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Magnetic control of flexoelectric domains in a
nematic fluid

Péter Salamon,*a Nándor Éber,a Ágnes Buka,a Tanya Ostapenko,b Sarah Dölleb

and Ralf Stannariusb

The formation of flexoelectric stripe patterns (flexodomains) was studied under the influence of external

electric and magnetic fields in a nematic liquid crystal. The critical voltage and wavevector of

flexodomains were investigated in different geometries by both experiments and simulations. It is

demonstrated that upon altering the orientation of the magnetic field with respect to the director, the

critical voltage and wavenumber behave substantially differently. In the geometry of the twist

Freedericksz transition, a non-monotonic behavior as a function of the magnetic field was found.
1 Introduction

Nematic liquid crystals are anisotropic uids with uniaxial
orientational order, but without discrete translational
symmetry.1 They typically consist of elongated molecules that
uctuate around the local axis of symmetry described by a unit
vector called the director (n). The practical importance of
nematic liquid crystals originates from their controllability by
external electric and magnetic elds. In display applications, an
electric eld is used to switch the director, which can adjust the
optical properties of a device.2

The majority of display modes utilizes the Freedericksz
transition: an external eld-induced director reorientation,
where the driving torques originate from the anisotropies of
the dielectric constant (3a) and/or the diamagnetic suscepti-
bility (ca).3 The value of 3a(ca) is given by the difference of the
dielectric constants (diamagnetic susceptibilities) measured
in an electric eld (magnetic eld) parallel to and perpendic-
ular to the director: 3a ¼ 3k � 3t (ca ¼ ck � ct). If 3a > 0 (ca > 0),
the director tends to be parallel to the applied electric
(magnetic) eld. Otherwise, the perpendicular conguration is
more favorable. If a destabilizing eld is precisely perpendic-
ular to (or, for negative anisotropies, parallel to) the initial
homogeneous director, the torque vanishes and the reor-
ientation starts due to small uctuations, above a well-dened
threshold eld.

In the electric Freedericksz transition, the dielectric inter-
action dominates, which is described by a free energy contri-
bution quadratic in the magnitude of the electric eld. In
addition, the director may be coupled linearly with the electric
cs, Wigner Research Centre for Physics,

est, Hungary. E-mail: salamon.peter@

-Guericke Universität, Universitätsplatz 2,

hemistry 2014
eld via the exoelectric interaction.4,5 Flexoelectricity means
that a polarization is induced by a splay or bend deformation of
the director n, and is dened as:

Pf1 ¼ e1n(Vn) + e3(V � n) � n, (1)

where e1 and e3 are the splay and bend exoelectric coefficients,
respectively. The usual order of magnitude for e1 and e3 is pC
m�1, though giant (a few nC m�1) values6,7 were also reported
for e3 of bent-core8–14 liquid crystals.

Nematics are excellent materials to study spontaneous
pattern formation,15 as nonlinearities in their physical proper-
ties provide a rich source of patterns, and external electro-
magnetic elds can serve as control parameters. For example,
applying an electric eld on a planar nematic layer can induce
instabilities that result in different types of periodic director
deformations.

In the present paper, we focus on a particular pattern, the so-
called exodomains (FDs), which represent an equilibrium
director modulation caused by exoelectricity.16,17 They appear
as stripes parallel to the initial director n0. The rst theoretical
model of FDs only considered the one elastic constant approx-
imation,16 but this has already given a good qualitative expla-
nation of the phenomenon. Recently, a detailed theoretical
description of FDs was developed18,19 that also accounted for
unequal elastic constants and for the dynamic behavior of FDs
exposed to sinusoidal voltage excitation.18 Furthermore, it
recognized the similarity between FDs and splay-twist domains
of the periodic Freedericksz transition; the latter were observed
in polymeric liquid crystals with large elastic anisotropy.20

Recently, nonlinear eld effects and defect dynamics were
also investigated in exodomains21,22 in a bent-core compound.
Moreover, exoelectric patterns were studied in special geom-
etries, such as twisted nematic (TN) cells using rod-like
compounds23 and recently in bent-core nematic liquid crys-
tals,24,25 where the voltage-polarity dependent orientation of the
Soft Matter, 2014, 10, 4487–4497 | 4487
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Fig. 1 The chemical structure of the rod-like molecule 4-n-octyloxy-
phenyl 4-n-methyloxybenzoate (1OO8).

Fig. 2 The schematics of the measurement geometries referred to as
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exoelectric stripes indicated that those domains are localized
near the electrodes due to an electric eld gradient.

In this work, we study how an additional magnetic eld
affects the formation of exodomains. In order to give a
complete answer, we performed experiments and developed a
theoretical description, including magnetic elds applied in
different geometries. Since exodomains appear as an electric
eld-induced equilibrium deformation, similar to the electric
Freedericksz transition, it is a plausible idea to compare the
characteristics of these two phenomena in the presence of
applied magnetic elds. In the present paper, we also make this
comparison using our ndings on exodomains in magnetic
elds.

