Open Access Article. Published on 14 March 2014. Downloaded on 10/30/2025 4:58:39 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Soft Matter

.

ROYAL SOCIETY
OF CHEMISTRY

View Article Online

View Journal | View Issue

Cite this: Soft Matter, 2014, 10, 4208

Received 21st December 2013
Accepted 12th March 2014

DOI: 10.1039/c3sm53176g

Measuring the configurational temperature of a
binary disc packing

Song-Chuan Zhao and Matthias Schréter™®

Jammed packings of granular materials differ from systems normally described by statistical mechanics in
that they are athermal. In recent years a statistical mechanics of static granular media has emerged where
the thermodynamic temperature is replaced by a configurational temperature X which describes how the
number of mechanically stable configurations depends on the volume. Four different methods have been
suggested to measure X. Three of them are computed from properties of the Voronoi volume distribution,
the fourth takes into account the contact number and the global volume fraction. This paper answers two
questions using experimental binary disc packings: first we test if the four methods to measure compactivity
provide identical results when applied to the same dataset. We find that only two of the methods agree
quantitatively. This implies that at least two of the four methods are wrong. Secondly, we test if X is
indeed an intensive variable; this becomes true only for samples larger than roughly 200 particles. This
result is shown to be due to recently measured correlations between the particle volumes [Zhao et al.,

www.rsc.org/softmatter Europhys. Lett., 2012, 97, 34004].

1 Is there a well defined
configurational temperature?

Temperature is the concept that helps us to understand how the
exchange of energy stored in the microscopic degrees of
freedom follows from the accompanying change of entropy of
the involved systems. If we coarse-grain our view to the
macroscopic degrees of freedom of particulate systems, such as
foams or granular gases, we can still define effective tempera-
tures that describe their dynamics."” This approach defines
these systems as dissipative; the kinetic energy of the particles is
irrecoverably lost to microscopic degrees of freedom.

In the absence of permanent external driving such a system
will always evolve towards a complete rest. In the presence of
boundary forces or gravity this rest state will be characterized by
permanent contacts between the particles which allow for a
mechanical equilibrium. Shahinpoor® and Kanatani* were the
first to suggest that such systems might still be amenable to a
statistical mechanics treatment. Sam Edwards and co-workers>®
have then developed this idea into a full statistical mechanics of
static granular matter by using the ensemble of all mechanically
stable states as a basis. A necessary requirement for such an
approach is the existence of some type of excitation which lets
the system explore the phase space of the possible static
configurations. This could e.g. be realized by tapping, cyclic
shear, or flow pulses of the interstitial liquid. While there are
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promising results, the feasibility of this approach is still under
debate.”

A second key concept in Edwards’ approach is the replace-
ment of the energy phase space by a volume phase space where
the volume function W(q) takes the role of the classical
Hamiltonian. The configuration q represents the positions and
orientations of all grains. One can then define an analog to the
partition function Z(X):

Z(x) = je-WW@m)dq )

where ©(q) limits the integral to mechanically stable configu-
rations. X is the configurational temperature or compactivity,
which is defined as X = dV/dS. The configurational entropy S
corresponds to the logarithm of the number of mechanically
stable configurations for a given set of boundary conditions.

S is neither known from first principles (except for model
systems®®) nor can it be measured directly. Therefore “ther-
mometers” measuring X have to exploit other relationships;
four different ways to do so have been suggested. In this paper
we will test all four of them using the same dataset of
mechanically stable disc packings.

First X can be determined from the steady state volume
fluctuations using an analog to the relationship between
specific heat and energy fluctuations;'*** we will refer to this
compactivity as Xyr. A second method is based on the proba-
bility ratio of overlapping volume histograms,**** allowing us to
compute Xop. A third way'®"” computes X from the Gamma
function fits to the volume distribution. Finally, it has been
suggested recently'® that an analysis based on so-called
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quadrons®® instead of Voronoi cells leads to an expression for X,
that involves the average particle volume and the contact
number.

This difference in approach immediately raises the question
if these four methods provide identical results when applied to
the same experiment. There have been two previous experi-
ments addressing this question: McNamara et al.*® found that
Xvr and Xopy agree for tapped packings of approximately 2000
glass spheres. The same result has been reported by Puckett and
Daniels* for compressed disc packings.

