach with discrete particle simulation results,
questions concerning reachable size and efficiency can be
asked. The largest problem considered in ref. 23 accounts for N
¼ 99 602 maxima on a sphere and nds in energy E1 which is
only 0.0004% above the lower bound 0.5N2 � 0.553051N3/2

from ref. 25. The simulation took about 1.5 days on a single
processor with 12 GB RAM. The computational approach
certainly is more involved than discrete particle simulations,
but allows for simple coupling with other elds, such as
surface buckling of the underlying surface, as considered for
viral capsided in ref. 26 or uid ow in the surrounding
medium, as e.g. considered for bijels27 and particle stabilized
emulsions.28,29

Different numerical approaches have been considered in ref.
23 to solve the system of surface partial differential equations.
We here adapt a parametric nite element setting, which is
realized within the simulation toolbox AMDiS.30 The approach
is thereby based on the stable nite element discretization for
the PFCmodel in ref. 31 and is described in detail in ref. 23. The
key idea is to use the surface operators on the discrete surface
which consists of triangles T. To do the integration on these
triangles a parameterization FT: T̂ / T is used, with T̂ the
standard element in R

2. These allow transformation of all
integrations onto the standard element using the nite element
basis dened also in R

2. The parameterization FT is given by the
coordinates of the surface mesh elements and provides the only
difference between solving equations on surfaces and on planar
domains. For a surface we have to allow FT: R

2 / R
3, whereas

for a planar domain FT: R
2 / R

2. With this tiny modication
any code to solve partial differential equations on Cartesian
grids can be used to solve the same problem on a surface,
providing a surface triangulation is given. It is essentially this
modication which induces the geometric frustration to the
problem.

Our surface is given as an approximation of a catenoid and
obtained through a rotation around the x3-axis. The parametric
equation of the surface is given by
4696 | Soft Matter, 2014, 10, 4694–4699
Fðt;fÞ ¼

0
BBBB@

�
c cosh

t

c
þ ðr0 � cÞ

�
cos f

�
c cosh

t

c
þ ðr0 � cÞ

�
sin f

t

1
CCCCA (6)

with time t and angle f. Only for r0 ¼ c the approximation is
equal to a catenoid, see Fig. 2. In other cases, it does not have a
constant mean curvature and is especially no minimal surface,
but provides a satisfying approximation for the considered
experiments in ref. 10, see the ESI.†

The surface area is computed as A ¼ 2pc
�
c sinh

s
c
cosh

s
c
þ

sþ 2ðr0 � cÞsinh s
c

�
, the Gaussian curvature follows as GðtÞ ¼

�1
��

c
�
c cosh

t
c
þ r0 � c

�
cosh3 t

c

�
and U ¼ �12 tanh

s
c
. Using

this approximation, we can scale the surface area by varying the
waist radius r0, without changing the height s, the vertical
curvature radius at the waist c and the integrated Gaussian
curvature U. The approach allows for changing the surface to
scatter (U˛ (�12, 0)) by keeping the surface area A and the outer
radius R xed.

The surface is discretized using triangular elements with a
sufficient mesh size h� a/10. We use the parameters 3¼ 0.4 and
the average particle density as r0 ¼ �0.3,‡ which correspond to
a point in the two-dimensional phase diagram within the
hexagonal region.

The boundary conditions are crucial, as they have to be stress
free. This is accounted for by specifying Dirichlet conditions
using a one-mode approximation, see ref. 32. Choosing the
outer radius R in accordance with the distance between neigh-
boring particles allows for a stress free boundary.

We consider four different initializations. We either specify
different initial conditions and use (a) random initialization
with r ¼ r0 + h, with white noise h, (b) initialization at the
boundary, with the one-mode approximation specied at the
boundary, (c) initialization at the waist, with the one-mode
approximation specied at the waist or as in ref. 10 start with a
cylinder and subsequently change the surface to decrease U.
Within this last approach we use a sequence of 42 geometries
and compute the steady state on each, with the one from the
This journal is © The Royal Society of Chemistry 2014
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Table 1 The largest value of U for the appearance of different defect
types depending on the initialization

Random Boundary Waist Evolution

Dislocations �1.44 �4.07 �1.44 �7.75
Pleats �4.07 �9.78 �1.44 �9.41
Scars �6.25 �11.35 �10.89 �10.44
5-fold �9.27 �11.35 �11.77 �10.87
7-fold �11.53 �11.35 �11.14 �10.87
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previous surface as the initial condition. An animation is
provided in the ESI.†