The practical importance of exodomains lies in the fact that
they offer a method to determine the exoelectric parameter
e* ¼ |e1 � e3| that is otherwise only measurable by complicated
or unreliable techniques. Classical measuring methods deduce
exoelectric parameters from the electro-optical response and
require precise knowledge of the voltage applied on the liquid
crystal.5 Since the director deformation originating from ex-
oelectricity is linearly coupled to the electric eld, very low
frequencies or DC voltages should be applied in order to avoid
the damping of the optical response by the viscosities of the
liquid crystal. Unfortunately, under such conditions, an
internal voltage attenuation at the aligning layers and ionic
effects26–36 are unavoidable, resulting in erroneous voltage data.
The main advantage of using FDs for determining e* is that the
exoelectric parameter can be calculated solely from the critical
wavenumber, regardless of the value of the critical voltage.
Indeed, analysis of FDs using the sophisticated theoretical
description18 has been successfully employed recently for
measuring e* in a rod-like nematic.37 It should be noted,
however, that the applicability of this method is limited; only a
few compounds exhibit exodomains, as the exoelectric
instability requires a special combination of material parame-
ters.18 If the dielectric torque acting on the director is too large,
the exoelectric pattern formation is suppressed. Thus, an
important requirement is a small |3a|. We will show that the
limits of applicability might be extended if a magnetic eld is
also applied.

2 Experimental conditions

Our experimental investigations were performed on a typical
rod-like nematic liquid crystal 4-n-octyloxyphenyl 4-n-methyl-
oxybenzoate (1OO8†). The chemical structure of 1OO8 is shown
in Fig. 1.

1OO8 shows only a nematic mesophase below the clearing
point (TNI) of 76.7 �C. On heating, it melts from the crystalline
phase to the nematic phase at 63.5 �C; the nematic phase can be
supercooled down to 53 �C.

Several material parameters of 1OO8 were determined as a
function of temperature in a previous work.37 Here, we will use
the bulk elastic constants (K11, K22, and K33), the dielectric, and
† The same compound was abbreviated as 1/8 by Kochowska et al.38 Here we
rather follow an alternative nomenclature used by others.37,39,40

4488 | Soft Matter, 2014, 10, 4487–4497
the diamagnetic susceptibility anisotropies in our calculations.
Our measurements were performed at 53 �C, so we used the
material parameters of 1OO8 corresponding to the same
temperature in our simulations, namely: K11 ¼ 8.54 pN, K22 ¼
3.83 pN, K33 ¼ 10.6 pN, 3a ¼ �0.48, and ca ¼ 9.65 � 10�7.

The compound 1OO8 was studied in a sandwich cell with
ITO electrodes coated with rubbed polyimide layers for planar
alignment. The electrode area was 5 mm � 5 mm. The thick-
ness of the empty cell (d ¼ 19.5 mm) was measured by inter-
ferometry using an Ocean Optics spectrophotometer. During
the experiments, the sample was held on a custom-made heat
stage that provided a constant temperature with a precision
better than 0.1 �C. The heat stage was placed between the two
poles of an electromagnet capable of producing a maximum
homogeneous magnetic inductance of B ¼ 1 T at the sample
position. The magnetic inductance was measured by using an
Alphalab 100 Gaussmeter. The magnetic eld lay in the plane of
the liquid crystal cell due to mechanical constraints. By rotating
and xing the stage, the angle between the magnetic eld and
the rubbing direction could be adjusted. Our measurements
were performed in three geometries where this angle was set to
0�, 45�, and 90�, henceforth denoted as the parallel (k), the
oblique, and the perpendicular (t) geometries, respectively
(Fig. 2).

DC voltage (U) was applied to the cell using the function
generator output of a TiePie Handyscope HS3 device via a high-
voltage amplier. The sample was observed using a Questar
QM100 long rangemicroscope in transmissionmode with white
light illumination. The electric eld-induced patterns were
visualized by the shadowgraph technique,41 without using any
polarizer in the present case. The micrographs were recorded by
using a Foculus FO323B digital camera.

In each geometry, for a given value of the magnetic eld,
voltage scans with 0.2 V steps were performed at a predened
voltage interval. Aer each voltage step, the DC driving was kept
constant for 5 seconds before recording the image.
parallel, oblique, and perpendicular. The plane of the sandwich cell lies
in the plane of the figure (x–y plane), the observation direction and the
electric field are parallel to the z-axis.

This journal is © The Royal Society of Chemistry 2014
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Fig. 3 The director profile of flexodomains in the middle of the cell
(z¼ 0) in two views. The director is symbolized by ellipses. The electric
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3 Theoretical model

In order to understand the physics of exoelectric pattern
formation in the presence of the external magnetic eld, one
has to calculate the director distortions under the combination
of electric and magnetic elds.

A planar cell lled with a nematic liquid crystal is considered
in a three-dimensional Cartesian coordinate system. The x-axis
coincides with the rubbing direction, and the cell lies in the x–y
plane. We assume strong anchoring of the director and no pretilt
at the boundaries. The general director eld n ¼ n(x, y, z) is
represented by the tilt angle q and the azimuthal (twist) angle f:

n ¼ (cos q cos f, cos q sin f, sin q). (2)

Then, the initial homogeneous orientation n0 corresponds to
q ¼ f ¼ 0, and both q and f should remain zero at the
boundaries, even in the distorted state.

A homogeneous magnetic inductance B¼ (Bk, Bt, 0) parallel
to, and a homogeneous electric eld perpendicular to the cell
plane are considered. Naturally, the assumption on the homo-
geneity of the electric eld is appropriate until the variation in
the z-component of the director remains very small inside the
cell, which is valid if U ( Uc.