A full description of a granular packing has to take the
boundary stresses into account.'®***> The stress dependence of
the entropy then gives rise to a tensorial temperature named
angoricity. Angoricity has been computed from numerics using
the overlapping histogram method® and from experiments
using both fluctuations and overlapping histograms.*® As the
experiments described below are performed in an open cell with
gentle driving, the boundary stresses can be assumed to be
small and constant; we therefore exclude angoricity from our
further analysis.

2 Correlations in the Voronoi-volume
of disc packings

The three methods to compute Xyr, Xon, and X all start from
the Voronoi-volume distribution. However, it has been shown
that the Voronoi volumes inside a sample are correlated.”® We
recently measured the spatial extension of these correlations
and demonstrated the existence of additional anti-correlations
between the volumes.”* These correlations raise the question
if X is indeed an intensive parameter ie. if its value is inde-
pendent of the number N of particles analyzed. As the Voronoi-
volumes reported in ref. 24 will be the basis of this study we
quickly recap the relevant experimental procedures and results,
more details can be found in the original publication. The disc
coordinates of all configurations and volume fractions can be
downloaded from the Dryad repository.>*

2.1 Experimental setup

The experiment is performed in an air-fluidized bed filled with a
binary mixture of Teflon discs with d; = 6 mm and d; = 9 mm
diameter. Datasets of 8000 different mechanically stable
configurations are prepared by repeated air pulses. Changing
pressure and duration of the air pulses allows us to control the
average packing fractions ¢ in the ranges of 0.818 to 0.838. After
each flow pulse the discs come to a complete rest and are then
imaged with a CCD camera (Fig. 1a). After detecting the particle
centers, the Voronoi volume V of each disc is determined
(Fig. 1b). We then compute the free volume V; = V — Vy;, for
each particle with V,,,;, being the volume the grain would occupy
in a hexagonal packing of identical discs. This step allows us to
superimpose the results for small and large discs in the
subsequent analysis.

Our results will also depend on the packing fraction of the
loosest possible packing ¢rrp = 0.811. This value is averaged
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Fig. 1 Correlations in binary disc packings. (a) Experimental image and
(b) the corresponding Voronoi tessellation. (c) The correlation between
two Voronoi volumes as a function of their distance L (measured in units
of small disc diameters ds). Dense packings exhibit anti-correlations for L
larger than approx. 2.5ds. Reproduced from ref. 24.

over 10 packings prepared by slowly settling the discs in a
manually decreased air flow.

2.2 Correlations in binary disc packings
The correlation between the Voronoi volumes can be measured
using:

Vei— Vi) (VfJ - VU»

2 (2)

corr(L) = (( o

Here i and j are two points in the packing which are sepa-
rated by a distance L. The free volumes at these points are Vg,
and V. Subtracted from them is the average free volume V¢ of
all particles at this point (averaged over all 8000 taps). (...)
indicates averaging over the 8000 packings and additionally 240
pairs of points 7, j within each packing. ¢¢ is the variance of the
free volumes averaged over the two points.

Fig. 1c depicts corr(L) for two different packing fractions. At
low values of ¢ only positive correlations between Voronoi cells
are found. Above ¢,c = 0.8277 anti-correlations appear for L
larger than approximately 2.5 small particle diameters. We will
show below that these (anti-) correlations control how X
becomes intensive.

3 Compactivity Xy measured from
volume fluctuations

This methods starts from the assumption of a Boltzmann like
probability distribution:
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p(a,X) == ——6(q) (3)

From eqn (3) follows the probability to observe a certain
volume V at a given compactivity X:

p(V,X) = Jé(W(q) ~ V)pla, X)dq
o )

where the density of states 2(V) = J(S(W(q) — V)O(q)dq counts

the number of the mechanical stable states available at volume
V. Using eqn (4) we can determine the average volume V(X) as
e VX

X)=19 —_— V
7(X) J,J(V)Z(X)Vd 5)

Taking the derivative of eqn (5) with respect to 1/X shows that
a7 ,
i T (©)
on the other hand d¥/d(1/X) can be rewritten as —X>dV/dX from
which follows:

X —— =0y 7)

Nowak et al. were the first to suggest that integrating eqn (7)
provides a way to compute X:*°

1 JV dv ®)

_ 3
Xvp v Oy

where the compactivity at the loosest possible packing has been
set to infinity: X(¢rLp) = . First measurements'™*> of Xy
showed that it indeed measures a material property as it
depends on the roughness of the particles. It has to be pointed
out that this method has the epistemological status of a calcu-
lation rule and not of a test of the Boltzmann assumption made
in eqn (3). This is different for the overlapping histogram
method described below.