The simulation results are postprocessed in the following
way. We identify the maxima of the computed particle density r,
interpret them as particle positions and dene their neighbor-
ship based on their two-dimensional Voronoi regions. These
data are used to evaluate the number of dislocations, scars,
pleats, ve- and sevenfold disclinations, as well as the number
of three- and vefold disclinations on the boundary. Within
colliding defect structures, clusters are separated preferring
dislocations and pleats over disclinations and scars, larger
defects over smaller defects and oriented defects over unor-
iented defects. The visualization is done using the soware
Ovito.33

Fig. 3 shows selected results for the evolving surface. For all
initializations, also for the not shown random initialization and
the initialization from the boundary or the waist, we observe the
whole spectrum of defects: dislocations, pleats, scars, ve- and
sevenfold disclinations and the expected sequence of transi-
tions to dislocations, pleats, scars and isolated sevenfold dis-
clinations. Table 1 summarizes their rst appearance.

The appearance and interactions of defects differ for
different initializations. While for random initialization defects
are already present for the largest value of U, scars are mainly
accompanied by vefold disclinations next to the boundary and
sevenfold disclinations appear at the waist, the congurations
resulting from initialization at the boundary are characterized
by migration of dislocations into the surface and the formation
of a second row of dislocations, as well as an increase in size of
Fig. 3 Front, top and perspective view of four configurations for selected
show characteristic features: for 0 >U >�7.75 the configuration is defect
pleats are formed. First charged defects are formed at U ¼ �10.44 in t
present. An animation through all considered 42 surfaces is provided in

This journal is © The Royal Society of Chemistry 2014
the occurring pleats. For the initialization from the waist, we
observe only oriented dislocation for large U, with the number
increasing with decreasing U until the rst defects occur also at
the boundary. The appearance of pleats comes together with
non-oriented dislocations. As the pleats grow, the dislocations
become again oriented. For the evolving geometry, the surface
remains defect free up to relatively low values for U, rst defects
occur as oriented dislocations at the boundary. Their number
stays xed until pleats are formed aer further decreasing U.
Here pleats do not grow but fall apart, forming an oriented
dislocation in the interior and one at the boundary. Scars and
sevenfold disclinations are formed at the same time. In contrast
with the size dependent exclusive appearance of disclinations or
scars reported in ref. 18, we found both defect types at the same
time.

We now concentrate on the rst appearance of scars, vefold
or sevenfold disclinations and thus a detached topological
charge. For random initializations, scars already appear on
surfaces with U ¼ �6.25. For the initialization at the boundary
values of U of the evolving surface. The configurations are selected to
free, atU¼�7.75 dislocations are formed at the boundary, atU¼�9.41
erms of scars and at U ¼ �10.87 five- and sevenfold disclinations are
the ESI.†

Soft Matter, 2014, 10, 4694–4699 | 4697
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and the waist the conguration stays without detached topo-
logical charge down to U ¼ �11.14 and U ¼ �11.35, respec-
tively, all in quantitative disagreement with the experimental
results in ref. 10. Only the evolving geometry, which resembles
the evolution in the experimental setting best, leads to the
expected behavior, with no detached topological charge down
to �10.44.

To further highlight the quantitative agreement, we compute
the detached topological charge qint, as the difference of the
number of particles in the interior with seven and ve neigh-
bors, the total topological charge qtotal, which in addition
considers particles at the boundary, which do not have four
neighbors and thus should be zero for U ˛ (�12, 0), and the
number of defects Ndefect, which we scale by the number of
particles N to obtain the ratio z ¼ Ndefect/N. This becomes
necessary as N is not xed throughout evolution and can
therefore not set to a distinct value. Fig. 4 shows these charac-
teristic quantities as functions of U.

The detached topological charge for the evolving surface
simulations shows the expected behavior, with qint ¼ 0 down to
U z �10 and an approximately linear increase up to qint z 12
forUz�12. This is in agreement with the experimental results
in ref. 10. In agreement with the topological requirement the
total charge qtotal remains zero up to the smallest considered
value of U ¼ �11.86 for all initializations, which is just a
consistency check of our postprocessing and the number of
defects growth for decreasing U. For the evolving surface
simulations the congurations stay defect free down to U ¼
�7.75, where defects form suddenly. The number of defects
stays almost constant aerwards until a second jump can be
seen for U ¼ �10.44. Below that value more and more defects
are introduced. This has a clear inuence on the energy, for
which we compute again the Coulomb potential

E1 ¼
X

1# i\j#N

1
���pi � pj

�� and a power law potential suggested in

ref. 20 E3 ¼
X

1# i\j#N

1
���pi � pj

��3 with i-th particle position pi

and the distance measured in R
3. To eliminate the dependence
Fig. 4 (Left) Detached topological charge qint, (middle) total topological
green random initialization, black initialization from the boundary, blue ini
The left figure shows in addition the experimentally observed linear incr

4698 | Soft Matter, 2014, 10, 4694–4699
on N we rescale these energies to obtain ~E1 ¼ E1/N2 and ~E3 ¼ E3/
N2. Fig. 5 shows the computed energies as functions of U.

