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Under partial confinement, the motion of colloidal particles is
restricted to a plane or a line but their dynamics is influenced by
hydrodynamic interactions mediated by the unconfined, three-
dimensional flow of the embedding fluid. We demonstrate that this
dimensionality mismatch induces a characteristic divergence in the
collective diffusion coefficient of the colloidal subsystem. This result,
independent of the specific interparticle forces in the colloid, is solely
due to the kinematical constraint on the colloidal particles, and it is
different from the known divergence of transport coefficients in
purely one or two-dimensional fluids.

The diffusive behavior of macroobjects in solution (colloids,
micelles, polymers...) is of major importance for addressing
fundamental aspects of Statistical Physics and for applications.
Diffusion governs the transport of particles in heterogeneous
environments often encountered in soft matter and biological
systems; therefore normal and anomalous diffusion have been
studied by the corresponding communities from different
viewpoints and with diverse methods.”® A fundamental char-
acterization of the diffusive dynamics is provided by diffusion
coefficients. For the simplest case of a dispersion of colloidal
particles, the Fourier components dp(t) of the particle number
density field evolve according to

9dpy
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—~D(k)k*8p, (1)
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in the long-time, large-scale regime. This serves to define the
wave-number dependent coefficient of collective long-time diffu-
sion, D(k), and the associated diffusion constant, D(k — 0). It is
known that D(k) is influenced by (i) static effects, e.g., the
effective interactions between the macroobjects, and (ii) genu-
inely dynamical effects, in particular the hydrodynamic inter-
actions (HI) mediated by the solvent, usually resulting from the
overdamped regime of motion (Stokes flow).

The dynamics of colloidal solutions in confinement or
near physical boundaries has also been of long-standing
interest. The effect of HI has been investigated theoretically
on systems confined between walls,”™® close to a free inter-
face,’™'" or on solutions with a matrix of fixed obstacles.">
Trapped objects in (fluid) membranes also show peculiar
diffusion behavior.”>** In this communication, we investigate
the generic case of partial confinement: one part of the system,
namely the colloidal particles, is restricted to move in one
or two dimensions, whereas the other part, namely the
embedding solvent, evolves in a (essentially unbound) three-
dimensional (3D) domain. Examples of experimental reali-
zations of such a partial confinement setup are numerous,
e.g., a colloidal monolayer at a fluid interface,'® or particles
restricted by optical tweezers to stay in a plane or a line.*®
Here we study this problem both theoretically with a simpli-
fied model and numerically with simulations of a more
complete model. The main result is that the HI induce
anomalous fast diffusion.

Theory

We present the fundamental idea (further elaborated in the
ESIf) with a theoretical model for the long-time, collective
diffusion specific to particles confined to a planar monolayer.
We use the convention that z-components of any 3D position
vector are set to zero (location of the plane), r = (x,y,0). The areal
number density p(r,t) of particles at the plane and the particle
velocity field v(r,t) = (vy,,v, = 0) are related by the continuity
equation,
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The particles are acted upon by a thermodynamic general-
ized force, e.g., Brownian or due to direct particle-particle
interactions, and simultaneously transported by the ambient
flow in the surrounding 3D fluid. Thus, in the overdamped limit
we approximate

v=TIf+u, 3)

where I is the effective mobility of a particle at the plane, f(r,t) is
the average force per particle and u(r,t) is the 3D ambient flow
field. The force field f(r,t) is assumed to be expressible as a
functional of the density field; this includes many cases of
physical relevance, e.g., local thermal equilibrium. The ambient
flow u(r,t), being induced by the motion of the particles, is
responsible for the HI between the particles and must be
determined self-consistently as a function of the force field
f(r,t). The ambient flow, characterized by the dynamical
viscosity 7, is 3D incompressible and laminar, and assumed
smooth at the monolayer plane. Under these conditions, the
stationary ambient flow profile is modeled as

u(r,t) = % Jd2r/p(r/, HE(r, 1) - 9(r—r'),
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|
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+
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(4)

Notice that ¢ is the Oseen tensor for the 3D flow, even though
only its evaluation at points of the monolayer plane (z =2 = 0)
is required. The mean-field-like approximations underlying
eqn (2)-(4) usually imply a restriction to the “macroscopic”
regime of large scales and long times (see ESI, Section 17).