E ¼ (0, 0, Ez) (3)

Since exodomains represent an equilibrium deformation,
the nal state can be calculated by minimizing the free energy.
In our case, the density of free energy (f) is given by the sum of
the elastic (felast), dielectric (felectr), exoelectric (fexo), and
magnetic (fmagn) contributions:

f ¼ felast + fdiel + fflexo + fmagn (4)

felast ¼ 1

2
K11ðVnÞ2 þ 1

2
K22ðnðV� nÞÞ2 þ 1

2
K33ðn� ðV� nÞÞ2 (5)

fdiel ¼ � 1

2
303aðnEÞ2 (6)

fflexo ¼ �e1nE(Vn) + e3(n �(V � n))E (7)

fmagn ¼ � 1

2

ca

m0

ðnBÞ2: (8)

The Frank elastic constants K11, K22, and K33 correspond to
the splay, twist, and bend director deformations, respectively.
The permittivity and permeability of vacuum are denoted by 30
and m0, respectively. For the minimization of the free energy the
Euler–Lagrange formalism is used.

The characteristic parameters of the exodomains, namely
their threshold voltage Uc and the critical wavevector qc at the
onset of the exoelectric instability, can be obtained via a linear
stability analysis with respect to periodic director deformations.
These detailed calculations will be performed below for two
special cases, the parallel and the perpendicular geometries
shown in Fig. 2.
This journal is © The Royal Society of Chemistry 2014
3.1 The parallel geometry

In the parallel geometry, the magnetic inductance is

B ¼ (Bk, 0, 0). (9)

Assuming ca > 0, no magnetic Freedericksz transition is
expected in this geometry; thus, the modulated director eld of
exodomains emerges from a homogeneous planar basic state.
The stripes of FDs are assumed to remain parallel to the
rubbing direction, qc ¼ (0, q, 0). Consequently, all variables
depend only on the y- and z-coordinates. The free energy is
minimized by solving the system of Euler–Lagrange equations:

d

dy

�
vf

vq;y

�
þ d

dz

�
vf

vq;z

�
� vf

vq
¼ 0; (10)

d

dy

�
vf

vf;y

�
þ d

dz

�
vf

vf;z

�
� vf

vf
¼ 0; (11)

where spatial partial derivatives are denoted in the lower indices
by commas and the corresponding space coordinates.

Combining eqn (2)–(11) results in a complicated system of
nonlinear partial differential equations that has to be further
processed as follows. Near the onset of exodomains, the
director distortions are small and their periodic part charac-
terized by the wavenumber q can be separated from the z-
dependent amplitudes of the tilt (q0(z)) and twist (f0(z))
modulations via:

q(y, z) ¼ q0(z)cos(qy), (12)

f(y, z) ¼ f0(z)sin(qy). (13)

The director deformation prole of FDs in the middle of the
cell (z ¼ 0) is shown in Fig. 3. Using the above ansatz, eqn (10)
and (11) can be linearized with respect to the small quantities q0
and f0. Aer switching to the dimensionless space variable ẑ ¼
zp/d and wavenumber q̂ ¼ qd/p, straightforward calculations
result in:

f00
0 ¼ 2

dK q̂

1� dK
q00 �

Ue* q̂

Kav ð1� dKÞp q0

þ
 �

Bk
Bt

�2

þ ð1þ dKÞq̂2
1� dK

!
f0; (14)
field is parallel to the z-direction.

Soft Matter, 2014, 10, 4487–4497 | 4489

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4sm00182f


Fig. 4 The critical voltages (Uckq̂) of flexodomains for different
wavenumbers in the case of Bk ¼ 0 T (solid line), 0.25 T (dotted line),
0.375 T (dashed line), and 0.5 T (dash-dotted line). For a given
magnetic inductance, the red cross shows the smallest critical voltage
Uck at the critical wavenumber q̂ck that should actually be realized by
the system.
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q000 ¼ � 2
dK q̂

1þ dK
f0
0 �

Ue* q̂

Kav ð1þ dKÞpf0

þ
 �

B||

Bs

�2

�
�
U

Us

�2

þ ð1� dKÞq̂2
1þ dK

!
q0; (15)

where Kav ¼ (K11 + K22)/2, and dK¼ (K11 � K22)/(K11 + K22). In this
nal system of ordinary differential equations, the prime and
double prime denote the rst and second ẑ-derivatives,
respectively. In addition, the following scaling quantities are

introduced: Bs ¼ p

d

ffiffiffiffiffiffiffiffiffiffiffiffi
m0K11

ca

s
, Bt ¼ p

d

ffiffiffiffiffiffiffiffiffiffiffiffi
m0K22

ca

s
, and Us ¼ p

ffiffiffiffiffiffiffiffi
K11

303a

r
.

They are formally similar to the expressions for the threshold
magnetic inductances of the magnetic splay (Bs), the magnetic
twist (Bt) transitions, and the threshold voltage Us of the electric
splay Freedericksz transition. The applied voltage corresponds
to U ¼ Ezd.

The cell is symmetric with respect to its midplane, therefore
it is sufficient to perform the calculations for only one half of
the cell. For a given value of q̂ and U, the system of eqn (14) and
(15) was numerically solved for f0(ẑ) and q0(ẑ) in Matlab in the
interval ẑ ¼ [�p/2,0], which corresponds to the lower half of the
planar cell. Mixed boundary conditions were used as follows:
q0(�p/2) ¼ f0(�p/2) ¼ 0 and q

0
0(0) ¼ f

0
0(0) ¼ 0.

For U < Uckq̂ the homogeneous director eld is stable, thus
f0(ẑ) ¼ q0(ẑ) ¼ 0. The critical voltage Uckq̂ is identied by the
nonzero solutions of the director modulation amplitudes f0(ẑ)
and q0(ẑ), showing the emergence of the pattern. Since our
model is linearized, no quantitative information can be
obtained about the director eld above the critical voltage.