While the different initializations lead to almost identical
results for long-range potential ~E1, large differences can be seen
for the short range potential ~E3. The curve for the evolving
surface resembles nicely the characteristic defects. The energy
is increasing down to U ¼ �7.75 with a defect-free congura-
tion. The sudden drop in the energy results from the occurrence
of defects, in the form of dislocations at the boundary. The
energy again increases until U ¼ �10.44. The small drop here
corresponds again to a change in the defect type, which leads to
the occurrence of detached topological charge. The energy plots
further indicate that the congurations obtained with the
evolving surface approach not always lead to the lowest energy.
We can assume a highly complex energy landscape, in which all
our observed congurations are presumably trapped in local
minima. Instead of searching for global minima, as in ref. 19,
we concentrate on resampling the experiments in ref. 10, with
presumable also only local minima congurations. With the
evolving surface approach, which resamples the experimental
setting best, quantitative agreement for all considered data qint
and z can be achieved. The number of defects is thereby lower
than in various putative global minima congurations reported
in ref. 19.

The goal to chemically functionalize the defects to control
self-assembly into supramolecular structures, requires not
only the presence of a certain number and type of defects, but
also their position and arrangement to be predictable. The
congurations obtained with the evolving surface approach
here lead to highly symmetric arrangements, see Fig. 3. The
number of defects growth until 12 equally spaced oriented
dislocations on the boundary are formed. These defects
remain and grow into pleats, without changing their position.
This highly symmetric arrangement even remains for smaller
U aer the splitting into scars and sevenfold disclinations and
only for the lowest values of U the symmetry is lost. To
identify this symmetric sequence of transitions as the most
favorable path requires computation of the energy barriers
charge qtotal, and (right) scaled number of defects z functions of U, with
tialization from the waist, and purple the evolving surface computation.
ease from 0 to 12 for U ¼ �10 to U ¼ �12 in ref. 10.

This journal is © The Royal Society of Chemistry 2014
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Fig. 5 (Left) Scaled energy E1, and (right) scaled energy E3 as functions of U, with green random initialization, black initialization from the
boundary, blue initialization from the waist, and purple the evolving surface computation.
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and minimal energy paths, which is currently under investi-
gation using the string method34 already applied to the phase
eld crystal model in ref. 35 and 36. The future goal should be
to identify similar symmetric defect arrangements at nano-
scales and to further explore the complex interplay of
topology, geometry and surface evolution for novel materials
design. The considered phase eld crystal approach, even if
computationally more expensive than discrete particle simu-
lations, provides a exible tool to consider such an evolution
and further coupling with other external elds.
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26 S. Aland, A. Rätz, M. Röger and A. Voigt, Multiscale Model.

Simul., 2012, 10, 82–110.
27 S. Aland, J. Lowengrub and A. Voigt, Phys. Fluids, 2011, 23,

062103.
28 S. Aland, J. Lowengrub and A. Voigt, Phys. Rev. E: Stat.,

Nonlinear, So Matter Phys., 2012, 86, 046321.
29 S. Aland and A. Voigt, Colloids Surf., A, 2012, 413, 298–302.
30 S. Vey andA. Voigt,Comput. Visualization Sci., 2007, 10, 57–66.
31 R. Backofen, A. Rätz and A. Voigt, Philos. Mag. Lett., 2007, 87,

813–820.
32 K. Elder and M. Grant, Phys. Rev. E: Stat., Nonlinear, So

Matter Phys., 2004, 70, 051605.
33 A. Stukowski, Modell. Simul. Mater. Sci. Eng., 2010, 18,

015012.
34 W. Ren and W. E. E. Vanden-Eijnden, Phys. Rev. B: Condens.

Matter Mater. Phys., 2002, 66, 052301.
35 R. Backofen and A. Voigt, J. Phys.: Condens. Matter, 2010, 22,

364104.
36 R. Backofen and A. Voigt, Eur. Phys. J.: Spec. Top., 2014, 223,

497–509.
Soft Matter, 2014, 10, 4694–4699 | 4699

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4sm00228h

	Crystalline order and topological charges on capillary bridgesElectronic supplementary information (ESI) available: Animation of the evolution of...
	Crystalline order and topological charges on capillary bridgesElectronic supplementary information (ESI) available: Animation of the evolution of...


