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Measuring the configurational temperature of a
binary disc packing

Song-Chuan Zhao and Matthias Schröter*

Jammed packings of granular materials differ from systems normally described by statistical mechanics in

that they are athermal. In recent years a statistical mechanics of static granular media has emerged where

the thermodynamic temperature is replaced by a configurational temperature X which describes how the

number of mechanically stable configurations depends on the volume. Four different methods have been

suggested to measure X. Three of them are computed from properties of the Voronoi volume distribution,

the fourth takes into account the contact number and the global volume fraction. This paper answers two

questions using experimental binary disc packings: first we test if the four methods tomeasure compactivity

provide identical results when applied to the same dataset. We find that only two of the methods agree

quantitatively. This implies that at least two of the four methods are wrong. Secondly, we test if X is

indeed an intensive variable; this becomes true only for samples larger than roughly 200 particles. This

result is shown to be due to recently measured correlations between the particle volumes [Zhao et al.,

Europhys. Lett., 2012, 97, 34004].
1 Is there a well defined
configurational temperature?

Temperature is the concept that helps us to understand how the
exchange of energy stored in the microscopic degrees of
freedom follows from the accompanying change of entropy of
the involved systems. If we coarse-grain our view to the
macroscopic degrees of freedom of particulate systems, such as
foams or granular gases, we can still dene effective tempera-
tures that describe their dynamics.1,2 This approach denes
these systems as dissipative; the kinetic energy of the particles is
irrecoverably lost to microscopic degrees of freedom.

In the absence of permanent external driving such a system
will always evolve towards a complete rest. In the presence of
boundary forces or gravity this rest state will be characterized by
permanent contacts between the particles which allow for a
mechanical equilibrium. Shahinpoor3 and Kanatani4 were the
rst to suggest that such systems might still be amenable to a
statistical mechanics treatment. Sam Edwards and co-workers5,6

have then developed this idea into a full statistical mechanics of
static granular matter by using the ensemble of all mechanically
stable states as a basis. A necessary requirement for such an
approach is the existence of some type of excitation which lets
the system explore the phase space of the possible static
congurations. This could e.g. be realized by tapping, cyclic
shear, or ow pulses of the interstitial liquid. While there are
Organization (MPIDS), 37077 Goettingen,

pg.de

6

promising results, the feasibility of this approach is still under
debate.7

A second key concept in Edwards’ approach is the replace-
ment of the energy phase space by a volume phase space where
the volume function W(q) takes the role of the classical
Hamiltonian. The conguration q represents the positions and
orientations of all grains. One can then dene an analog to the
partition function Z(X):

ZðXÞ ¼
ð
e�WðqÞ=XQðqÞdq (1)

where Q(q) limits the integral to mechanically stable congu-
rations. X is the congurational temperature or compactivity,
which is dened as X ¼ vV/vS. The congurational entropy S
corresponds to the logarithm of the number of mechanically
stable congurations for a given set of boundary conditions.

S is neither known from rst principles (except for model
systems8,9) nor can it be measured directly. Therefore “ther-
mometers” measuring X have to exploit other relationships;
four different ways to do so have been suggested. In this paper
we will test all four of them using the same dataset of
mechanically stable disc packings.

First X can be determined from the steady state volume
uctuations using an analog to the relationship between
specic heat and energy uctuations;10–13 we will refer to this
compactivity as XVF. A second method is based on the proba-
bility ratio of overlapping volume histograms,14,15 allowing us to
compute XOH. A third way16,17 computes XG from the Gamma
function ts to the volume distribution. Finally, it has been
suggested recently18 that an analysis based on so-called
This journal is © The Royal Society of Chemistry 2014
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quadrons19 instead of Voronoi cells leads to an expression for XQ

that involves the average particle volume and the contact
number.

This difference in approach immediately raises the question
if these four methods provide identical results when applied to
the same experiment. There have been two previous experi-
ments addressing this question: McNamara et al.15 found that
XVF and XOH agree for tapped packings of approximately 2000
glass spheres. The same result has been reported by Puckett and
Daniels20 for compressed disc packings.