Calculating Uckq̂ as the function of q̂ yields a neutral curve
with a minimum corresponding to the actual critical voltage
Uck and wavenumber q̂ck. As an example, the Uckq̂ vs. q̂ curve is
shown for Bk ¼ 0 T (solid line), 0.25 T (dotted line), 0.375 T
(dashed line), and 0.5 T (dash-dotted line) in Fig. 4. The red
crosses show Uck and q̂ck for each value of the applied parallel
magnetic inductance. The calculations were performed with
the material parameters of 1OO8 listed in Section 2 and e* ¼
6.9 pC m�1.

It can be clearly seen in Fig. 4 that both Uck and q̂ck increase
with higher values of Bk.
Fig. 5 The twist angle j versus the cross-section direction z of the
planar cell in the case of different perpendicularly applied magnetic
inductances.
3.2 The perpendicular geometry

In the perpendicular geometry, the magnetic inductance is
given by:

B ¼ (0, Bt, 0). (16)

The main difference to the parallel case is that here the
magnetic eld does not stabilize the initial homogeneous
planar conguration; instead it induces a twist Freedericksz
transition.

As a consequence, in the absence of the electric eld, the
director can be described solely by a ẑ-dependent twist angle
j ¼ j(ẑ), i.e. n ¼ (cos j, sin j,0). The determination of
the director prole via minimization of the free energy is a
4490 | Soft Matter, 2014, 10, 4487–4497
well-known procedure; j(ẑ) can be obtained as the solution of
the second order nonlinear ordinary differential equation:42

j00 ¼ �
�
Bt

Bt

�2

cos j sin j (17)

with the boundary conditions: j0(�p/2) ¼ 0 and j
0
0(0) ¼ 0.

Fig. 5 shows the resulting j(ẑ) prole inside the cell calcu-
lated with the parameters of our particular material (1OO8) for
three different values of the applied magnetic inductance.

For Bt < Bt, the twist angle naturally equals zero. Above the
Freedericksz threshold eld, j increases and reaches its
maximum in the middle of the cell: jm ¼ j(0). At higher Bt, jm

approaches 90�, but in the largest part of the cell, the twist angle
is still signicantly below 90�; even at Bt/Bt ¼ 2.78 that corre-
sponds to our maximum inductance of Bt ¼ 1 T. Note that an
electric eld below the onset of FDs (i.e. U < Uck) does not affect
the basic (homogeneous or twisted) state.
This journal is © The Royal Society of Chemistry 2014
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Fig. 6 The critical voltages (Uctq̂b) of flexodomains for different
wavenumbers q̂ and stripe angles b in the case of Bt ¼ 0.7 T. The
minimum of the surface in the center corresponds to the actual
threshold of the flexoelectric instability.
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If Bt < Bt, the initial director conguration is homogeneous,
thus the director modulation caused by the onset of ex-
odomains can be described similar to the parallel case, using
eqn (2). Above the Freedericksz threshold, however, the periodic
structure of FDs emerges from a twisted director eld, hence:

n ¼ (cos q cos(j + f), cos q sin(j + f), sin q), (18)

where q ¼ q(x, y, z) and f ¼ f(x, y, z) now depend on all space
coordinates. The free energy minimization can be done by the
system of Euler–Lagrange equations:

d

dx

�
vf

vq;x

�
þ d

dy

�
vf

vq;y

�
þ d

dz

�
vf

vq;z

�
� vf

vq
¼ 0; (19)

d

dx

�
vf

vf;x

�
þ d

dy

�
vf

vf;y

�
þ d

dz

�
vf

vf;z

�
� vf

vf
¼ 0: (20)

In eqn (19) and (20), additional terms appear compared to
eqn (10) and (11) in the parallel case, due to the x-dependence of
the angles q and f. The combination of eqn (3)–(8) and (16)–(20)
leads to lengthy expressions that must be linearized next in
order to have a chance to calculate the threshold parameters of
FDs.

In the perpendicular geometry we still assume that the
exoelectric instability results in unidirectional stripes, but in
contrast to the parallel case, the stripes are allowed to run at an
angle b with respect to the initial planar director n0, i.e. qc ¼
(q sin b, q cos b, 0). Hence the following ansatz is applied to the
q and f angles:

q(x, y, z) ¼ q0(z)cos((q cos b)y � (q sin b)x), (21)

f(x, y, z) ¼ f0(z)sin((q cos b)y � (q sin b)x). (22)

By switching again to dimensionless variables as in Section
3.1 aer straightforward calculations one obtains the system of
ordinary differential equations:

f00
0 ¼ q̂q0

�
1� k

1� dK

� �
j0sinðb� jÞ � e*Ucosðb� jÞ

ð1� dKÞKavp

�

þ f0

 
kq̂2sin2ðb� jÞ

1� dK
þ ð1þ dKÞq̂2cos2ðb� jÞ

1� dK

�
�
Bt

Bt

�2

cosð2jÞ
!

þ 2dKq̂q00cosðb� jÞ
1� dK

(23)

q000 ¼ q̂f0

�ð1� 3dK � kÞj0sinðb� jÞ
1þ dK

� e*Ucosðb� jÞ
ð1þ dKÞKavp

�

þ q0

 
kq̂2sin2ðb� jÞ

1þ dK
þ ð1� dKÞq̂2cos2ðb� jÞ

1þ dK

þ ð2dK þ k� 2Þðj0Þ2
1þ dK

þ
�
Bt

Bs

�2

sin2ðjÞ �
�
U

Us

�2
!

