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Timescales of emulsion formation caused by
anisotropic particles

Florian Günther,a Stefan Frijtersa and Jens Harting*ab

Particle stabilized emulsions have received much interest in the recent past, but our understanding of the

dynamics of emulsion formation is still limited. For simple spherical particles, the time dependent growth of

fluid domains is dominated by the formation of droplets, particle adsorption and coalescence of droplets

(Ostwald ripening), which eventually can be almost fully blocked due to the presence of the particles.

Ellipsoidal particles are known to be more efficient stabilizers of fluid interfaces than spherical particles

and their anisotropic shape and the related additional rotational degrees of freedom have an impact on

the dynamics of emulsion formation. In this paper, we investigate this point by means of simple model

systems consisting of a single ellipsoidal particle or a particle ensemble at a flat interface as well as a

particle ensemble at a spherical interface. By applying combined multicomponent lattice Boltzmann and

molecular dynamics simulations we demonstrate that the anisotropic shape of ellipsoidal particles

causes two additional timescales to be of relevance in the dynamics of emulsion formation: a relatively

short timescale can be attributed to the adsorption of single particles and the involved rotation of

particles towards the interface. As soon as the interface is jammed, however, capillary interactions

between the particles cause a local reordering on very long timescales leading to a continuous change

in the interface configuration and increase of the interfacial area. This effect can be utilized to

counteract the thermodynamic instability of particle stabilized emulsions and thus offers the possibility

to produce emulsions with exceptional stability.
I. Introduction

Particle stabilized emulsions play an important role in phar-
maceutical, food, oil and cosmetic industries.1 The particles are
adsorbed at the interface between two immiscible uids and as
such stabilize the emulsion. The stability of the emulsions
depends on several parameters like particle coverage at the
interfaces and the wettability of the particles. It was found that
the particle coverage at the interface is the most important
parameter for stabilizing emulsions.2 The colloidal particles act
in a similar way as surfactants. In both cases the free energy of
the interface is reduced. However, the uid–uid interfacial
tension is not being modied by particles.3

Several types of particle stabilized emulsions are known
including the bicontinuous interfacially jammed emulsion gel
(bijel) and the more widely known Pickering emulsion. The
Pickering emulsion was discovered in the beginning of the 20th

century independently by Pickering and Ramsden.4,5 It consists
of discrete particle covered droplets of a uid immersed in a
second uid. The bijel was predicted in 2005 by simulations and
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experimentally realized for the rst time in 2007.6,7 It consists of
two continuous phases. The choice of control parameters such
as particle concentration, particle wettability and ratio between
the two uids determines if a bijel or a Pickering emulsion is
obtained.8,9 There are many kinds of particles/colloid types
which can stabilize an emulsion, i.e., next to spheres,10,11 the
colloidal particles can also be of more complex nature and
include anisotropic shapes,12 magnetic interactions,13,14 or
anisotropic Janus style properties.15

The inuence of the particle shape on the stabilization of
Pickering emulsions was studied experimentally with prolate and
oblate ellipsoids, e.g. in ref. 16. As the degree of the particle
anisotropy increases, the effective coverage area increases. In this
way they are more efficient stabilizers for emulsions than
spherical particles. Furthermore, the rheological properties of the
emulsion vary with changing aspect ratio because the coverage of
the uid interfaces and the capillary interactions differ.

In ref. 8 and 17–20 the adsorption of a single particle at a at
interface is studied in the absence of external elds. The stable
conguration for elongated ellipsoids is the orientation parallel
to the interface.8 This state minimizes the free energy of the
particle at the interface by reducing the interfacial area.17,19,20 If
the particle shape is more complex like e.g. the super-ellipsoidal
hematite particle,21 several equilibrium orientations are
possible.
Soft Matter, 2014, 10, 4977–4989 | 4977
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Furthermore, if particles are adsorbed at an interface they
generally deform the interface. This deformation can be caused
for example by particle anisotropy,22 external forces such as
gravity or electromagnetic forces acting on the particles,23,24 or
non-constant interface curvature.25 This deformation leads to
capillary interactions between the particles. In the case of
ellipsoids at a at interface it is quadrupolar potential,26 which
leads to spatial ordering.27

In general, particle stabilized emulsions are thermodynam-
ically unstable and just kinetically stable. The energetic penalty
for creating the interface is much higher than the entropic
increase. While thermodynamic stability for emulsions has
been reported in some special cases, one can generally assume
that this requires the interplay of several effects such as particle
interactions due to charges, amphiphilic interactions (Janus
particles) or additional degrees of freedom.28–30

Due to the short timescales and limited optical accessibility,
the dynamics of the formation of emulsions has only found
limited attendance so far.31 The focus of the current article is to
study the inuence of the geometrical anisotropy and rotational
degrees of freedom of ellipsoidal particles on the time devel-
opment of uid domain sizes in particle-stabilized emulsions.
To obtain a deeper understanding of the individual contribu-
tions to the stabilization and formation process due to the
particles we investigate model systems involving either a single
particle or particle ensembles at a simple interface. We will
demonstrate that the rotational degrees of freedom of ellipsoids
can have an impact on the domain growth and might be a
suitable way to generate particle stabilized emulsions with
exceptional long-term stability.

This article is organized as follows: the simulation method is
introduced in Section II. Dynamic emulsion properties are
studied in Section III. Sections IV and V discuss a single particle
and a particle ensemble at a at interface, respectively. Section
VI describes the behavior of a particle ensemble at a spherical
interface. We nalize the paper with a conclusion.
II. Simulation method
A. The lattice Boltzmann method

For the simulation of the uids the lattice Boltzmann method is
used.32 The discrete form of the Boltzmann equation can be
written as3

f ci (x + ciDt,t + Dt) ¼ f ci (x, t) + Uc
i (x, t), (1)

where f ci (x, t) is the single-particle distribution function for uid
component c with discrete lattice velocity ci at time t located at
the lattice position x. The D3Q19 lattice with the lattice constant
Dx for three dimensions and with nineteen velocity directions is
used. Dt is the timestep and