As described in Section 2 we are interested in the evolution of
X with the size of the analyzed region, in the following referred
to as a cluster. Therefore we continue our study by using the
normalized average volume per particlev = 1/N Z V/Vy where
the sum goes over all N particles inside the cluster, V is the
Voronoi volume of the individual particles and V, the volume
occupied by the particle itself. As a consequence of this choice
also X is dimensionless.

Fig. 2a shows that for our tapped disc packings the variance
of the volume fluctuation ¢;> increases monotonically with the
average volume v (bar meaning again the average over all 8000
taps). To compute Xy we perform a power law fit to o, and use
the result to integrate eqn (8) numerically. Fig. 2b shows how
the resulting Xyr depends on the packing fraction at cluster
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Fig. 2 Compactivity Xyg measured from volume fluctuations. (a)
Average volume variance oy’ versus average volume v measured for
clusters of size N = 10 and 150. The solid curves are power law fits
which are then used to numerically integrate egn (8). (b) The com-
pactivity X\r computed from eqgn (8) for three different cluster sizes. (c)
The evolution of Kyr with cluster sizes at different values of ¢. The

radius R of the analyzed cluster is proportional to y/N/¢.

sizes N of 1, 30, and 150 discs. It is obvious that it is not an
intensive variable for this range of N.

3.1 Correlations make Xy non-intensive in small systems

For a more detailed analysis we have plotted in Fig. 2c the
dependence of Xyr on the cluster radius R measured from small
disc diameters ds. Three features of Xyr become apparent:

(1) Xvr is growing monotonously for R < 3d; for all values of ¢,

(2) for low to intermediate values of ¢, Xyr then reaches a
plateau, and

(3) for the highest packing fraction Xyr first decreases
slightly before entering a plateau.

All three points can be understood by considering the
influence of the volume correlations shown in Fig. 1. Eqn (8)
computes Xyr from the average variance o;” inside the cluster.
This variance can be decomposed in the following way:

N N N
of = % Do (dwidvn) = % > (aﬁ + Z<6vk6vm>> 9)
k m k

m#k

Here o;> = (6v°) is the fluctuation of a single Voronoi cell

and ) (6vkdvy,) := I is the volume correlation between disc k
m#k

and all other discs inside the cluster. If k is in the center of the
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cluster, then I is proportional to the area enclosed by corr(L),
the zero line, and L = R in Fig. 1c.

This consideration allows us to explain feature 1: while N
goes from 2 to approximately 25 all I; values are positive and
growing. Consequentially, the variance of the cluster ¢;” is
larger than the sum of the variance of the individual Voronoi
cells 1/N > 0> and Xy grows monotonously with N.

The second feature stems from the fact that once disk & is
more than four to five d; away from the boundary of the cluster,
I becomes independent of the cluster size. As the relative
importance of “boundary discs” decreases with the cluster size,
o5 becomes constant and Xyr becomes independent of N.

Finally, the slight decrease in Xy at high packing fractions
and N values between approximately 30 and 150 can be attrib-
uted to the anti-correlations that appear for ¢ larger than
0.8277; these will decrease I slightly again before it reaches its
plateau value.

4 Compactivity Xoy measured from
overlapping histograms

This way to compute compactivity has been first described by
Dean and Lefévre.** It uses pairs of experiments with slightly
different values of ¢, respectively Xon, and computes then the
ratio of the probabilities to observe the same local volume V. If
the assumption of a Boltzmann-like probability distribution, as
expressed in eqn (4), holds, this ratio should be exponential in V:

V. X)) Z(X)  Z(X) ,(XLI_X%)V

B N ¢ (10)
(V. Xo)  a(V)e V" Z(X))
Z(X>)
By taking the logarithm on both sides we obtain:
rx, (V) < 1 1 ) Zy

:=1In ! =|———|V+1n TX 11
¢ sz(V) X, X Zy, ( )

Therefore the difference between two compactivities can be
computed from a line fit of Q versus V as it was first demon-
strated in ref. 15.

Fig. 3a shows the distribution of average volumes for two
experiments with a packing fraction difference of 0.0017.
Fig. 3b demonstrates that the ratio Q is indeed a linear func-
tion of V, as predicted by eqn (11). By sweeping the experi-
mentally accessible range of packing fractions, Xoy can be
determined from the accumulated compactivity differences up
to an additive constant X,. We determine X, by setting Xoy for
the loosest experimental packing to the value of Xyr at this
volume fraction.