In the absence of external force fields, the homogeneous,
stationary state, p(I,t) = pnom, f(t,t) = 0, u(r,t) = 0, is a possible
solution of eqn (2)-(4). By linearizing them about the homoge-
neous state, one obtains an equation for the evolution of the

perturbation dp(r,t) = p(r,) — Phom,
ddp
Wz - thomv'f - phomv'u' (5)

In this linear approximation, f can be approximated as a
linear functional of V3p in general, so that the first term
describes the decay (or growth, in cases of instability) of density
fluctuations driven by the force field. The second term accounts
for the effect of HI and the key point is to note that V - u # 0 in
the 2D layer, that is, the ambient flow at the plane z = 0 induces
compression and dilution of the colloidal fluid, although the
full 3D ambient flow is not compressible. This is at variance
with the phenomenology when V - u = 0 (absence of confine-
ment or full confinement to 2D), under which conditions the
effect of the HI appears only as a nonlinear coupling (advec-
tion). By introducing the 2D Fourier transform of the fields,
eqn (5) can be cast into the form of eqn (1) with D(k) = [1 + g(k)]
Dy(k) (see ESI, Section 2f). Here Dy(k), defined from
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fi. = [Do(k)/T phom](—ikdpy), is the diffusion coefficient in the
absence of hydrodynamic couplings, the latter being accounted
for by the function

o phom k kﬁ J —ik-x o _ 1
STCT]F Z gﬂﬁ (X) B kLhydro (6)

in terms of a characteristic length Lypyaro: = 4nI/phom. The
behavior g(k) « 1/k leads to the central result of our analysis:
Since g(k) > 0, the (linearized) evolution of a given mode dpj
proceeds faster, but its stability character, determined by the
sign of Dy(k), is unchanged. This effect is maximal for the largest
spatial scales; in particular, since one usually has Dy(k — 0) =
finite, our result leads to the conclusion that the collective
diffusion is anomalous, D(k — 0) = o; in real systems, this
divergence will be regularized by finite-size effects. The pole in
eqn (6) is a consequence of computing the 2D Fourier transform
of the 3D Oseen tensor and can be traced back directly to the
kinematical constraint imposed by partial confinement. Already
intriguing work by Négele et al.”® shows the importance of this
constraint as a source for a similar 1/k-singularity in the short-
time diffusion coefficient. However, from numerics it was
deduced that normal diffusion is just enhanced,® and no
connection to anomalous diffusion was established.

The anomalous diffusion is illustrated by means of two
physically relevant models lying at opposite extremes. The first
case is an ideal gas (no direct interparticle force), for which
f = —kgTV In p and Dy(k) = I'kgT. The Green function G(r,t) of
eqn (1) is (see ESI, Section 37)

p 3 ¢ 2 -3/2
1 hydro i
+ <Lhydro) ( t ) :| ’ ( )

for long times, t >> thydro = Liydro /Do. In comparison with the
diffusion without HI, the density at the center (r = 0) is reduced
by a factor 2#,yar0/t and the decay at large distances is algebraic
instead of Gaussian.

The second case is a system of colloidal particles trapped by
wetting forces at the interface between two fluids. They deform
the interface slightly and an effective mutual interaction of
capillary origin arises (see, e.g., ref. 17). In the simplest model
(two-body force between capillary monopoles), the pairwise,
attractive interaction potential is proportional to the Bessel
function Ky(r/4), dependent on the capillary length A. When
A — oo, this reduces to the Newtonian gravitational potential in
2D. For realistic configurations (A ~ mm, typical particle
size ~ pm), the attraction is extremely long-ranged and one can
use the mean-field approximation to compute the force f and
derive (see ESI, Section 4+)

Do(k):é(al 7%) (8)

Sk + )

4 hydro
27'cD0 t 2

G(r,t) =

Here, J is a characteristic time scale and s ' is a charac-
teristic length scale. Eqn (8) predicts a clustering instability
dominated by the large scales (Dy(k) < 0 if k < ) provided
A% > 1. For these modes, HI-induced faster evolution is pre-
dicted too because, regarding the ambient flow, one can dismiss
the tiny interfacial deformation, so that the Oseen tensor in the
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monolayer plane (see eqn (4)) holds either asymptotically for
large separations, or exactly in the absence of a viscosity
contrast at the fluid interface.”

Results from simulations

The preceding theoretical analysis has been tested and
extended beyond the linear regime by means of simulations of a
colloidal monolayer. As our workhorse simulation method, we
choose quasi-2D Brownian Dynamics (BD) simulations.”® We
include HI, truncated at the two-body level, through the Rotne-
Prager approximation, leading to a truncated Stokesian
Dynamics (tSD)* that already incorporates the Oseen tensor
and thus the physics discussed in the previous paragraphs (see
ESI, Section 5.11). The tSD simulations are validated using a
combined 3D multicomponent lattice Boltzmann (LB) and
Molecular Dynamics algorithm? which includes HI at the
many-body level (see ESI, Section 5.27). Using these simulation
techniques, we illustrate the effect of HI on two aspects of the
dynamics in the capillary collapse scenario and, as a third
example, on the diffusional behavior in a 2D ideal gas of
colloidal particles:

(i) HI-enhanced diffusion coefficient in capillary collapse: we
check the linear prediction py(t) < exp (—D(k)k’t) from eqn (1)
for capillary monopoles using tSD simulations. As Fig. 1 illus-
trates, simulation results are described very well by theory and
clearly show the enhancement due to the 1/k divergence of the
diffusion coefficient compared with the corresponding results
without HI. (The deviations at large values of k/# are due to
nonlinear effects, and to corrections to mean-field from the
short-range repulsion.)