Uc
i ðx; tÞ ¼ �f ci ðx; tÞ � f

eq
i ðrcðx; tÞ; ucðx; tÞÞ
ðsc=DtÞ (2)

is the Bhatnagar–Gross–Krook (BGK) collision operator.33 The

density is dened as rcðx; tÞ ¼ r0

X
i

f ci ðx; tÞ where r0 is the
4978 | Soft Matter, 2014, 10, 4977–4989
proportionality factor of the density. sc is the relaxation time for
the component c and

f
eq
i ðrc; ucÞ ¼ zir

c

"
1þ ci$u

c

cs2
þ ðci$ucÞ2

2cs4
� ðuc$ucÞ

2cs2
þ ðci$ucÞ3

6cs6

� ðuc$ucÞðci$ucÞ
2cs4

#
(3)

is the third order equilibrium distribution function.

cs ¼ 1ffiffiffi
3

p Dx

Dt
(4)

is the speed of sound, uc ¼
X
i

f ci ðx; tÞci=rcðx; tÞ is the velocity

and zi is a coefficient depending on the direction: z0 ¼ 1/3 for
the zero velocity, z1,.,6 ¼ 1/18 for the six nearest neighbors and
z7,.,18 ¼ 1/36 for the next nearest neighbors in the diagonal
direction. The kinematic viscosity can be calculated as

nc ¼ cs
2Dt

�
sc

Dt
� 1

2

�
: (5)

In the following we choose Dx¼ Dt¼ r0 ¼ 1 for simplicity. In
all simulations the relaxation time is set to sc h 1.
B. Multicomponent lattice Boltzmann

There are different extensions for the lattice Boltzmannmethod
to simulate multi-component and multiphase systems.34–38 An
overview on different methods for multi-component uid
systems and the treatment of uid–uid interfaces is given in
ref. 39. In this paper, the method introduced by Shan and Chen
is used.34 Every species has its own distribution function
following eqn (1). To obtain an interaction between the different
components a force

Fcðx; tÞ ¼ �Jcðx; tÞ
X
c0

gcc0
X
x0

Jc0 ðx0; tÞðx0 � xÞ (6)

is calculated locally and is included in the equilibrium distri-
bution function. It is summed up over the different uid species
c0 and x0, the nearest neighbors of lattice positions x. gcc0 is the
coupling constant between the species and Jc(x, t) is a
monotonous weight function representing an effective mass.
For the results presented here, the form

Jc(x, t) h J(rc(x, t)) ¼ 1 � e�rc(x, t) (7)

is used. To incorporate Fc(x, t) in f eqi we dene

Ducðx; tÞ ¼ scFcðx; tÞ
rcðx; tÞ : (8)

The macroscopic velocity included in f eqi is shied by Duc as

ucðx; tÞ ¼

X
i

f ci ðx; tÞci
rcðx; tÞ � Ducðx; tÞ: (9)
This journal is © The Royal Society of Chemistry 2014
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As we are interested in immiscible uids we choose a posi-
tive value for gcc0 which leads to a repulsive interaction. This
interaction has to be strong enough to obtain two separate
phases but it should not be too high in order to keep the
simulation stable. Here, we use the range of 0.08 # gcc0 # 0.14.
C. Nanoparticles

Particles are simulated with molecular dynamics where New-
ton's equations of motion

F ¼ m _upar and D ¼ J _upar (10)

are solved by a leap frog integrator. F and D are the force and
torque acting on the particle with mass m and moment of
inertia J. upar and upar are the velocity and the rotation vector of
the particle.

The particles are also discretized on the lattice. They are
coupled to both uid species by a modied bounce-back
boundary condition which was originally introduced by
Ladd.9,40–43 This changes the lattice Boltzmann equation as
follows:

f ci ðxþ ci; tþ 1Þ ¼ f c
i
ðxþ ci; tÞ þ Ui

cðxþ ci; tÞ þ C ; (11)

where ci is the velocity vector pointing to the next neighbor. C
depends linearly on the local particle velocity, ī is dened in a
way that ci ¼ �c̄i is fullled. A change of the uid momentum
due to a particle leads to a change of the particle momentum in
order to keep the total momentum conserved:

Fðx; tÞ ¼ �
2f i

cðxþ ci; tÞ þ C
�
ci: (12)

If the particle moves, some lattice nodes become free and
others become occupied. The uid on the newly occupied nodes
is deleted and its momentum is transferred to the particle as

Fðx; tÞ ¼ �
X
c

rcðx; tÞucðx; tÞ: (13)

A newly freed node (located at x) is lled with the average
density of the NFN neighboring uid lattice nodes xiFN for each
component c,

rcðx; tÞh 1

NFN

X
iFN

rcðxþ ciFN ; tÞ: (14)

Hydrodynamics leads to a lubrication force between the
particles. This force is reproduced automatically by the simu-
lation for sufficiently large particle separations. If the distance
between the particles is so small that no free lattice point exists
between them this reproduction fails. If the smallest distance
between two identical spheres with radius R is smaller than a

critical value Dc ¼ 2
3
the correction term is given as:43

Fij ¼ 3pmR2

2
r̂ij

�
r̂ij
�
ui � uj

��� 1

rij � 2R
� 1

Dc

�
: (15)
This journal is © The Royal Society of Chemistry 2014
m is the dynamic viscosity, r̂ij a unit vector pointing from one
particle center to the other one and ui is the velocity of particle i.
To use this potential for ellipsoidal particles eqn (15) is gener-
alized in a way proposed by Berne and Pechukas.8,44,45 We dene

s ¼ 2R and 3 ¼ 3pm
8

s. Both are extended to the anisotropic case

as

3
�
ôi; ôj

�
¼ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Y2
�
ôiôj

�2
r and

s
�
ôi; ôj ; r̂ij

�
¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Y

2

0
B@
�
r̂ij ôi þ r̂ij ôj

�2

1þ Yôiôj
þ
�
r̂ij ôi � r̂ij ôj

�2

1� Yôiôj

1
CA

vuuuut
; (16)

with �s ¼ 2Rt, 3 ¼ 3pm
8

s; Y ¼ Rk2 � Rt
2

Rk2 þ Rt
2 and ôi the orientation

unit vector of particle i. Rk and Rt are the parallel and the
orthogonal radius of the ellipsoid. Using eqn (16) we can rewrite
eqn (15) and obtain