The resulting Xy is shown in Fig. 4. The good quantitative
agreement of Xoy and Xy is not too surprising given that (a)
both methods are derived from the same probability distribu-
tion (eqn (4)) and (b) our determination of X,,. However, the Xoy
method provides an additional test of the assumptions leading
to eqn (4) as we can compare the quality of a linear fit to Q(V)

This journal is © The Royal Society of Chemistry 2014
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Fig. 3 Compactivity measured with the overlapping histogram
method. (a) The probability to observe an average volume per particle
in clusters with 150 disks. The average packing fraction corresponds to
0.8336 for the red curve, and 0.8353 for the green curve. (b) The
logarithm of the probabilities to observe a given volume at two
different compactivities respectively packing fractions is a linear
function of the volume, which is in accordance with eqn (11). The
cluster size is 150 discs, and the dashed lines are linear fits. (c) The x>
values provide a goodness of fit test for both linear (green diamonds)
and parabolic (red triangle) fits to the probability ratios shown in panel
b. The average X2 is 13% smaller for the linear fit, indicating that a
Boltzmann-like distribution is a better assumption than a Gaussian.
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Fig. 4 Comparison of Xon, Xvr, and Xr computed for single discs and
clusters of 150 particles. In all three cases the compactivity of an
individual particle is smaller than that of a larger cluster. Xon and Xve
agree quantitatively, Xy is about an order of magnitude smaller.

with fit functions derived from alternative probability distri-
bution functions.’ A generic candidate would be a Gaussian
distribution which results in a parabolic fit. Fig. 3c demon-
strates however that a linear fit is superior, adding credibility to
a Boltzmann-like approach. Also note that canceling the density
of states in eqn (10) implicitly assumes a weak form of
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ergodicity; if the system explores its phase space differently at
the two values of X we cannot eliminate Z(V).

5 Compactivity X; measured from a
Gamma distribution fit

This third method to compute compactivity has been suggested
by Aste and Di Matteo;'””” it differs from the previous
approaches that it explicitly determines the density of states
9(V). Based on the observation'® that experimental Voronoi
volume distributions can be well fit by I' distributions, they
propose to replace eqn (4) with a rescaled &-Gamma distribution

k k Vf(kfl) Vi
Vi) = | = exp(— k=
r() (Vf> I'(k) p( Vf)
where V¢is the mean free volume (as defined in Section 2), and k
is the shape factor. They then identify

(12)

— Vf
X = (13)

or by making use of the fact that variance oy of the I' function
is given by: o> = V¢’/k they derive

(14)

By comparing eqn (4) and (12) we can also identify the
density of states:

W) _ oy VT (15)
= Ar
Z(X) I'(k)
a
@) 10 100 T
=
Q. 10 L
=
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[
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Fig. 5 Applying the I" distribution method. (a) I' distribution fits to the
volume distributions for a single disc and 150 particle clusters (¢ =
0.8175). (b) Evolution of X with the cluster size.
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Fig. 5a demonstrates that our volume distribution is well fit
by a I' distribution.”® We then determine X, without any addi-
tive constant using eqn (14). Fig. 4 shows X in comparison to
Xvr and Xoy. While all three compactivities decrease monoto-
nously with ¢, the absolute values and the slope of X, are quite
different from Xyp and Xpy.

Fig. 5b shows the evolution of X, with the cluster size. A
comparison with Xyy, displayed in Fig. 2c, shows a qualitative
similar influence of the volume correlations: while X increases
towards a plateau for small values of ¢, it goes through a
maximum before reaching a smaller plateau value for the
densest packings.

6 Compactivity Xq measured from
quadron tessellation

In a recent paper Blumenfeld et al.*® presented an analysis of the
statistical mechanics of two-dimensional packings based on
quadrons®™ as the building blocks of the tessellation. An
advantage of this choice is that the quadrons take by design into
account the structural degrees of freedom of the individual
particles. A drawback is that quadrons are not necessarily
volume conserving in the presence of non-convex voids formed
by “rattlers”, i.e. particles lying at the bottom of larger voids.>*?*°
Blumenfeld and co-workers then derive the partition functions
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Fig. 6 Compactivity measured with the quadron tessellation method.
(a) In all our experiments the contact number per particle is above the
isostatic value of 3. (b) A comparison of Xq computed from the full
partition function (eqn (16)) and X% derived from the volume ensemble
(egn (17)) only. Both are computed for ¢ = 0.8175. The difference
vanishes in the large system limit. (c) A comparison of Xyr (measured
for N = 150) and X%. The filled circle is computed for our random loose
packing value which is presumably the only isostatic point in our
dataset. The open squares assume that egn (16) is also valid for
hyperstatic packings.
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of the volume ensemble Zy, the force ensemble Z¢, and the total
partition function Z, showing in this process that Z # ZyZg.
Finally, they obtain from Z an expression for X, of an isostatic
packing:

2

Xy—— =
QTEN oM

)

(16)

(V) is the average volume of a cluster, z the average number
of contacts a particle has, and M is the number of boundary
forces.