� 2dKq̂f0
0cosðb� jÞ
1þ dK

;

(24)
This journal is © The Royal Society of Chemistry 2014
where an additional constant k ¼ K33/Kav was introduced.
Below the twist Freedericksz threshold, the procedure to nd

Uct and q̂ct for different values of Bt is similar to that dis-
cussed in Section 3.1, as b and j can be xed to zero. If Bt > Bt,
however, j and j0 have to be taken from the solution of eqn (17).
Calculating Uctq̂b as the function of q̂ and b gives a surface with
a minimum that corresponds to the actual critical voltage Uct,
wavenumber q̂ct, and stripe angle bct.

As an example, Uctq̂b plotted as the function of q̂ and b for
Bt ¼ 0.7 T is shown in Fig. 6. The calculations were performed
using the material parameters of 1OO8 presented in Section 2
and e* ¼ 6.8 pC m�1. The minimum is clearly seen at around
the middle of the surface.
4 Experimental results
4.1 Parallel geometry

Snapshots of exodomains taken at Bk ¼ 0 T (U¼ 23 V) and Bk ¼
1 T (U ¼ 52.6 V) are presented in Fig. 7a and c. The micrographs
were captured slightly above the threshold voltages (Uck) of the
patterns in the parallel geometry, covering an area of 106 mm �
106 mm. The two-dimensional Fourier transforms (amplitude
spectra) of the images Fig. 7a and c are shown in Fig. 7b and d,
respectively.

It can immediately be seen in Fig. 7 that the dimensionless
wavenumber q̂ of FDs is signicantly larger at Bk ¼ 1 T than at
zero magnetic eld, however, the direction of the wavevector
remains the same as expected. The threshold voltage is also
larger at the higher Bk. In order to precisely determine the
threshold parameters Uck and q̂ck, the emergence of the pattern
has to be followed as the function of the applied voltage. The
proper analysis of this process needs a denition of a quantity
that can be used to indicate the presence of a pattern. In our
case, this quantity was assigned to the maximal Fourier
amplitude (CFFT) in a broad region in that part of the Fourier
space where the peaks for FDs were expected. The value of CFFT

is essentially a measure of contrast that is expected to be
Soft Matter, 2014, 10, 4487–4497 | 4491
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Fig. 7 Micrographs of flexodomains taken at (a) Bk ¼ 0 T (U ¼ 23 V)
and (c) Bk ¼ 1 T (U¼ 52.6 V) in the parallel geometry. The images cover
an area of 106 mm � 106 mm. The magnetic field and the rubbing
direction lie parallel to the horizontal direction. The two dimensional
Fourier transforms of (a) and (c) are shown in (b) and (d), respectively.

Fig. 8 The voltage dependence of the pattern contrast (symbols)
based on the maximal Fourier amplitude (CFFT) for different applied
magnetic inductances in the parallel geometry. The dashed lines
indicate the linear extrapolation.

Fig. 9 The wavenumber of flexodomains as a function of the reduced
voltage (symbols) for different applied magnetic inductances in the
parallel geometry. The dashed lines indicate the linear extrapolation.
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minimal in the homogeneous initial state, and to increase with
the emergence of the pattern.

The measured voltage dependence of CFFT is shown in Fig. 8
for different values of Bk. We note that here CFFT is background
corrected, which means that the maximal Fourier amplitude of
the snapshot taken in the homogeneous initial state is sub-
tracted from all measured values.

The threshold behavior is observed from Fig. 8 for all
different values of Bk. Below the appearance of the patterns, the
contrast equals the background value, thus CFFT ¼ 0. At higher
voltages, the emergence of FDs is indicated by an increase in the
contrast. The critical voltages Uck (versus Bk) were determined by
extrapolation of the lines tted on the linear parts of the CFFT(U)
functions for each value of Bk (dashed lines in Fig. 8).

The q̂ data were obtained by tting the peaks in the Fourier
transforms of micrographs with 2D Gaussian surfaces for each
applied voltage. The tted centres of the Gaussians were used to
acquire the values of q̂. In Fig. 9, the wavenumbers of FDs are
plotted as the function of the reduced voltage U/Uck for several
values of Bk. The data show that the wavenumber increases
linearly with the applied voltage above the threshold. Therefore,
the critical wavenumber q̂ck should be determined by extrapo-
lation to U/Uck ¼ 1. The extrapolating dashed lines in Fig. 9 were
tted to the data points lying in the range 1.02 < U/Uck < 1.06,
which is approximately the same interval as the one used in the
extrapolation to determine Uck (see Fig. 8).

Applying the procedure presented above on a number of
different Bk values, the magnetic eld dependence of the
threshold parameters can be determined. Fig. 10a and b depict
how Bk affects Uck and q̂ck, respectively. The solid symbols show
the experimentally obtained data.
4492 | Soft Matter, 2014, 10, 4487–4497
In order to see how the experimental results match with our
theoretical considerations, the threshold parameters Uck and
q̂ck were determined by the simulation technique described in
Section 3.1 using the material parameters of 1OO8 listed in
Section 2. Only the parameter e*, i.e. the difference of exo-
electric coefficients, was determined by tting our theoretical
model to the measured value of q̂ck at Bk ¼ 0. Our method gave
e* ¼ 6.9 pC m�1, which was used in the simulations of the
parallel geometry. The open symbols in Fig. 10a and b show the
magnetic inductance dependence of the critical voltage and the
wavenumber obtained from the simulation (the connecting
lines are used as guides for the eye).