Fij

�
ôi; ôj ; rij

�
¼ 3

�
ôi; ôj

�
~Fij

0
B@ rij

s
�
ôi; ôj ; r̂ij

�
1
CA: (17)

~F is a dimensionless function taking the specic form of the
force into account and in this example it is

~FðrÞ ¼ r̂ijðr̂ijðui � ujÞÞ
�

1
r � 1

� s

Dc

�
:

The lubrication force (including the correction) has already
reduced the probability that the particles come closely together
and overlap. For the few cases where the particles still would
overlap we introduce the direct potential between the particles
which is assumed to be a hard core potential. To approximate
the hard core potential we use the Hertz potential46 which has
the following shape for two identical spheres with radius R:

fH ¼ KH(2R � r)5/2 for r < 2R. (18)

r is the distance between particle centers. For larger distances
fH vanishes. KH is a force constant and is chosen to be KH ¼ 100
for all simulations. To use this potential for ellipsoidal particles
eqn (18) is generalized in a similar way as the lubrication force.
Using eqn (16), s ¼ 2R and 3 ¼ KHs

5/2 we can rewrite eqn (18)
and obtain

fH

�
ôi; ôj ; rij

�
¼ 3

�
ôi; ôj

�
~fH

0
B@ rij

s
�
ôi; ôj ; r̂ij

�
1
CA: (19)

~fH is a dimensionless function taking the specic form
of the potential into account and in this example it is ~fH(x) ¼
(1 � x)5/2.

The Shan–Chen forces also act between a node in the outer
shell of a particle and its neighboring node outside of the
particle. This would lead to an increase of the uid density
Soft Matter, 2014, 10, 4977–4989 | 4979
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around the particle. Therefore, the nodes in the outer shell of
the particle are lled with a virtual uid corresponding to the
average of the value in the neighboring free nodes for each uid
component: rcvirt(x, t) ¼ �rc(x, t). This can be used to control the
wettability properties of the particle surface for the special case
of two uid species which will be named red and blue. We
dene the parameter Dr and call it particle color. For positive
values of Dr we add it to the red uid component:

rrvirt ¼ �rr + Dr. (20)

For negative values we add its absolute value to the blue
component:

rbvirt ¼ �rb + |Dr|. (21)

In ref. 8 it is shown that there is a linear relationship between
Dr and the three-phase contact angle q.
Fig. 1 Snapshots of typical simulated Pickering emulsions (left) and
bijels (right) after 105 timesteps. The emulsions are stabilized by prolate
ellipsoids (m ¼ 2, top), spheres (m ¼ 1, center) and oblate ellipsoids (m
¼ 1/2, bottom). The parameter determining if one obtains a bijel or a
Pickering emulsion is the fluid ratio which is chosen as 1 : 1 for the
bijels and 5 : 2 for Pickering emulsions.
III. Emulsions

In this section the different types of particle stabilized emul-
sions and the effect of the particle shape on some of their
properties are discussed. We nd two different types of emul-
sions in our simulations, namely the Pickering emulsion
(Fig. 1, le) and the bijel (Fig. 1, right). The choice of param-
eters (such as particle contact angle, particle concentration,
uid–uid ratio, particle aspect ratio) determines the type of
emulsions. Parameter studies for emulsions have been dis-
cussed in ref. 9 and 8 for spherical and ellipsoidal particles,
respectively. In the current publication we limit ourselves to
anisotropy effects on the time dependence of the emulsion
formation. We use the following particle shapes (m ¼ Rk/Rt is
the particle aspect ratio, Rk and Rt are the parallel and
orthogonal radius of the particles, respectively): prolate ellip-
soids (m ¼ 2; Fig. 1, top), spheres (m ¼ 1; Fig. 1, center) and
oblate ellipsoids (m ¼ 1/2; Fig. 1, bottom). For m ¼ 1/2 we
choose Rk ¼ 5Dx and Rt ¼ 10Dx. For the other values of m the
radii Rk and Rt are chosen as such that the particle volume is
kept constant, resulting in Rk z 12.6Dx and Rt z 6.3Dx for m
¼ 2 as well as Rk ¼ Rt z 7.9Dx for spheres. The interaction
parameter between the red and blue uids (see eqn (6)) is
chosen as gbr ¼ 0.08 which corresponds to a uid–uid inter-
facial tension of s ¼ 0.0138. The particles are neutrally wetting
(contact angle q¼ 90�) and the particle volume concentration is
chosen as C ¼ 0.24. The simulated systems of volume VS ¼ LS

3

have periodic boundary conditions in all three directions and a
side length of LS ¼ 256Dx. Initially, the particles are distributed
randomly. At each lattice node a random value for each uid
component is chosen so that the designed uid–uid ratio is
maintained (1 : 1 for the bijels and 5 : 2 for the Pickering
emulsions). When the simulation evolves with time, the uids
separate and droplets/domains with a majority of red or blue
uid form.

The average size of droplets/domains L(t) can be determined
by measuring
4980 | Soft Matter, 2014, 10, 4977–4989
LðtÞ ¼ 1

3

X
i¼x; y; z

LðtÞi: (22)

Here,

LðtÞi ¼
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
ki

2ðtÞ
q (23)

is the average domain size in the direction i.

hki2ðtÞi ¼
X
k

ki
2ðtÞ2ðk; tÞ

�X
k

ki
2ðtÞ is the second-order

moment of the three-dimensional structure function 2(k, t)¼ (1/
2n)|40

k(t)|. 40 ¼ ~4 � h~4i is the uctuation of ~4 which is the
Fourier transform of the order parameter eld 4 ¼ rr � rb. In
this publication, the time is given in simulation timesteps, which
can be converted to physical units. We use eqn (4) and (5) to
relate the kinematic viscosity to Dx and Dt. By assuming n¼ 10�6

m2 s�1, the kinematic viscosity for water, R ¼ 125 nm and R ¼
7.9Dx (this is the value used for the spherical particle, see above)
we x the chosen resolution of the simulation. Thus, we obtain
This journal is © The Royal Society of Chemistry 2014
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Fig. 2 Pickering emulsion and bijel: time development of the average
domain size L(t) (see eqn (22)) for m ¼ 1 and m ¼ 2. At the first view, a
steady state is reached after about 105 timesteps. L(t) is larger for bijels
than for Pickering emulsions, which is due to the measurement being
based on the Fourier transform of the order parameter. Ellipsoids are
able to stabilize larger interface areas than spheres leading to smaller L(t).