If X(‘S is derived from Zy instead of Z one obtains:

2
X, ===
Q=zxV

(17)

In comparing our results with this approach we have to
acknowledge two differences. First, our experimental packings
are clearly subject to volume forces due to gravity. And secondly
they are, as shown in Fig. 6a, hyperstatic, ie. their contact
number is larger than what is required to fix all their mechan-
ical degrees of freedom.*

Generally, packings of frictional particles only become
isostatic at random loose packing and zero pressure.*>*
Therefore the only direct comparison possible is at our RLP
value ¢ = 0.811, the corresponding X, is shown as a black circle
in Fig. 6c. If we assume that we can replace z in eqn (16) with
Z(¢) and use the contact numbers displayed in Fig. 6a, we can
also compute X, for a larger range of ¢. These results are
indicated as open squares in Fig. 6c.

As Xq, is only computed from the average volume of a cluster,
it is insensitive to the correlations described in Section 2. On the
other hand there exists a finite size effect if Xg is computed from
the volume ensemble, ignoring the boundary forces. Fig. 6b
shows how the difference between the compactivities computed
from the full and the volume ensemble vanishes with increasing
cluster size and consequentially decreasing contribution of M.

7 Which is the correct way to
measure compactivity?

Fig. 4 and 6c show clearly that the four different methods to
compute compactivity do not agree quantitatively. While Xoy
and Xyr are identical within experimental scatter, X is more
than one order of magnitude smaller than Xoyy and Xyr and at
the same time decreasing less steeply with volume fraction.’*
The values of X, are closer to Xoy and Xy again, but the
evolution with ¢ is similar to Xj.

Our data can be used to self-consistently compute all four
different versions of compactivity, consequentially they are
unsuitable as a basis to judge the correctness of the different
approaches. A potential experimental or numerical test would
need an independent determination of the compactivity of a
model system from the knowledge of its entropy as a function of
volume. Alternatively, if the granular statistical mechanics
could be advanced to make predictions of granular behavior
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(e.g. segregation®) based on specific values of X, these could be
tested versus the four different “thermometers”.

However, we can elucidate the difference between the four
methods by computing the density of states and comparing it to
what is known about RLP, the loosest possible, mechanically
stable packing.

7.1 Computing the density of states

A probability distribution of the type of eqn (3) is a generic feature
for every statistic theory that maximizes the amount of entropy
represented by p, given certain constraints.*® In this spirit the
density of states Z(V) in eqn (4) can be interpreted as encapsu-
lating the physics of the specific system under consideration,
while the exponential term represents our lack of knowledge
about the microscopic state. From this perspective the main
difference between the four methods is the way they determine
2(V): while Xyr and Xop treat it as an experimental input
parameter, X and X, do provide predictions for its dependence
on V. In this subsection we will however not discuss X as the
theory has not been expanded yet to hyperstatic packings.

(V) can be computed following McNamara et al.*® Starting
by rewriting eqn (4) to

V) = p(V.X)e"*Z(X), (18)

we remove the dependence on the unknown partition function
by taking the ratio with D at a given volume Vj:

2v) _p(V,X)

a(Vo)  p(Vo, X)

1/X(V=7y)

(19)

The results are presented in Fig. 7 where we have chosen
Vo = 1.2. Panel (a) shows that the density of state ratios
computed from all eleven values of Xy overlap, as it can be
expected if the different preparation protocols sample the phase
space with the same probabilities. Fig. 7b shows that this
agreement of the density of states is not obtained if the ratio is
computed from X.

Fig. 7 provides also some insight into how the configura-
tional entropy S depends on the volume:

S = kg In(2(V)oV) = kg In @(V) + kg In 6V (20)
where kg is the equivalent to the Boltzmann constant. As our
system is large enough and not constrained by boundaries (for a
counter example see ref. 37), we obtain a smooth function %(V)
and can therefore choose the integration interval 6V small
enough so that its contribution to S vanishes.