A full description of a granular packing has to take the
boundary stresses into account.18,21,22 The stress dependence of
the entropy then gives rise to a tensorial temperature named
angoricity. Angoricity has been computed from numerics using
the overlapping histogram method23 and from experiments
using both uctuations and overlapping histograms.20 As the
experiments described below are performed in an open cell with
gentle driving, the boundary stresses can be assumed to be
small and constant; we therefore exclude angoricity from our
further analysis.
Fig. 1 Correlations in binary disc packings. (a) Experimental image and
(b) the corresponding Voronoi tessellation. (c) The correlation between
two Voronoi volumes as a function of their distance L (measured in units
of small disc diameters ds). Dense packings exhibit anti-correlations for L
larger than approx. 2.5ds. Reproduced from ref. 24.
2 Correlations in the Voronoi-volume
of disc packings

The three methods to compute XVF, XOH, and XG all start from
the Voronoi-volume distribution. However, it has been shown
that the Voronoi volumes inside a sample are correlated.25 We
recently measured the spatial extension of these correlations
and demonstrated the existence of additional anti-correlations
between the volumes.24 These correlations raise the question
if X is indeed an intensive parameter i.e. if its value is inde-
pendent of the number N of particles analyzed. As the Voronoi-
volumes reported in ref. 24 will be the basis of this study we
quickly recap the relevant experimental procedures and results,
more details can be found in the original publication. The disc
coordinates of all congurations and volume fractions can be
downloaded from the Dryad repository.26
2.1 Experimental setup

The experiment is performed in an air-uidized bed lled with a
binary mixture of Teon discs with ds ¼ 6 mm and dl ¼ 9 mm
diameter. Datasets of 8000 different mechanically stable
congurations are prepared by repeated air pulses. Changing
pressure and duration of the air pulses allows us to control the
average packing fractions f in the ranges of 0.818 to 0.838. Aer
each ow pulse the discs come to a complete rest and are then
imaged with a CCD camera (Fig. 1a). Aer detecting the particle
centers, the Voronoi volume V of each disc is determined
(Fig. 1b). We then compute the free volume Vf ¼ V � Vmin for
each particle with Vmin being the volume the grain would occupy
in a hexagonal packing of identical discs. This step allows us to
superimpose the results for small and large discs in the
subsequent analysis.

Our results will also depend on the packing fraction of the
loosest possible packing fRLP ¼ 0.811. This value is averaged
This journal is © The Royal Society of Chemistry 2014
over 10 packings prepared by slowly settling the discs in a
manually decreased air ow.

2.2 Correlations in binary disc packings

The correlation between the Voronoi volumes can be measured
using:

corrðLÞ ¼
��
Vf ;i � V f ;i

��
Vf ;j � V f;j

��
sf

2
(2)

Here i and j are two points in the packing which are sepa-
rated by a distance L. The free volumes at these points are Vf,i
and Vf,j. Subtracted from them is the average free volume �V f of
all particles at this point (averaged over all 8000 taps). h.i
indicates averaging over the 8000 packings and additionally 240
pairs of points i, j within each packing. sf

2 is the variance of the
free volumes averaged over the two points.

Fig. 1c depicts corr(L) for two different packing fractions. At
low values of f only positive correlations between Voronoi cells
are found. Above fAC ¼ 0.8277 anti-correlations appear for L
larger than approximately 2.5 small particle diameters. We will
show below that these (anti-) correlations control how X
becomes intensive.

3 Compactivity XVF measured from
volume fluctuations

This methods starts from the assumption of a Boltzmann like
probability distribution:
Soft Matter, 2014, 10, 4208–4216 | 4209
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Fig. 2 Compactivity XVF measured from volume fluctuations. (a)
Average volume variance s�v

2 versus average volume �v measured for
clusters of size N ¼ 10 and 150. The solid curves are power law fits
which are then used to numerically integrate eqn (8). (b) The com-
pactivity XVF computed from eqn (8) for three different cluster sizes. (c)
The evolution of KVF with cluster sizes at different values of f. The

radius R of the analyzed cluster is proportional to
ffiffiffiffiffiffiffiffiffi
N=f

p
.
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pðq;X Þ ¼ e�WðqÞ=X

ZðX Þ QðqÞ (3)

From eqn (3) follows the probability to observe a certain
volume V at a given compactivity X:

pðV ;X Þ ¼
ð
dðWðqÞ � VÞpðq;X Þdq

¼ DðVÞ e
�V=X

ZðX Þ

(4)

where the density of states DðVÞ ¼
ð
dðWðqÞ � VÞQðqÞdq counts

the number of the mechanical stable states available at volume
V. Using eqn (4) we can determine the average volume �V (X) as