Fig. 3 Pickering emulsion: zoom of the time dependent average
domain size L(t) form¼ 2,m¼ 1 andm¼ 1/2. The slow but continuous
decrease of L(t) clearly shows the occurrence of additional timescales
in the domain growth. The kink in the measurement for m ¼ 2 can be
attributed to the coalescence of two droplets.

Fig. 4 Bijel: zoom for m ¼ 2 and m ¼ 1/2: time development of the
average domain sizes depicting the impact of the additional time-
scales. The range of the variation of L(t) is larger as compared to the
Pickering emulsion due to the impact of a small deformation on the
larger effective interface of the bijel.
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Dx ¼ 15.8 nm and Dt ¼ 4.2 � 10�11 s and a total system size of
LSz 4 mm. The interfacial tension is then s¼ 3.14� 10�8 Nm�1.
Larger system sizes can be reached with the same computational
effort by compromising on the resolution.

The time development of L(t) for the three different particle
types, prolate, spherical and oblate (m ¼ 2, 1 and 1/2), and for
Pickering emulsions and bijels is shown in Fig. 2. We can
identify three regimes: in the rst few hundred timesteps the
initial formation of the droplets/domains starts. Then, the
growth of droplets/domains is being driven by Ostwald
ripening. At even later times, droplets/domains grow due to
coalescence. When two droplets unify, the area coverage frac-
tion of the particles at the interface is increased because the
surface area of the new droplet is smaller than that of the two
smaller droplets before. At some point the area coverage frac-
tion of the particles is sufficiently high to prevent further coa-
lescence. The state which is reached at that time is (at least
kinetically) stabilized and one obtains a stable emulsion. The
values for L(t) are larger for bijels than for Pickering emulsions.
This can be explained by the way we calculate L(t) (see eqn (22)
and related text) using a Fourier transformation of the order
parameter eld.

It can clearly be seen that anisotropic particles are more
efficient in interface stabilization than spheres since they can
cover larger interfacial areas leading to smaller uid domains
(note that the simulation volume is kept constant). However,
the difference in L(t) form ¼ 2 andm ¼ 1/2 is small. This can be
understood as follows: if a neutrally wetting prolate ellipsoid is
adsorbed at a at interface, it occupies an area AP,F(m > 1) ¼
m1/3Ap,s, where Ap,s is the occupied interface area for a sphere
with the same volume. This corresponds in the case of m ¼ 2 to
the occupied interface being larger by a factor of 1.26 as
compared to spheres. For an oblate ellipsoid the occupied
interface area is AP,F(m < 1) ¼m�2/3Ap,s which form ¼ 1/2 is by a
factor of 1.59 larger than the area occupied by spheres. Since in
emulsions the interfaces are generally not at, these formulae
can only provide a qualitative explanation of the behavior of L(t):
This journal is © The Royal Society of Chemistry 2014
if the interface curvature is not neglectable anymore, we lose
some of the efficiency of interface stabilization, which is more
pronounced form < 1. This explains why the value of L(t) form¼
1/2 is only slightly smaller than for m ¼ 2.

It seems that L(t) reaches a steady state aer some 105

timesteps for both types of emulsions and for all three values of
m. However, if one zooms in one can observe that L(t) develops
for a longer time period if the particles have a non-spherical
shape. As will be demonstrated below, the reason for this
phenomenon is the additional rotational degrees of freedom
due to the particle anisotropy. Furthermore, the time develop-
ment of L(t) for emulsions stabilized by prolate particles
requires more time than that for the oblate ones. If a particle
changes its orientation as compared to the interface or a
neighboring particle this generally changes the interface shape.
In this way the domain sizes are inuenced, leading to changes
of L(t) – an effect which is not observed for m ¼ 1. Fig. 3 and 4
depict a zoom-in of the time development of L(t) for Pickering
emulsions and bijels with m ¼ 2 and m ¼ 1/2, respectively. One
Soft Matter, 2014, 10, 4977–4989 | 4981
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Fig. 5 Outer plot: w–x-plot for neutral wetting (q ¼ 90�), m ¼ 2 and
s z 0.041. A particle is placed as such that it just touches the unde-
formed interface. The dashed lines denote the adsorption trajectories,
the solid lines show the points where the particle touches the unde-
formed interface. The circular points depict the stable and the meta-
stable point. The square points are related to the snapshots describing
the adsorption process in the inset. For initial particle orientations of
w(t ¼ 0) s 0� the particle ends in its stable configuration orientated
parallel to the interface.
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observes that L(t) decays in all four cases. The kink in Fig. 3 aer
about 2.8 million timesteps is due to the coalescence of two
droplets of the Pickering emulsion. A substantial difference is
the range of the decay. It is larger for the bijel since it consists of
a single large interface whereas the Pickering emulsion consists
of many small interfaces. The large interface in the bijel is much
more deformable. This explains the larger range of the decay of
L(t) for the bijel. The uctuations are of the same order for
Pickering emulsions and bijels. Furthermore, the range of the
decay is larger form¼ 2 than form¼ 1/2. The time of reordering
is much shorter form¼ 1/2 as compared tom¼ 2. These effects
can be explained by the presence of additional rotational
degrees of freedom for the anisotropic particles. While oblate
particles have only a single additional rotational degree of
freedom as compared to spheres, prolate particles show an even
more complex behavior due to their second additional rota-
tional degree of freedom.