7.2 Random loose packing

Random Loose Packing (RLP) is first of all defined phenome-
nologically as the loosest possible packing which is still
mechanically stable, i.e. has a finite yield stress. Mechanical
stability requires the packing to be at least isostatic: the average
number of contacts of a particle needs to be large enough to
provide sufficient constraints to fix all its degrees of
freedom.***** Experimentally it has been found that ¢rpp of
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Fig. 7 The density of states ratio. Panel (a) is based on the eleven
measurements of Xoy for the cluster size N = 200. The dashed line
indicates the global random loose packing volume. Panel (b) is
computed from X, of the densest and loosest packings. Points
represent the measured distributions, solid lines are analytical results
based on the Gamma functions (egn (15)). In contrast to panel (a) the
two curves do not overlap. (c) The density of states depends on the
cluster size. The solid, black curve corresponds to the average of all
data points with N = 200 in panel (a), the individual data points are
computed from Xon measured at N = 20.

spheres is approximately 0.55 (ref. 39-42) with the precise value
depending on the friction coefficient u (ref. 40-42) and the
confining pressure.”” For binary disc packings ¢rrp also
depends on their diameter ratio; for the particles in this paper
we measured ¢grp = 0.811.

While RLP seems to imply that there exist no packings with
lower ¢, exactly such states have been identified in MD simu-
lations with N = 20 discs; the new lower boundary where such
states vanish has been named Random Very Loose Packing
(RVLP).** An explanation why these states between RLP and
RVLP are usually not observed in experiments is given by their
small basin of attraction in phase space.

In general, the statistical mechanics approaches to granular
media®” assume the configurational temperature X = 0. Then it
follows from

48 =1/XaV (21)
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that as the configurational entropy increases the packings
become looser. At RLP S reaches a maximum and then decays to
zero for looser configurations which by definition are not
mechanically stable packings. Further on, it is often assumed
that the maximum of S is analytic which implies that X becomes
infinity at RLP.>**

The density of states computed from Xyr, respectively Xoy,
agrees with these predictions; Fig. 7 shows that it reaches a
global maximum at RLP. This is however only a self-consistency
test as the value of ¢grp explicitly entered the computation of
these two compactivities. More probative is the fact that the
volume fluctuations used to compute Xy have been shown to
depend on u."* Consequentially, also a configurational entropy
computed from Xyr will depend on u, which is a necessary
condition as the number of mechanically stable configurations
also depends on pu.

Fig. 7c shows that the density of states also depends on the
size of the system. Systems with 20 discs posses considerably
looser states than those with 200 discs. This effect points to an
explanation of the configurations between RLP and RVLP as a
consequence of the finite size of a system, they will vanish in the
thermodynamic limit.

The density of states computed from X (Fig. 7b) seems not
to display a maximum at ¢ryp. However, RLP might become
the most likely state if in the limit N — o the states between
RLP and RVLP vanish. Either way, X;(¢rrp) will be finite and
display a jump to approximately half its value for the “fluid”
configurations below ¢gryp,”” which have Voronoi volume
distributions that are also well described by Gamma func-
tions.** While this behavior might be not the canonical
expectation, especially as X is undefined for fluid, non-stable
configurations, it does not contradict experimental results.
This is different for the influence of friction: it has been shown
that the Gamma distribution fits are independent of u,'*"”
consequentially neither ¢grrp nor X, and the derived S will
reflect the different number of mechanical stable states
resulting from changes in friction.

Finally, it is difficult to comment on the relationship
between X, and RLP as the theory is presently only worked out
at exactly RLP. Xq (¢rrp) is of finite value and will depend only
very weakly on u via V. If we allow similar to X for its existence
also for ¢ < ¢rrp, Xo Will be depending on the preparation
protocol because the contact number is protocol dependent
below RLP.*

7.3 Open questions

Because granular matter is athermal, the question of ergodicity
has to be answered separately for each experimental or
numerical protocol used to explore the phase space of
mechanically stable configurations. An indication of their
differences is e.g. the different ¢ dependence of the volume
fluctuations when the sample is either mechanically tapped' or
excited by flow pulses." Nonergodicity has recently also been
shown for numerical tapping of frictionless hard spheres,*®
however there the analysis was not restricted to mechanically
stable states. In contrast, in numerical simulations of frictional
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discs fluidized with flow pulses an equivalence between time
and ensemble averages has been found.”