VðX Þ ¼
ð
DðVÞ e

�V=X

ZðX ÞV dV (5)

Taking the derivative of eqn (5) with respect to 1/X shows that

dV

dð1=XÞ ¼ �ðV � VÞ2 ¼ �sV
2 (6)

on the other hand d�V /d(1/X) can be rewritten as�X2d�V /dX from
which follows:

X 2 dV

dX
¼ sV

2 (7)

Nowak et al. were the rst to suggest that integrating eqn (7)
provides a way to compute X:10

1

XVF

¼
ðVRLP

V

dV

sV
2

(8)

where the compactivity at the loosest possible packing has been
set to innity: X(fRLP) ¼ N. First measurements11,12 of XVF

showed that it indeed measures a material property as it
depends on the roughness of the particles. It has to be pointed
out that this method has the epistemological status of a calcu-
lation rule and not of a test of the Boltzmann assumption made
in eqn (3). This is different for the overlapping histogram
method described below.

As described in Section 2 we are interested in the evolution of
X with the size of the analyzed region, in the following referred
to as a cluster. Therefore we continue our study by using the

normalized average volume per particle v ¼ 1=N
X

V=Vg where

the sum goes over all N particles inside the cluster, V is the
Voronoi volume of the individual particles and Vg the volume
occupied by the particle itself. As a consequence of this choice
also X is dimensionless.

Fig. 2a shows that for our tapped disc packings the variance
of the volume uctuation s�v

2 increases monotonically with the
average volume �v (bar meaning again the average over all 8000
taps). To compute XVF we perform a power law t to s�v

2 and use
the result to integrate eqn (8) numerically. Fig. 2b shows how
the resulting XVF depends on the packing fraction at cluster
4210 | Soft Matter, 2014, 10, 4208–4216
sizes N of 1, 30, and 150 discs. It is obvious that it is not an
intensive variable for this range of N.
3.1 Correlations make XVF non-intensive in small systems

For a more detailed analysis we have plotted in Fig. 2c the
dependence of XVF on the cluster radius Rmeasured from small
disc diameters ds. Three features of XVF become apparent:

(1) XVF is growingmonotonously for R < 3ds for all values of f,
(2) for low to intermediate values of f, XVF then reaches a

plateau, and
(3) for the highest packing fraction XVF rst decreases

slightly before entering a plateau.
All three points can be understood by considering the

inuence of the volume correlations shown in Fig. 1. Eqn (8)
computes XVF from the average variance s�v

2 inside the cluster.
This variance can be decomposed in the following way:

sv
2 ¼ 1

N

XN
k

XN
m

hdvkdvmi ¼ 1

N

XN
k

 
sk

2 þ
X
msk

hdvkdvmi
!

(9)

Here sk
2 ¼ hdvk2i is the uctuation of a single Voronoi cell

and
P
msk

hdvkdvmi :¼ Ik is the volume correlation between disc k

and all other discs inside the cluster. If k is in the center of the
This journal is © The Royal Society of Chemistry 2014
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cluster, then Ik is proportional to the area enclosed by corr(L),
the zero line, and L ¼ R in Fig. 1c.

This consideration allows us to explain feature 1: while N
goes from 2 to approximately 25 all Ik values are positive and
growing. Consequentially, the variance of the cluster s�v

2 is
larger than the sum of the variance of the individual Voronoi
cells 1=N

P
sk

2 and XVF grows monotonously with N.
The second feature stems from the fact that once disk k is

more than four to ve ds away from the boundary of the cluster,
Ik becomes independent of the cluster size. As the relative
importance of “boundary discs” decreases with the cluster size,
s�v

2 becomes constant and XVF becomes independent of N.
Finally, the slight decrease in XVF at high packing fractions

and N values between approximately 30 and 150 can be attrib-
uted to the anti-correlations that appear for f larger than
0.8277; these will decrease Ik slightly again before it reaches its
plateau value.
Fig. 3 Compactivity measured with the overlapping histogram
method. (a) The probability to observe an average volume per particle
in clusters with 150 disks. The average packing fraction corresponds to
0.8336 for the red curve, and 0.8353 for the green curve. (b) The
logarithm of the probabilities to observe a given volume at two
different compactivities respectively packing fractions is a linear
function of the volume, which is in accordance with eqn (11). The
cluster size is 150 discs, and the dashed lines are linear fits. (c) The c2

values provide a goodness of fit test for both linear (green diamonds)
and parabolic (red triangle) fits to the probability ratios shown in panel
b. The average c2 is 13% smaller for the linear fit, indicating that a
Boltzmann-like distribution is a better assumption than a Gaussian.