In this section we demonstrated that particle anisotropy
causes additional timescales to inuence the growth of
domains in particle-stabilized emulsions. In the following
sections we discuss model systems in order to obtain a deeper
understanding of this effect. We will restrict ourselves to prolate
particles with m ¼ 2. Furthermore, the high resolution of the
particles in the current section was only chosen to be able to
sufficiently resolve the oblate objects. In order to reduce the
required computational resources, we use smaller particles in
the model systems studied below (Rk ¼ 8Dx and Rt ¼ 4Dx). It
has been checked carefully that the reduced particle size does
not have a qualitative impact on the results.

IV. Single particle adsorption

In the previous section we demonstrated that there is an addi-
tional time development of the average domain size L for
emulsions stabilized by anisotropic particles. In the following
sections we relate this behavior to the orientational degree of
freedom of the particles at the interface. To obtain a more basic
understanding of the additional timescales some simple model
systems are discussed. The simplest possible example is the
adsorption of a single particle at a at uid–uid interface. To
characterize the particle orientation we introduce the angles w

and f. w is the angle between the particle main axis and the y-
axis, where the y-axis is oriented perpendicular to the at uid–
uid interface. f is the angle between the particle main axis and
the x-axis, where the x-axis is orientated parallel to the interface.
x is the distance between the particle center and the unde-
formed interface in units of the long particle axis. In this section
we consider the case of neutral wetting (q ¼ 90�) and restrict
ourselves to an aspect ratio of m ¼ Rk/Rt ¼ 2. The uid–uid
interaction parameter is set to gbr ¼ 0.1, corresponding to an
interfacial tension of s z 0.041. We use a cubic system with 64
lattice nodes in each direction. A wall is placed at the top and
bottom in the y-direction. Periodic boundary conditions are
applied in the x- and z-directions. In order to obtain a at
interface the system is lled with two equally sized cuboid
shaped lamellae with an interface orthogonal to the y-axis. The
lamellae are mainly lled with red and blue uid, respectively.
4982 | Soft Matter, 2014, 10, 4977–4989
The initial majority and minority species are set to rmaj ¼ 0.7
and rmin ¼ 0.04.

For this study a particle is placed so that it just touches the
(undeformed) uid–uid interface. This is done for different
initial orientations of the particle. The inset of Fig. 5 shows
snapshots of a typical adsorption process. In the beginning the
particle is oriented almost orthogonally to the interface. In the
rst ca. 2000 timesteps the particle moves towards the interface
without changing its orientation considerably. Then, the
particle rotates and reaches its nal orientation aer 3600
timesteps. The outer plot of Fig. 5 shows a w–x diagram of the
adsorption. The points where the particle just touches the at
interface for the different orientations are marked with solid
lines. The dotted lines indicate the adsorption trajectories. Each
black square is related to one of the snapshots in the inset of
Fig. 5. Almost all dashed lines end in the upper circle which
corresponds to the equilibrium point where the free energy
function has a global minimum. Just the cases with an initial
value of w(t ¼ 0) ¼ 0� end at the metastable point at w ¼ 0� as
shown by the circle at the bottom of Fig. 5. This metastable
point might not be found in experiments: on the one hand
uctuations will cause a rotation of the particle towards the
stable points and on the other hand, it is impossible to place the
particle exactly at w ¼ 0�.

Fig. 6 and 7 depict the dynamics of the particle adsorption
and the inuence of the initial particle orientation w with
respect to the at interface. Fig. 6 shows the time development
of w for different values of w(t¼ 0). For w(t¼ 0)¼ 0� and w(t¼ 0)
¼ 90� (upper and lower lines) the orientation remains
unchanged and the adsorption at the interface causes only a
translational particle movement. The lines for the three other
simulation runs start at w(t ¼ 0) ¼ 22.5�, w(t ¼ 0) ¼ 45� and
w(t ¼ 0) ¼ 67.5�. All of them go in the ‘wrong’ direction during
This journal is © The Royal Society of Chemistry 2014
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Fig. 6 Time development of the particle orientation w(t) for different
initial orientations. For w(t ¼ 0) s 0� and w(t ¼ 0) s 90� the particle
rotates in the ‘wrong’ direction in the first timesteps. The time needed
to be in the final orientation depends on the initial orientation.

Fig. 7 Outer plot: time te which the particle needs to reach the final
orientation (w¼ 90�) for different initial orientation angles w0¼ w(t¼ 0)
from w ¼ 0� to w ¼ 90�. te diverges if w0 approaches 0�. The reason for
the divergence is the approach of w0 to the orientation of the meta-
stable point, as it is shown in the inset: if the starting angle (middle
dashed line) approaches w(t ¼ 0) ¼ 0 (lower dashed line) the time
required to reach the equilibrium point diverges.

Fig. 8 Top left: sketch of the initial condition for the many-particle
system. All particles are oriented almost orthogonal to the interface
corresponding to the initial configuration. Top right: sketch of the final
state. All particles are oriented parallel to the interface. Bottom:
different constellations of the mutual orientation of next neighbors.
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the rst few 102 timesteps and end at w ¼ 90� corresponding to
the stable point, but the time needed for reaching this value
differs. Furthermore, in all cases during the rst timesteps, w
decreases but then it increases up to this nal value. The time te
the particle needs to reach the nal orientation of w ¼ 90�

depending on w(t¼ 0) is shown in the outer plot of Fig. 7. Due to
the discretization of the particle on the lattice, its orientation
shows small deviations from the theoretical nal value. There-
fore, we measure te as the time when the angle reaches 98% of
the theoretical nal angle. The particle oscillates around this
nal value but these oscillations are very small and their
magnitude falls below the threshold for the measurement of te.
te increases with decreasing w and diverges for w / 0. This
divergence can be understood using the inset of Fig. 7. If the
starting angle w(t ¼ 0) comes closer to w ¼ 0� (corresponding to
This journal is © The Royal Society of Chemistry 2014
the metastable case where the particle never ips) the capillary
forces causing the particle rotation become smaller and vanish.
We have seen that anisotropy of particles causes additional
timescales in the development of the domain sizes in the
emulsions, because of orientational ordering. This timescale is
of the order of 106 LB timesteps. In this section we have shown
that the adsorption of a single particle at an interface and its
orientational ordering takes of the order of 103 timesteps and
depends on the initial particle orientation towards the inter-
face. We can identify one extra timescale where the particles
rotate towards the interface. This timescale plays a role in the
beginning of the emulsion formation (during droplet formation
and droplet growth) when the particles come in contact with the
interfaces. However, this timescale does not yet explain the full
time development. We require additional model systems to
obtain a full understanding of the additional timescales. Thus,
we consider many particles at a at interface as well as at a
single droplet in the following sections.
V. Particle ensembles at a flat
interface

Aer having studied the adsorption of a single particle we
discuss the behavior of a many-particle ensemble at a at
interface. What is the inuence of the hydrodynamic interac-
tion between many particles on the timescales involved in
emulsion formation? For the case of the single-particle
adsorption the particle orientation towards the interface (w) is
an important parameter. For prolate particles, also the mutual
orientation (f) of the particles is important and one has an
additional degree of freedom leading to particle orientational
ordering. To characterize the ordering of the particles we use
two order parameters and two correlation functions.