The biggest challenges to the concept of a configurational
granular temperature are however recent experiments by
Puckett and Daniels*® where they studied the volume and force
fluctuations of two samples of discs which where in mechanical
contact. They found that the angoricity of the two samples
equilibrated, but the compactivity (computed as Xoy and Xyr)
did not. However, their preparation protocol was biaxial
compression which did not allow for strong particle rear-
rangements. Therefore, we speculate, it might have been pro-
hibiting volume exchange between the two subsystems by
quenching too fast. Clearly more work is needed to answer the
question if compactivity is a variable predictive of granular
behavior or just a number following from an algorithm.

8 Conclusions

Using the same experimental dataset, we have computed the
configurational granular temperature X with the four different
methods that have been previously suggested. The two methods
that treat the density of states as an experimental input agree
quantitatively with each other. The X values computed from the
other two methods, which specify the density of states from
independent theoretical considerations, are both different from
each other and from the first two methods. Our results do not
provide a direct way to judge the correctness of the individual
approaches. But the derived density of states shows that only
the two agreeing methods provide a satisfying explanation how
random loose packing depends on friction.

Our measurements also demonstrate that X becomes only an
intensive variable when computed for clusters of size N larger
150 particles. This effect is due to the volume correlations of
neighboring particles. Consequentially, individual Voronoi cells
are not suitable ‘quasi-particles’ to define a configurational
temperature in granular packings. This will complicate the
application of a statistical mechanics approach to small gran-
ular systems and in the presence of local gradients.

Acknowledgements

We acknowledge helpful discussions with Karen Daniels and
Klaus Kassner.

References

1 I. K. Ono, C. S. OHern, D. J. Durian, S. A. Langer, A. J. Liu and
S. R. Nagel, Phys. Rev. Lett., 2002, 89, 095703.

2 N. V. Brilliantov and T. Poschel, Kinetic Theory of Granular
Gases, Oxford University Press, 2004.

3 M. Shahinpoor, Powder Technol., 1980, 25, 163-176.

4 K.-I. Kanatani, Powder Technol., 1981, 30, 217-223.

5 S. Edwards and R. Oakeshott, Phys. A, 1989, 157, 1080-1090.

6 A. Mehta and S. F. Edwards, Phys. A, 1989, 157, 1091-1100.

7 M. Pica Ciamarra, P. Richard, M. Schréter and B. P. Tighe,
Soft Matter, 2012, 8, 9731.

8 R. Monasson and O. Pouliquen, Phys. A, 1997, 236, 395-410.

This journal is © The Royal Society of Chemistry 2014

View Article Online

Soft Matter

9 R. K. Bowles and S. S. Ashwin, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2011, 83, 031302.

10 E. R. Nowak, J. B. Knight, E. Ben-Naim, H. M. Jaeger and
S. R. Nagel, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,
1998, 57, 1971-1982.

11 M. Schroter, D. I. Goldman and H. L. Swinney, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2005, 71, 030301.

12 P. Ribiere, P. Richard, P. Philippe, D. Bideau and
R. Delannay, Eur. Phys. J. E: Soft Matter Biol. Phys., 2007,
22, 249-253.

13 C. Briscoe, C. Song, P. Wang and H. A. Makse, Phys. Rev. Lett.,
2008, 101, 188001-188004.

14 D. S. Dean and A. Lefévre, Phys. Rev. Lett., 2003, 90, 198301.

15 S. McNamara, P. Richard, S. K. de Richter, G. Le Car and
R. Delannay, Phys. Rev. E: Stat.,, Nonlinear, Soft Matter
Phys., 2009, 80, 031301.