Fig. 4 Comparison of XOH, XVF, and XG computed for single discs and
clusters of 150 particles. In all three cases the compactivity of an
individual particle is smaller than that of a larger cluster. XOH and XVF
agree quantitatively, XG is about an order of magnitude smaller.
4 Compactivity XOH measured from
overlapping histograms

This way to compute compactivity has been rst described by
Dean and Lefèvre.14 It uses pairs of experiments with slightly
different values of f, respectively XOH, and computes then the
ratio of the probabilities to observe the same local volume V. If
the assumption of a Boltzmann-like probability distribution, as
expressed in eqn (4), holds, this ratio should be exponential in V:

pðV ;X1Þ
pðV ;X2Þ ¼

DðVÞe�V=X1

ZðX1Þ
DðVÞe�V=X2

ZðX2Þ
¼ ZðX2Þ

ZðX1Þ e
�
�

1
X1
� 1

X2

�
V

(10)

By taking the logarithm on both sides we obtain:

Q :¼ ln
pX1

ðVÞ
pX2

ðVÞ ¼
	

1

X2

� 1

X1



V þ ln

ZX2

ZX1

(11)

Therefore the difference between two compactivities can be
computed from a line t of Q versus V as it was rst demon-
strated in ref. 15.

Fig. 3a shows the distribution of average volumes for two
experiments with a packing fraction difference of 0.0017.
Fig. 3b demonstrates that the ratio Q is indeed a linear func-
tion of V, as predicted by eqn (11). By sweeping the experi-
mentally accessible range of packing fractions, XOH can be
determined from the accumulated compactivity differences up
to an additive constant X0. We determine X0 by setting XOH for
the loosest experimental packing to the value of XVF at this
volume fraction.

The resulting XOH is shown in Fig. 4. The good quantitative
agreement of XOH and XVF is not too surprising given that (a)
both methods are derived from the same probability distribu-
tion (eqn (4)) and (b) our determination of X0. However, the XOH

method provides an additional test of the assumptions leading
to eqn (4) as we can compare the quality of a linear t to Q(V)
This journal is © The Royal Society of Chemistry 2014
with t functions derived from alternative probability distri-
bution functions.15 A generic candidate would be a Gaussian
distribution which results in a parabolic t. Fig. 3c demon-
strates however that a linear t is superior, adding credibility to
a Boltzmann-like approach. Also note that canceling the density
of states in eqn (10) implicitly assumes a weak form of
Soft Matter, 2014, 10, 4208–4216 | 4211
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ergodicity; if the system explores its phase space differently at
the two values of X we cannot eliminate D(V).

5 Compactivity XG measured from a
Gamma distribution fit

This third method to compute compactivity has been suggested
by Aste and Di Matteo;17,27 it differs from the previous
approaches that it explicitly determines the density of states
D(V). Based on the observation16 that experimental Voronoi
volume distributions can be well t by G distributions, they
propose to replace eqn (4) with a rescaled k-Gamma distribution

p
�
Vf

� ¼ 	 k

V f


k
Vf

ðk�1Þ

GðkÞ exp

	
� k

Vf

V f



(12)

where �V f is the mean free volume (as dened in Section 2), and k
is the shape factor. They then identify

XG ¼ V f

k
(13)

or by making use of the fact that variance s�V f

2 of the G function
is given by: s�V f

2 ¼ �V f
2/k they derive

XG ¼ sV f

2

V f

(14)

By comparing eqn (4) and (12) we can also identify the
density of states:

DðVÞ
ZðX Þ ¼ XG

�k Vf
ðk�1Þ

GðkÞ (15)
Fig. 5 Applying the G distribution method. (a) G distribution fits to the
volume distributions for a single disc and 150 particle clusters (f ¼
0.8175). (b) Evolution of XG with the cluster size.