Measures for global ordering effects of the particles are the
orientational order parameters S and Q. We dene the uniaxial
order parameter S (ref. 47 and 48) as

S ¼ 1

2

	
3 cos2 w� 1



; (24)

where hi denotes the averaging over particles. Originally S is an
order parameter for studying liquid crystals which indicates the
phase transition from the isotropic to the anisotropic/nematic
phase. Here, the parameter S is used as a measure for the
orientation of the particle ensemble towards the interface. If all
Soft Matter, 2014, 10, 4977–4989 | 4983
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Fig. 9 Zoomed snapshot after 104 timesteps of the state where the
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particles are oriented orthogonal to the interface we have S ¼
St ¼ 1 (see top right of Fig. 8). The orientation of all particles
parallel to the interface leads to S ¼ Sk ¼ �0.5 (see top le
of Fig. 8).

The biaxial order parameter Q (ref. 48) is dened as

Q ¼ 3

2

	
sin2

w cosð2fÞ
: (25)

The parameter Q is a measure for the mutual orientation of
the particles oriented parallel to the interface. If all particles
lying parallel to the interface are oriented in the same direction
it is Q ¼ Qaniso ¼ 1.5. Q ¼ Qiso ¼ 0 means that the particles
oriented parallel to the interface have a two-dimensional
isotropic ordering.

The local ordering effects are investigated by using two
correlation functions. The discretized form of the pair correla-
tion function g(r) is dened as

gðrÞ ¼ 1

2pgnN

* X
i; jsi

ðrþ 1
2

r� 1
2

d
�
~r� rij

�
d~r

+
; (26)

where N is the number of particles, r and rij are the distance
from a reference particle and the distance between the two
particle centers of particle i and j in units of Rk, respectively, and
gn is a normalization factor chosen such that g(r) / 1 for
r / N. g(r) gives a probability to nd a particle at a distance r
from a reference particle. It is a measure for the ordering of the
particle centers and ignores the orientation. As a measure for
the local orientational ordering effects the angular correlation
function49 is dened as (in the discrete form)

hðrÞ ¼
ðrþ 1

2

r� 1
2

	
cos

�
2lðwð0Þ � wð~rÞÞ�
d~r; (27)

with l¼ 1 in order to have the appropriate values of h for a given
value of w discussed below. h(r) gives a measure for the average
orientation of particles at distance r from a reference particle. If
the particles at distance r from the reference particle are all
oriented parallel to the reference particle we have h(r) ¼ 1 (see
right and le conguration in the bottom of Fig. 8) and an
orthogonal orientation leads to h(r) ¼ �1 (see central congu-
ration in the bottom of Fig. 8). In the following we use smoothed
versions of g and h, where we average over neighboring data
points. The at interface considered in this section is periodic
in two dimensions parallel to the interface and each period has
a size of AI¼ LI

2, with LI¼ 512¼ 64Rk. The system is conned by
walls 40 lattice units distant from the interface in the third
dimension. The particle coverage fraction for N particles

adsorbed at the interface is dened as cðx; wÞ ¼ NAPðx; wÞ
AI

:

AP(x, w) is the area which the particle would occupy at a hypo-
thetical at interface and depends on the distance between the
particle center and the undeformed interface and the particle
orientation relative to the at interface. x is the distance
between particle center and undeformed interface. In the
following we relate the coverage fraction to the case of x¼ 0 and
w ¼ 90�(cI) or w ¼ 90�(cF) corresponding to the initial state and
4984 | Soft Matter, 2014, 10, 4977–4989
the equilibrium state for q ¼ 90� (see previous section).

This leads to cI ¼
NAP;I
AI

and cF ¼ NAP;F
AI

with AP,I ¼ pRt
2 and

AP,F ¼ pRkRt.
Initially, the particles are oriented almost orthogonally to the

interface (see top right of Fig. 8). The initial value for the polar
angle is chosen as w z 0.6� for all particles, whereas f and the
particle positions are chosen randomly. Analogously to the case
of the single-particle adsorption the particle ips to an orien-
tation parallel to the interface (see Fig. 9). Fig. 10(a) shows the
time development of S for different values of cI (cI z 0.08
(squares), cI z 0.38 (circles), cI z 0.46 (upward pointing
triangles) and cI z 0.52 (downward pointing triangles)) and the
time development ofQ for cIz 0.38 (diamonds). The parameter
Q starts at 0 and ends at a small value (Qnalz 0.05� Qaniso) far
away from the value of total ordering. A similar behavior is
found for all values of cI. Fig. 9 shows that there are smaller
domains where particles are oriented in the same direction. But
every domain has a different preferred particle direction which
might lead to small but still nite values of Q. Another reason
for this effect is the nite system size and the nite particle
number which change the parameter as follows:49

Q ¼ QN þO

�
1ffiffiffiffiffi
N

p
�
: (28)

QN is the value of the biaxial order parameter that the corre-
sponding system with an innite amount of particles would
have.

The parameter S starts for all values of cI with a value of
St ¼ 1, corresponding to the initial conguration. For lower
values of cI the parameter S reaches Sk ¼ �0.5, corresponding to
the case that the particles ip completely. For higher values of cI
the nal value of the parameter is Snal > Sk ¼ �0.5. This
corresponds to the case where some particles cannot ip
particles are flipped (related to the top left in Fig. 8).