It is seen in Fig. 10 that the theoretical Uck(B) dependence is
nicely reproduced experimentally; Uck increases monotonically
with Bk, but the measured threshold voltages are systematically
larger than the theoretical ones. This deviation can be attrib-
uted to the ionic conductivity of the liquid crystal and to the
This journal is © The Royal Society of Chemistry 2014
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Fig. 10 The magnetic inductance dependence of (a) the critical
voltage and (b) the wavenumber in the parallel geometry. The solid
(connected open) symbols were obtained by experiments (by
numerical simulations).
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structure of the cell. Though in many situations liquid crystals
can be considered to be insulators, the nite conductivity of
nematics becomes important if a low frequency AC voltage is
applied onto the material.43 The effect is even more apparent
when a DC voltage is used. Common liquid crystals, such as
1OO8, exhibit electrolytic conductivity where the charge carriers
are ionic impurities. If the applied electric eld changes very
slowly or is constant with time, ions with opposite charges have
time to reach the opposite electrodes, where they can accumulate,
forming a Debye layer. This screening may reduce the electric
eld in the cell. However, if the total number of charge carriers is
sufficiently low, this effect is negligible. In typical liquid crystal
test cells, the ITO electrodes are coated with electrically insulating
polyimide layers. The thickness of these are approximately 100–
120 nm that can provide barriers strong enough to stop ions and
minimize the charge transfer from the electrodes.28 In the static
case, the voltage U applied on the cell should be larger than that
on the liquid crystal itself (ULC), because of the voltage drop at the
polyimide and the Debye layers. The internal voltage attenuation
may be estimated by ULC/U¼ RLC/(Rb + RLC), where RLC and Rb are
the resistances of the liquid crystal and of the boundary layers,
respectively. This simple model can explain why systematically
larger critical voltages were obtained in the experiments
compared to the simulations.
This journal is © The Royal Society of Chemistry 2014
Another peculiarity seen in Fig. 10a is that the difference
between the experimental and calculated critical voltages is
larger at lower applied voltages. This effect is consistent with
the above model. Increasing the applied DC voltage decreases
the effective number of charge carriers and thus increases RLC,
while Rp might be regarded as voltage independent. Conse-
quently, the internal attenuation reduces; the ratio ULC/U
approaches 1 when the applied voltage increases.

Besides the critical voltage, the wavenumber q̂ck also shows a
signicant increase with the applied magnetic eld (see Fig. 7
and 10). This tendency is the consequence of the monotonically
increasing Uck(Bk); higher voltages may allow higher wave-
numbers. The simulation results agree very well with the
experimental data. It should be noted that the calculated
magnetic eld dependence of q̂ck in Fig. 10b is not a t; the
material parameters used were not varied in order to achieve a
better match with the measured results. This implies that a ne
tuning of the elastic constants and the other parameters may
result in even better agreement.
4.2 The oblique geometry

In Fig. 11a–d, micrographs of FDs of the oblique geometry that
were taken at Bobl ¼ 0 T (U¼ 23 V), Bobl ¼ 0.3 T (U¼ 27.6 V), Bobl
¼ 0.6 T (U ¼ 38.8 V) and Bobl ¼ 1 T (U ¼ 54.8 V), respectively, are
shown. The images were recorded slightly above the threshold
voltages of exodomains, and they cover an area of 106 mm �
106 mm, similar to the ones presented in the previous subsec-
tion of the parallel geometry. In Fig. 11a–d, one can clearly
identify the most spectacular feature of the oblique geometry:
not only the wavenumber of the FD stripes is inuenced by the
magnetic eld, but the direction of the wavevector as well.

In the oblique geometry, the threshold voltages Ucobl and the
critical wavenumbers q̂cobl were determined following the
procedure presented in Section 4.1 in conjunction with Fig. 8
and 9. In contrast to the parallel case, the angle bobl between n0

and the exoelectric stripes had to be measured too.
The dependence of the stripe direction bobl on the reduced

voltage U/Ucobl is plotted in Fig. 12 for different magnetic
inductances. At nonzero values of Bobl, the angle bobl shows a
decreasing tendency by increasing U/Ucobl. Therefore the stripe
direction angle at the onset of the exoelectric patterns (bcobl)
can be determined by extrapolation (see the dashed lines in
Fig. 12), analogous to the determination of q̂cobl.

The magnetic inductance dependence of the threshold
parameters Ucobl and q̂cobl is shown in Fig. 13a. The critical
voltage increases with Bobl; q̂cobl exhibits a similar character.
The tendency of increasing the critical voltage and wavenumber
at high magnetic elds is similar to that found in the parallel
geometry and is due to the stabilizing magnetic torques.

The stripe angle bcobl at the threshold versus the magnetic
inductance is shown in Fig. 13b. The data indicate that bcobl
increases with Bobl monotonically from zero and it approaches
45� at high elds.

In the oblique geometry, a pure magnetic eld induces a
thresholdless, homogeneous twist deformation. Therefore, for
Bobl s 0, a twisted structure forms the basic state of the
Soft Matter, 2014, 10, 4487–4497 | 4493
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Fig. 11 Micrographs of flexodomains taken at (a) Bobl ¼ 0 T (U ¼ 23 V),
(b) Bobl¼ 0.3 T (U¼ 27.6 V), (c) Bobl ¼ 0.6 T (U¼ 38.8 V) and (d) Bobl¼ 1
T (U ¼ 54.8 V) in the oblique geometry. The images cover an area of
106 mm � 106 mm. The magnetic field lies in the horizontal direction.
The rubbing direction is at an angle of 45� with respect to the hori-
zontal direction (parallel to the stripes in (a)).