4212 | Soft Matter, 2014, 10, 4208–4216
Fig. 5a demonstrates that our volume distribution is well t
by a G distribution.28 We then determine XG without any addi-
tive constant using eqn (14). Fig. 4 shows XG in comparison to
XVF and XOH. While all three compactivities decrease monoto-
nously with f, the absolute values and the slope of XG are quite
different from XVF and XOH.

Fig. 5b shows the evolution of XG with the cluster size. A
comparison with XVF, displayed in Fig. 2c, shows a qualitative
similar inuence of the volume correlations: while XG increases
towards a plateau for small values of f, it goes through a
maximum before reaching a smaller plateau value for the
densest packings.
6 Compactivity XQ measured from
quadron tessellation

In a recent paper Blumenfeld et al.18 presented an analysis of the
statistical mechanics of two-dimensional packings based on
quadrons19 as the building blocks of the tessellation. An
advantage of this choice is that the quadrons take by design into
account the structural degrees of freedom of the individual
particles. A drawback is that quadrons are not necessarily
volume conserving in the presence of non-convex voids formed
by “rattlers”, i.e. particles lying at the bottom of larger voids.29,30

Blumenfeld and co-workers then derive the partition functions
Fig. 6 Compactivity measured with the quadron tessellation method.
(a) In all our experiments the contact number per particle is above the
isostatic value of 3. (b) A comparison of XQ computed from the full
partition function (eqn (16)) and XVQ derived from the volume ensemble
(eqn (17)) only. Both are computed for f ¼ 0.8175. The difference
vanishes in the large system limit. (c) A comparison of XVF (measured
forN¼ 150) and XVQ. The filled circle is computed for our random loose
packing value which is presumably the only isostatic point in our
dataset. The open squares assume that eqn (16) is also valid for
hyperstatic packings.

This journal is © The Royal Society of Chemistry 2014
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of the volume ensemble ZV, the force ensemble ZF, and the total
partition function Z, showing in this process that Z s ZVZF.
Finally, they obtain from Z an expression for XQ of an isostatic
packing:

XQ ¼ 2

zN þ 2M
hVi (16)

hVi is the average volume of a cluster, �z the average number
of contacts a particle has, and M is the number of boundary
forces.

If XV
Q is derived from ZV instead of Z one obtains:

XV
Q ¼ 2

zN
hVi (17)

In comparing our results with this approach we have to
acknowledge two differences. First, our experimental packings
are clearly subject to volume forces due to gravity. And secondly
they are, as shown in Fig. 6a, hyperstatic, i.e. their contact
number is larger than what is required to x all their mechan-
ical degrees of freedom.31

Generally, packings of frictional particles only become
isostatic at random loose packing and zero pressure.32,33

Therefore the only direct comparison possible is at our RLP
value f¼ 0.811, the corresponding XQ is shown as a black circle
in Fig. 6c. If we assume that we can replace �z in eqn (16) with
�z(f) and use the contact numbers displayed in Fig. 6a, we can
also compute XQ for a larger range of f. These results are
indicated as open squares in Fig. 6c.

As XQ is only computed from the average volume of a cluster,
it is insensitive to the correlations described in Section 2. On the
other hand there exists a nite size effect if XV

Q is computed from
the volume ensemble, ignoring the boundary forces. Fig. 6b
shows how the difference between the compactivities computed
from the full and the volume ensemble vanishes with increasing
cluster size and consequentially decreasing contribution of M.
7 Which is the correct way to
measure compactivity?

Fig. 4 and 6c show clearly that the four different methods to
compute compactivity do not agree quantitatively. While XOH

and XVF are identical within experimental scatter, XG is more
than one order of magnitude smaller than XOH and XVF and at
the same time decreasing less steeply with volume fraction.34

The values of XQ are closer to XOH and XVF again, but the
evolution with f is similar to XG.

Our data can be used to self-consistently compute all four
different versions of compactivity, consequentially they are
unsuitable as a basis to judge the correctness of the different
approaches. A potential experimental or numerical test would
need an independent determination of the compactivity of a
model system from the knowledge of its entropy as a function of
volume. Alternatively, if the granular statistical mechanics
could be advanced to make predictions of granular behavior
This journal is © The Royal Society of Chemistry 2014
(e.g. segregation35) based on specic values of X, these could be
tested versus the four different “thermometers”.