This journal is © The Royal Society of Chemistry 2014
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Fig. 10 (a) Time development of the two order parameters S(t) and
Q(t) (see eqn (24) and (25)) form¼ 2, q ¼ 90�, sz 0.041.Q(t) is shown
for a single value of cI only since it stays at a value of approximately
0 for all cI. S(t) is shown for different values of cI. In the case of highly
packed interfaces, i.e. for large values of cI, not all particles are able to
fully align with the interface. For larger values of cIS needs a longer
time to get into the equilibrium than shown here. (b) Outer plot: the
final values of the order parameter S are plotted for different particle
densities cI. As shown in (a) transition from a fully ordered to a disor-
dered state can be found at a critical value of cI,C z 0.42. Inset: the
time the order parameter S (defined in eqn (24)) requires to reach the
final value (time which particles need to flip). For small values of cI, tf is
independent of cI but above a critical value of cI¼ cI,C, tf increases with
increasing c by almost one order of magnitude.

Fig. 11 (a) Pair correlation function g(r) (defined in eqn (26)) and (b)
orientation correlation function h(r) (defined in eqn (27)). In both cases
the ordering increases with increasing cI.
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completely to the equilibrium orientation because there is
insufficient space. The nal values of S (obtained aer 105

timesteps) are shown in the outer plot of Fig. 10(b) as a function
of cI. We nd a transition point at cI,C z 0.42 corresponding to
cF,C z 0.84. If all particles are oriented parallel to the interface
the system corresponds practically to a two dimensional system
of ellipses. However, the value of cI,C found is below the value of
the closest packing density for a two-dimensional system of
ellipses with m ¼ 2, which is cF,max z 0.91. Such a system was
also studied in ref. 49 with Monte Carlo simulations. For the
case of an ellipse with an aspect ratiom2d ¼ 2, a transition point
This journal is © The Royal Society of Chemistry 2014
of c2dmc z 0.78 from isotropy to a solid phase was found. The
solid phase describes a state where the particle centers as well
as the orientations are ordered. We do not reach the limit of the
solid phase. This suggests that hydrodynamic interactions and
absence of connement in the third dimension still play a
dominant role. The biaxial order parameter in the MC system
grows up to Q z 1 (see Fig. 11 in ref. 49) corresponding to a
global anisotropic state with a quite high degree of ordering for
cF > c2dmc. This effect is not observed in our system. The reason
for this difference is the method used to reach this state. A two-
dimensional system of ellipses was studied in ref. 49 whereas
we simulated three-dimensional ellipsoids which form an
effective two-dimensional system by ipping to the interface.

We can see that in the many-particle system and for small
and moderate cI about 103 timesteps are required for the
particles to ip which is the same order of magnitude as in the
case of the single particle adsorption for small values of cI. The
inset in Fig. 10(b) shows the time the order parameter S needs to
reach its nal value. This corresponds to the time required for
the whole particle ensemble to be ipped completely (cI < cc) or
to reach the semi-ipped state for cI > cc. For cI < 0.38 tf stays
Soft Matter, 2014, 10, 4977–4989 | 4985
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almost constant at about 4500 timesteps. Here, tf is the time
where S reached 98% of its nal value. In this regime the
distance between the particles is sufficient so that the inuence
of hydrodynamic interactions on the ipping behavior can be
neglected. For higher values it increases very sharply and
hydrodynamic interactions between the particles must not be
neglected anymore. Furthermore, the time needed to ip
completely for the very dense systems (jammed state) is about
one order of magnitude larger.

The biaxial order parameter does not show any global
ordering but the snapshot in Fig. 9 shows some local ordering
effects. Hence, we need other ways to characterize the local
ordering effects and utilize the two local correlation functions
g(r) and h(r) dened above. The particles have a contact angle of
90�, so there are no capillary interactions between them in the
nal state when all of them have ipped completely and the
system has reached equilibrium. However, there are dipolar
interface deformations and thus the interactions during the
ipping process of the particles and for c > cc which causes
capillary interactions at this time. Aer ipping there are still
some capillary waves going through the system, leading to
interactions between the particles. The pair correlation function
g(r) is shown in Fig. 11(a) for three different values of cI (cI z
0.23, cI z 0.31 and cI z 0.38) aer 105 timesteps. The rst peak
is pronounced in all three cases. The distance r of this peak
decreases for increasing cI as well as the degree of ordering. For
the highest cI a depletion region leading to aminimum aer the
peak is pronounced. To obtain a measure of the local orienta-
tional ordering effects we investigate the orientational correla-
tion function h(r) as shown in Fig. 11(b) for the same 3 values of
cI. The rst two positive peaks and the rst negative peak can be
explained with the drawings in the bottom of Fig. 8. The rst
positive peak is due to a side-to-side alignment of two particles.
Fig. 9 shows several domains of side-to-side alignment. The rst
negative peak comes from an alignment where the particles are
oriented perpendicular to each other and the second positive
peak comes from a tip-to-tip alignment or second nearest
Fig. 12 Time development of g(r) for cI z 0.38. The second peak is
more pronounced at later timesteps. The particles reorder and
the ordering increases. The reordering process is almost done after
4 � 105 timesteps.

4986 | Soft Matter, 2014, 10, 4977–4989
neighbors of the side-to-side orientation. The degree of trans-
lational and orientational ordering increases with increasing cI.

Aer having discussed the correlation functions we investi-
gate the time development of g(r) in order to understand the
time development of the average domain size L(t). Fig. 12 shows
g(r) at different times between 104 and 106 timesteps. The rst
peak decreases but at later times the following peaks are more
pronounced. Thus, the degree of ordering increases. Aer 4 �
105 timesteps this development has almost come to an end. The
reason for this remaining development is the particle reorder-
ing. The particles form domains where they align parallel to
each other. These domains become larger with time.