Fig. 12 The angle of FD stripes with respect to the rubbing direction as
the function of the reduced voltage (symbols) for different applied
magnetic inductances in the oblique geometry. The dashed lines
indicate the linear extrapolation.

Fig. 13 The magnetic inductance dependence of (a) the critical
voltage, wavenumber and (b) FD stripe angle with respect to the
rubbing direction in the oblique geometry.
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exoelectric instability at U ¼ Ucobl. For high magnetic elds,
the director realigns to be parallel to Bobl, i.e. the maximal
rotation angle is 45�. Fig. 13b clearly shows that bcobl follows the
director rotation and saturates approaching the same 45� angle;
thus, at large magnetic elds, the FD stripes are parallel to the
(average) director, just as in the case of Bobl ¼ 0.
4.3 The perpendicular geometry

Micrographs of exodomains of the perpendicular geometry
recorded slightly above their critical voltage at Bt ¼ 0 T (U ¼ 24
V), Bt ¼ 0.2 T (U ¼ 22.4 V), Bt ¼ 0.35 T (U¼ 18.4 V), Bt ¼ 0.5 T
4494 | Soft Matter, 2014, 10, 4487–4497
(U ¼ 31.6 V), Bt ¼ 0.75 T (U ¼ 45.6 V) and Bt ¼ 1 T (U ¼ 56 V)
are shown in Fig. 14a–f, respectively. All images cover an area of
106 mm � 106 mm (the same as shown in Fig. 7 and 11). The
direction of the rubbing (n0) and that of the magnetic eld (Bt)
correspond to the vertical and the horizontal directions,
respectively.

One can observe in Fig. 14a–c that the distance between
stripes increases, but the orientation of exodomains remains
parallel to the rubbing direction. In contrast, in Fig. 14d–f, the
wavenumber of the pattern increases and the stripes become
oblique, gradually approaching to be horizontal.

The critical parameters Uct, q̂ct, and bct versus Bt were
determined by following the same procedure presented in the
previous subsections. The experimental values of the critical
voltage, wavenumber and stripe angle can be seen as the
function of Bt in Fig. 15a–c, respectively (solid symbols).

The threshold parameters Uct, q̂ct, and bct were also
determined by the simulation technique described in Section
3.2. The same material constants were used as for the parallel
geometry, except e*. A slightly different value of e*¼ 6.8 pCm�1

was used here (instead of 6.9 pC m�1), in order to t the
experimental value of the critical wavenumber in the perpen-
dicular geometry at zero magnetic eld, which differed slightly
from that measured previously in the parallel geometry. The
open symbols in Fig. 15a–c show the magnetic inductance
dependence of the critical voltage, wavenumber and stripe
angle obtained from the simulations (the connecting lines are
just guides for the eye).
This journal is © The Royal Society of Chemistry 2014
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Fig. 14 Micrographs of flexodomains taken at (a) Bt ¼ 0 T (U ¼ 24 V),
(b) Bt ¼ 0.2 T (U ¼ 22.4 V), (c) Bt ¼ 0.35 T (U ¼ 18.4 V), (d) Bt ¼ 0.5 T
(U¼ 31.6 V), (e) Bt¼ 0.75 T (U¼ 45.6 V) and (f) Bt¼ 1 T (andU¼ 56 V)
in the perpendicular geometry. The images cover an area of 106 mm �
106 mm. The magnetic field and the rubbing direction lie parallel to the
horizontal and the vertical directions, respectively.

Fig. 15 The magnetic inductance dependence of (a) the critical
voltage, (b) wavenumber and (c) FD stripe angle with respect to the
rubbing direction in the perpendicular geometry. The solid (connected
open) symbols were obtained by experiments (numerical simulations).
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It is clear from Fig. 15 that the characteristics of the exo-
electric patterns are different below and above the threshold
magnetic inductance (Bt ¼ 0.36 T) of the twist Freedericksz
transition. Nevertheless, for both Bt ranges, the theoretical
curves nicely reproduce the experimental dependence. In the
range Bt/Bt < 1, Uct and q̂ct decreases with increasing
magnetic eld, while the direction of the FD stripes remains
parallel to n0, thus bct is essentially zero. It is important to note
that close to Bt, both Uct and q̂ct are far below their values at
Bt ¼ 0. This decrease becomes clear if we invoke the structure
of exodomains. The periodic director deformation of FDs
involves both tilt and twist components, as it was described by
eqn (12) and (13). The torque exerted by a bias magnetic eld
applied perpendicular to the initial director helps to twist the
director and thus reduces the threshold voltage of FDs, even if it
is still too low to induce a homogeneous twist deformation by
itself.

Above the Freedericksz threshold, both Uct and q̂ct increase
with Bt. Furthermore, the orientation of the stripes changes
gradually from the rubbing direction towards a state where they
are more parallel to the magnetic eld. Therefore, bct increases
from zero and approaches 90� at high values of Bt. In order to
see how the critical rotation angle bct of FDs is related to the
This journal is © The Royal Society of Chemistry 2014
twist deformed basic state of the director eld, we included the
maximal twist angle jm as the function of Bt in Fig. 15c (solid
line). It is clearly seen that jm is always larger than bct, as
expected. The difference between the stripe angle and the
maximal twist angle is relatively small, despite the fact that the
j(ẑ) prole is not at, even at Bt ¼ 1 T. This leads to the
conclusion that the exoelectric domains in our system are
localized in the middle of the cell. As a consequence, the twist
deformation of the director is directly visualized by the rotation
of the FD stripes.