However, we can elucidate the difference between the four
methods by computing the density of states and comparing it to
what is known about RLP, the loosest possible, mechanically
stable packing.

7.1 Computing the density of states

A probability distribution of the type of eqn (3) is a generic feature
for every statistic theory that maximizes the amount of entropy
represented by p, given certain constraints.36 In this spirit the
density of states D(V) in eqn (4) can be interpreted as encapsu-
lating the physics of the specic system under consideration,
while the exponential term represents our lack of knowledge
about the microscopic state. From this perspective the main
difference between the four methods is the way they determine
D(V): while XVF and XOH treat it as an experimental input
parameter, XG and XQ do provide predictions for its dependence
on V. In this subsection we will however not discuss XQ as the
theory has not been expanded yet to hyperstatic packings.

D(V) can be computed following McNamara et al.15 Starting
by rewriting eqn (4) to

D(V) ¼ p(V,X)eV/XZ(X), (18)

we remove the dependence on the unknown partition function
by taking the ratio with D at a given volume V0:

DðVÞ
DðV0Þ ¼

pðV ;X Þ
pðV0;X Þ e1=XðV�V0Þ (19)

The results are presented in Fig. 7 where we have chosen
V0 ¼ 1.2. Panel (a) shows that the density of state ratios
computed from all eleven values of XOH overlap, as it can be
expected if the different preparation protocols sample the phase
space with the same probabilities. Fig. 7b shows that this
agreement of the density of states is not obtained if the ratio is
computed from XG.

Fig. 7 provides also some insight into how the congura-
tional entropy S depends on the volume:

S ¼ kE ln(D(V)dV) ¼ kE ln D(V) + kE ln dV (20)

where kE is the equivalent to the Boltzmann constant. As our
system is large enough and not constrained by boundaries (for a
counter example see ref. 37), we obtain a smooth function D(V)
and can therefore choose the integration interval dV small
enough so that its contribution to S vanishes.

7.2 Random loose packing

Random Loose Packing (RLP) is rst of all dened phenome-
nologically as the loosest possible packing which is still
mechanically stable, i.e. has a nite yield stress. Mechanical
stability requires the packing to be at least isostatic: the average
number of contacts of a particle needs to be large enough to
provide sufficient constraints to x all its degrees of
freedom.32,33,38 Experimentally it has been found that fRLP of
Soft Matter, 2014, 10, 4208–4216 | 4213
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Fig. 7 The density of states ratio. Panel (a) is based on the eleven
measurements of XOH for the cluster size N ¼ 200. The dashed line
indicates the global random loose packing volume. Panel (b) is
computed from XG of the densest and loosest packings. Points
represent the measured distributions, solid lines are analytical results
based on the Gamma functions (eqn (15)). In contrast to panel (a) the
two curves do not overlap. (c) The density of states depends on the
cluster size. The solid, black curve corresponds to the average of all
data points with N ¼ 200 in panel (a), the individual data points are
computed from XOH measured at N ¼ 20.
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spheres is approximately 0.55 (ref. 39–42) with the precise value
depending on the friction coefficient m (ref. 40–42) and the
conning pressure.40 For binary disc packings fRLP also
depends on their diameter ratio; for the particles in this paper
we measured fRLP ¼ 0.811.

While RLP seems to imply that there exist no packings with
lower f, exactly such states have been identied in MD simu-
lations with N ¼ 20 discs; the new lower boundary where such
states vanish has been named Random Very Loose Packing
(RVLP).43 An explanation why these states between RLP and
RVLP are usually not observed in experiments is given by their
small basin of attraction in phase space.

In general, the statistical mechanics approaches to granular
media5–7 assume the congurational temperature X$ 0. Then it
follows from

vS ¼ 1/X vV (21)
4214 | Soft Matter, 2014, 10, 4208–4216
that as the congurational entropy increases the packings
become looser. At RLP S reaches a maximum and then decays to
zero for looser congurations which by denition are not
mechanically stable packings. Further on, it is oen assumed
that the maximum of S is analytic which implies that X becomes
innity at RLP.5,6,43

The density of states computed from XVF, respectively XOH,
agrees with these predictions; Fig. 7 shows that it reaches a
global maximum at RLP. This is however only a self-consistency
test as the value of fRLP explicitly entered the computation of
these two compactivities. More probative is the fact that the
volume uctuations used to compute XVF have been shown to
depend on m.11 Consequentially, also a congurational entropy
computed from XVF will depend on m, which is a necessary
condition as the number of mechanically stable congurations
also depends on m.