In this section we have shown that the presence of many
particles at an interface leads to two additional timescales in the
reordering. The rst one is the rotation of the particle towards
the interface. The particle rotates towards its nal orientation
parallel to the interface. For lower values of cI this process does
not depend on cI and is not different from the single particle
adsorption. For larger values of cI the time needed to come to its
nal orientation increases. Hydrodynamics as well as excluded
volume effects become more important. Above a critical value
not every particle reaches its ‘nal’ orientation. The reordering
of h (corresponding to g in Fig. 12) can also be observed. The
rst 2 peaks get more pronounced aer several 105 timesteps as
compared to the state aer 104 timesteps shown in Fig. 11(b).

VI. Particle ensembles at a spherical
interface

In the previous chapter the behavior of particle ensembles at a
at interface was discussed. However, in emulsions the inter-
faces are generally not at. Pickering emulsions usually have
(approximately) spherical droplets and a bijel has an even more
complicated structure of the curved interface. The simplest
realization of a curved interface is a single droplet and as such
this is studied in this section.
Fig. 13 Snapshot of a particle ensemble at a spherical interface after 2
� 105 timesteps.

This journal is © The Royal Society of Chemistry 2014
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The simulated system is periodic and each period has a size
of LS ¼ 256 lattice units. The droplet radius and the number of
adsorbed particles are chosen to be RD ¼ 0.6LS z 76.8 and 600,
respectively. In the beginning of the simulation the particles are
placed orthogonal to the local interface tangential plane. As we
have seen already for the case of at interfaces the particles ip
to an orientation parallel to this tangential plane. This state is
shown in Fig. 13 aer 2 � 105 timesteps. A preliminary
comparison between at and spherical interfaces has already
been given in our previous contribution.39 The time develop-
ment of S is shown in Fig. 11(a) in ref. 39. It has been found that
the inuence of the interface curvature on the ipping process
is larger than the inuence of the particle coverage. The time
needed for the particles to ip is about a factor two smaller in
the case of the curved interface.

Here, we investigate the particle correlation function (see
eqn (26)) for the particle ensemble. Fig. 14 shows g for cI z 0.27
at three different times. Aer 104 timesteps it is still close to the
correlation function of the initial condition. Aer 105 timesteps
some changes can be seen. The rst peak is reduced but the
second peak is more pronounced. There is no substantial
change between 1 � 105 and 2 � 105 timesteps. Compared to
the state at 105 timesteps the correlation function shows
pronounced peaks at longer distances from the particle (about
6Rp). The particles mostly reorder during the rst 105 timesteps
since at later times only minor changes in the particle order can
be observed. Similar to the case of at interfaces that was dis-
cussed in the previous section, the particle ensemble forms
domains where the particles are ordered in a nematic fashion.
The peaks in the correlation function are more pronounced in
the case of droplets than in the case of a at interface. The
reason is given by the capillary interactions between the parti-
cles which are much stronger in the case of curved interfaces. In
particular, non-zero capillary interactions persist between
spheroids even in the case of neutrally wetting particles.

The time development of g at the droplet as discussed in this
section differs from the behavior in the case of a at interface.
For the droplet, g arrives at its nal structure aer about 105
Fig. 14 Time development of the order parameter g(r) for particles
adsorbed at a spherical interface.

This journal is © The Royal Society of Chemistry 2014
timesteps whereas at the at interface about four times as many
steps are required. In addition, for at interfaces, g only shows
one or two peaks (depending on cI), while for the particle
covered droplet ve peaks are found due to a larger range of
ordering of the particles. This is a result of the stronger capillary
interactions between the particles due to the interface
curvature.

We can understand one of the additional timescales with the
behavior of the ellipsoidal particles at a single droplet. The
particles reorder and it can be shown that this leads to a small
change of the shape of the droplet which is (almost) exactly
spherical in the beginning.50 A change of the interface shape
caused by reordering of anisotropic particles leads to a change
of L(t). The reordering of particle ensembles at at as well as
spherical interfaces takes of the order of 105 timesteps. This
reordering takes place in idealized systems with constant
interfaces which do not change their shape considerably. In real
emulsions, however, the interface geometry changes substan-
tially during their formation. For example, two droplets of a
Pickering emulsion can coalesce. Aer this unication the
particle ordering starts anew. This explains the fact that the
additional timescale we nd in our emulsions is of the order of
several 106 timesteps.

VII. Conclusion

In this article we have investigated the dynamics of the
formation of Pickering emulsions and bijels stabilized by
ellipsoidal particles. In contrast to emulsions stabilized by
spherical particles, spheroids cause the average time depen-
dent droplet or domain size to slowly decrease even aer very
long simulation times corresponding to several million
simulation timesteps. The additional timescales related to this
effect have been investigated by detailed studies of simple
model systems. At rst, the adsorption of single ellipsoidal
particles was shown to happen on a comparably short time-
scale (z104 timesteps). Second, many particle ensembles at
at interfaces, however, might require substantially more time
in the case of sufficiently densely packed interfaces. Here,
local reordering effects induced by hydrodynamic interactions
and interface rearrangements prevent the system from
attaining a steady state and add a further timescale to the
emulsion formation (z105 timesteps). Third, this reordering
is pronounced in the case of curved interfaces, where the
movement of the particles leads to interface deformations and
capillary interactions. During the formation of an emulsion,
droplets might coalesce (Pickering emulsions) or domains
might merge (bijels). Aer such an event the particles at the
interface have to rearrange in order to adhere to the new
interface structure. Due to this, the local reordering is practi-
cally being “restarted” leading to an overall increase of the
interfacial area on a timescale of at least several 106 timesteps.
With the nanoscale resolution chosen above, this corresponds
to physical times of the order of 10�5 s.

Our ndings provide relevant insight into the dynamics of
emulsion formation which is generally difficult to investigate
experimentally due to the required high temporal resolution of
Soft Matter, 2014, 10, 4977–4989 | 4987
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the measurement method and limited optical transparency of
the experimental system. It is well known that in general
particle-stabilized emulsions are not thermodynamically stable
and therefore the involved uids will always phase separate –

even if this might take several months. Anisotropic particles,
however, provide properties which might allow the generation
of emulsions that are stable on substantially longer timescales.
This is due to the continuous reordering of the particles at
liquid interfaces which leads to an increase in the interfacial
area and as such counteracts the thermodynamically driven
reduction of the interface area.
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