Though the numerically obtained Uct(Bt) curves exhibit a
similar B-dependence as the experimental ones, the latter
values are slightly, though systematically higher, just as has
Soft Matter, 2014, 10, 4487–4497 | 4495
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been found in the parallel geometry. The explanation given for
the voltage deviation in Section 4.1 applies here as well. In
contrast to the threshold voltages, the measured and calculated
q̂ct(Bt) curves match almost perfectly, despite the fact that the
B-dependent values were not obtained by a t (no free param-
eters were varied in the simulations).

Similarly, good agreement can be seen between the calcu-
lated and the measured bct(Bt) dependence as well, though
the threshold of the twist Freedericksz transition seems to be
less sharp in the experiment. This is most likely due to experi-
mental imperfections, e.g. a slight misalignment of the
magnetic eld direction.

We note here that the vertical dashed line in Fig. 15a–c is not
an experimental value of the threshold of the twist Freedericksz
transition; it was calculated from the material parameters of
1OO8 listed in Section 2, which were taken from independent
measurements.37

5 Discussion

We have shown in the previous sections that the presence of an
additional magnetic eld has a signicant inuence on the
formation of exodomains in a nematic liquid crystal. It is well
known that a magnetic eld affects the electric Freedericksz
transitions as well in certain geometries. This is not surprising
as, depending on its direction, the torque exerted by the
magnetic eld either stabilizes or destabilizes the initial state.
In the following, we discuss these analogies in more detail.

Let us start with the magnetic eld applied along n0. Here,
the critical voltage Uck of FDs was found to increase mono-
tonically with Bk. Qualitatively similar behavior is expected in
the same geometry for the homogeneous splay Freedericksz
transition, assuming that the nematic compound exhibits
positive dielectric and magnetic susceptibility anisotropies.
There, the magnetic eld has a stabilizing effect: it tends to
suppress the director tilt and twist as well. Our ndings point
out that this stabilizing effect works similarly in the case of
exodomains, where the director deformation is induced by
exoelectricity, thus acting against the negative dielectric
anisotropy that stabilizes the homogeneous planar state.

The perpendicular geometry has some more interesting
aspects. Our results show that the critical properties of FDs
exhibit a completely different nature in the two distinct
magnetic eld ranges separated by the twist Freedericksz
threshold eld. For Bt < Bt, the critical voltage was found to
decrease with Bt, while for Bt > Bt an opposite tendency was
detected. Comparing this with the splay Freedericksz transition
of a nematic with 3a > 0, we do not nd an analogy, in contrast to
the parallel geometry. The threshold voltage for the homoge-
neous director reorientation is not affected by the magnetic
eld at all if Bt < Bt.44 This is due to the fact that the electric
splay Freedericksz distortion involves only the tilt of the
director, while in FDs tilt and twist are both present. A magnetic
inductance below Bt cannot create twist, but may alter twist if it
is already present.

Measurements in the oblique and perpendicular geometries
showed that the direction of the FD stripes rotate if there is a
4496 | Soft Matter, 2014, 10, 4487–4497
twist deformation in the sample. This unambiguously proves
that the FDs observed are of bulk origin, just as it was assumed in
the rst theoretical interpretation.16 Thus, our ndings are in
contrast to some recent results of exoelectric pattern formation
in bent-core nematic compounds using twisted cells,24,25 where
the patterns were found to be localized near the electrodes and
changed their direction upon reversal of the voltage polarity.
Despite similarities in their appearance, we assume that those
patterns are exodomains of another type with a different, not yet
fully explored formation mechanism, where surface effects (e.g.
anchoring and ion blocking strength, surface polarization, large
electric eld gradients near Debye layers) as well as differences in
material parameters (ion concentration, elastic constants, etc.)
may play an important role.

In Section 1 we have already pointed out the advantages of
using exodomains in determining e*, as well as the main
drawback of this technique: only a few compounds possess the
combination of the material parameters required for the
appearance of exodomains.18 For example, in compounds with
large positive dielectric anisotropy, FDs cannot be seen because
their threshold voltage would be larger than that of the electric
Freedericksz transition. However, we showed that applying a
magnetic eld in the perpendicular geometry substantially
decreases Uct, while the electric Freedericksz threshold
remains unaffected by Bt < Bt. Therefore, our results opens up a
perspective to enlarge the number of nematics that may show
FDs. Namely, we think that the application of a suitable Bt will
allow observation of FDs in compounds where no exoelectric
pattern formation can be seen in the absence of a magnetic
eld. Proving this will be the subject of further studies.
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K81250 and the DAAD/MÖB researcher exchange program
(grant no. 29480) are gratefully acknowledged.
References

1 P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,
Clarendon Press, Oxford, 2nd edn, 1993.

2 L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid
Crystal Materials, Springer, New York, 1996.

3 R. Stannarius, in Handbook of Liquid Crystals, ed. J. W.
Goodby, P. J. Collings, T. Kato, C. Tschierske, H. Gleeson
and P. Raynes, Wiley-VCH, Weinheim, 2014, vol. 3, p. 131.

4 R. B. Meyer, Piezoelectric effects in liquid crystals, Phys. Rev.
Lett., 1969, 22, 918–921.

5 Flexoelectricity in Liquid Crystals. Theory, Experiments and
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