Fig. 7c shows that the density of states also depends on the
size of the system. Systems with 20 discs posses considerably
looser states than those with 200 discs. This effect points to an
explanation of the congurations between RLP and RVLP as a
consequence of the nite size of a system, they will vanish in the
thermodynamic limit.

The density of states computed from XG (Fig. 7b) seems not
to display a maximum at fRLP. However, RLP might become
the most likely state if in the limit N / N the states between
RLP and RVLP vanish. Either way, XG(fRLP) will be nite and
display a jump to approximately half its value for the “uid”
congurations below fRLP,27 which have Voronoi volume
distributions that are also well described by Gamma func-
tions.44 While this behavior might be not the canonical
expectation, especially as XG is undened for uid, non-stable
congurations, it does not contradict experimental results.
This is different for the inuence of friction: it has been shown
that the Gamma distribution ts are independent of m,16,17

consequentially neither fRLP nor XG and the derived S will
reect the different number of mechanical stable states
resulting from changes in friction.

Finally, it is difficult to comment on the relationship
between XQ and RLP as the theory is presently only worked out
at exactly RLP. XQ (fRLP) is of nite value and will depend only
very weakly on m via V. If we allow similar to XG for its existence
also for f < fRLP, XQ will be depending on the preparation
protocol because the contact number is protocol dependent
below RLP.45
7.3 Open questions

Because granular matter is athermal, the question of ergodicity
has to be answered separately for each experimental or
numerical protocol used to explore the phase space of
mechanically stable congurations. An indication of their
differences is e.g. the different f dependence of the volume
uctuations when the sample is either mechanically tapped12 or
excited by ow pulses.11 Nonergodicity has recently also been
shown for numerical tapping of frictionless hard spheres,46

however there the analysis was not restricted to mechanically
stable states. In contrast, in numerical simulations of frictional
This journal is © The Royal Society of Chemistry 2014
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discs uidized with ow pulses an equivalence between time
and ensemble averages has been found.47

The biggest challenges to the concept of a congurational
granular temperature are however recent experiments by
Puckett and Daniels20 where they studied the volume and force
uctuations of two samples of discs which where in mechanical
contact. They found that the angoricity of the two samples
equilibrated, but the compactivity (computed as XOH and XVF)
did not. However, their preparation protocol was biaxial
compression which did not allow for strong particle rear-
rangements. Therefore, we speculate, it might have been pro-
hibiting volume exchange between the two subsystems by
quenching too fast. Clearly more work is needed to answer the
question if compactivity is a variable predictive of granular
behavior or just a number following from an algorithm.

8 Conclusions

Using the same experimental dataset, we have computed the
congurational granular temperature X with the four different
methods that have been previously suggested. The two methods
that treat the density of states as an experimental input agree
quantitatively with each other. The X values computed from the
other two methods, which specify the density of states from
independent theoretical considerations, are both different from
each other and from the rst two methods. Our results do not
provide a direct way to judge the correctness of the individual
approaches. But the derived density of states shows that only
the two agreeing methods provide a satisfying explanation how
random loose packing depends on friction.

Our measurements also demonstrate that X becomes only an
intensive variable when computed for clusters of size N larger
150 particles. This effect is due to the volume correlations of
neighboring particles. Consequentially, individual Voronoi cells
are not suitable ‘quasi-particles’ to dene a congurational
temperature in granular packings. This will complicate the
application of a statistical mechanics approach to small gran-
ular systems and in the presence of local gradients.
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So Matter, 2012, 8, 9731.

8 R. Monasson and O. Pouliquen, Phys. A, 1997, 236, 395–410.
This journal is © The Royal Society of Chemistry 2014
9 R. K. Bowles and S. S. Ashwin, Phys. Rev. E: Stat., Nonlinear,
So Matter Phys., 2011, 83, 031302.

10 E. R. Nowak, J. B. Knight, E. Ben-Naim, H. M. Jaeger and
S. R. Nagel, Phys. Rev. E: Stat., Nonlinear, So Matter Phys.,
1998, 57, 1971–1982.
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