16 T. Aste, T. D. Matteo, M. Saadatfar, T. J. Senden, M. Schroter
and H. L. Swinney, EPL, 2007, 79, 24003.

17 T. Aste and T. Di Matteo, Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys., 2008, 77, 021309.

18 R. Blumenfeld, J. F. Jordan and S. F. Edwards, Phys. Rev. Lett.,
2012, 109, 238001.

19 R. Blumenfeld and S. F. Edwards, Phys. Rev. Lett., 2003, 90,
114303.

20 J. G. Puckett and K. E. Daniels, Phys. Rev. Lett., 2013, 110,
058001.

21 K. Wang, C. Song, P. Wang and H. A. Makse, Europhys. Lett.,
2010, 91, 68001.

22 L. A. Pugnaloni, ]J. Damas, 1. Zuriguel and D. Maza, Pap.
Phys., 2011, 3, 030004.

23 S. Henkes, C. S. O’'Hern and B. Chakraborty, Phys. Rev. Lett.,
2007, 99, 038002.

24 S. Zhao, S. Sidle, H. L. Swinney and M. Schroter, EPL, 2012,
97, 34004.

25 F. Lechenault, F. d. Cruz, O. Dauchot and E. Bertin, J. Stat.
Mech.: Theory Exp., 2006, 2006, P07009.

26 Data available from the Dryad Digital Repository: http://
doi.org/10.5061/dryad.tbm37.

27 T. Aste and T. Di Matteo, Eur. Phys. J. B, 2008, 64, 511-517.

28 The theory leading to X, has been developed for three-
dimensional monodisperse packings. Our approach of
using binary two-dimensional data is justified only
empirically by the quality of the Gamma distribution fit
(i.e. eqn (12)) to our free volume distribution.

29 M. Pica Ciamarra, Phys. Rev. Lett., 2007, 99, 089401.

30 R. Blumenfeld and S. F. Edwards, Phys. Rev. Lett., 2007, 99,
089402.

31 Two particles are considered to be in contact when the
distance between their centers is smaller than 1.01 times
the sum of their radii. The prefactor is based on the
uncertainty of our image processing, it has been measured
from the pair correlation function.

32 K. Shundyak, M. van Hecke and W. van Saarloos, Phys. Rev.
E., 2007, 75, 010301.

33 S. Henkes, M. van Hecke and W. van Saarloos, EPL, 2010, 90,
14003.

Soft Matter, 2014, 10, 4208-4216 | 4215


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c3sm53176g

Open Access Article. Published on 14 March 2014. Downloaded on 10/30/2025 4:58:39 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Soft Matter

34 This difference can not be attributed to the use of the free
volume V; for the computation of X as V¢ differs from v
only by a constant 2+/3/7. Therefore neither the shape of
the probability distributions used to compute Xoy nor the
size of the volume fluctuations, on which Xy is based on,
would change if they were also computed from V.

35 M. Schréter and K. E. Daniels, arxiv.org/abs/1206.4101.

36 E. T. Jaynes, Phys. Rev., 1957, 106, 620-630.

37 G.-J. Gao, ]J. Blawzdziewicz and C. S. O’Hern, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2006, 74, 061304.

38 C. Song, P. Wang and H. A. Makse, Nature, 2008, 453, 629-
632.

39 G. Y. Onoda and E. G. Liniger, Phys. Rev. Lett., 1990, 64,
2727-2730.

4216 | Soft Matter, 2014, 10, 4208-4216

View Article Online

Paper

40 M. Jerkins, M. Schroter, H. L. Swinney, T. ]J. Senden,
M. Saadatfar and T. Aste, Phys. Rev. Lett., 2008, 101, 018301.

41 G. R. Farrell, K. M. Martini and N. Menon, Soft Matter, 2010,
6, 2925-2930.

42 L. E. Silbert, Soft Matter, 2010, 6, 2918-2924.

43 M. Pica Ciamarra and A. Coniglio, Phys. Rev. Lett., 2008, 101,
128001.

44 V. Senthil Kumar and V. Kumaran, J. Chem. Phys., 2005, 123,
114501.

45 C. Heussinger and J.-L. Barrat, Phys. Rev. Lett., 2009, 102,
218303.

46 F. Paillusson and D. Frenkel, Phys. Rev. Lett., 2012, 109,
208001.

47 M. Pica Ciamarra, A. Coniglio and M. Nicodemi, Phys. Rev.
Lett., 2006, 97, 158001.

This journal is © The Royal Society of Chemistry 2014


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c3sm53176g

	Measuring the configurational temperature of a binary disc packing
	Measuring the configurational temperature of a binary disc packing
	Measuring the configurational temperature of a binary disc packing
	Measuring the configurational temperature of a binary disc packing
	Measuring the configurational temperature of a binary disc packing

	Measuring the configurational temperature of a binary disc packing
	Measuring the configurational temperature of a binary disc packing

	Measuring the configurational temperature of a binary disc packing
	Measuring the configurational temperature of a binary disc packing
	Measuring the configurational temperature of a binary disc packing
	Measuring the configurational temperature of a binary disc packing
	Measuring the configurational temperature of a binary disc packing
	Measuring the configurational temperature of a binary disc packing
	Measuring the configurational temperature of a binary disc packing

	Measuring the configurational temperature of a binary disc packing
	Measuring the configurational temperature of a binary disc packing