(if) Speedup of nonlinear capillary collapse: a particularly
simple limit case of the instability corresponds to #, A — o« in
eqn (8) (dubbed “cold collapse” in 2D Newtonian gravity),
allowing for an exact solution of the nonlinear evolution equa-
tions in the absence of HI:*® an initially homogeneous circular
patch of particles (top-hat profile) remains top-hat during the
evolution towards the simultaneous collapse of all the particles
at the center at a time ¢t = 7. Fig. 2 addresses the effect of HI on
this solution by means of tSD and LB simulations: due to the
faster dynamics of the low-k modes induced by HI, the collapse

t/T7=0.06 — 1
0.12 —
0.18 — |

05 ¢ °

In [p(t) / pi(0)]

0 0.2 0.4 0.6 0.8 1
k/K
Fig. 1 Growth of py(t) from tSD simulations (symbols) and from linear

theory, egn (1) and (8) (thick lines; thin lines in the absence of HI). See
ESI, Section 5.3.1
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Fig.2 Collapse of aninitial top-hat profile (radius R, density po, see ESI,
Section 5.37) for 2D gravity (A — ) without (dashed line, from theory)
and with HI (symbols, from tSD and LB simulations).

occurs earlier and the top-hat profile is destroyed, with a faster
increase of density at the center (clearly seen at time ¢/ = 0.5),
until close-packing effects become important (at ¢/ = 0.8) and
halt the collapse. The agreement between the results from tSD
and LB is reassuring that the phenomenological effect by HI is
captured already by the Oseen approximation. When the
capillary attraction is screened (A < initial patch radius), the
collapse develops a shockwave-like feature at the outer rim.** As
illustrated by Fig. 3, the incorporation of HI does not alter this
qualitative spatial structure but the faster time evolution
towards the collapse is very prominent.

(iii) Anomalous diffusion in an ideal gas: we have considered
an initial top-hat profile immersed in a homogeneous back-
ground. Despite the absence of (static) interactions, the evolu-
tion is affected by the HI if a nonvanishing hydrodynamic
radius ry of the particles is assumed. This corresponds to the
idealized case of, e.g.,, mutually interpenetrable polymeric
particles whose radius of gyration defines ry;. Fig. 4 shows the
effect of HI by means of simulations and the numerical solution
of eqn (2)-(4). One can observe how the HI reduce the diffusion
time and induce the development of a tail consistent with the
¥~ decay predicted by eqn (7).

A/R=0.1 t/7=0.00 &0
(tSD) 0.84 o

4 252
Sad (BD) 420 v
R 12.59 «

Fig. 3 Same as Fig. 2 but for a larger system (see ESI, Section 5.31) and
screened capillary attraction (1 < «) without (open symbols, from BD
simulations) and with Hl (filled symbols, from tSD simulations).
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Fig. 4 Diffusion of a top-hat overdensity of ideal gas without (filled
symbols, from BD simulations) and with HI (open symbols, from tSD
simulations). Lines represent the numerical solution of egn (2)-(4). For
simulation parameters, see ESI, Section 5.3.1

Discussion and conclusions

The singularity in D(k) of a monolayer is derived from a 3D flow
which affects the particle dynamics already at the linear level
because it is compressible in the plane of colloidal motion. Thus,
it is distinct from the well known divergence of the diffusion
coefficient in purely 2D systems. The latter is related to the
Stokes paradox and due to a long-time tail in the velocity
autocorrelation, induced by the nonlinear coupling of the
particle motion with the build-up in time of a 2D incompress-
ible flow. Likewise, it differs from the divergence in lateral
diffusion in fluid membranes, related also to the Stokes
paradox for the 2D incompressible flow inside the membrane.*
The singularity in D(k) is a sole consequence of the partial
confinement and is a quite robust result, being qualitatively
independent of the specific properties (strength, range) of the
effective, static interaction between the particles. Similarly, the
model can be applied to the dynamics of particles restricted to a
line, and eqn (6) predicts 1D anomalous collective diffusion,
D(k — 0) ~ In k (see ESI, Section 2t). Thus, dynamic signatures
of this singularity can be expected wherever the conditions of
restricted colloidal motion and unrestricted hydrodynamic
interactions are met. Possibly related to our results on the
collective long-time diffusion is the experimental observation of
an enhanced collective short-time} diffusion reported in ref. 23.
We also note the experimental observation of an enhancement
of self diffusion in monolayers,'>** which the authors interpret
as a consequence of HI mediated by 3D flow.

In conclusion, under partial confinement, ie., colloidal
motion restricted to a plane or a line but with hydrodynamic
interactions originating from 3D flow of a surrounding fluid,
peculiar collective diffusion properties emerge. Using a mean-
field model, we have identified a singularity in the collective long-
time diffusion coefficient responsible for anomalous diffusion.
The dominating dynamical effect of this singularity has been
illustrated by simulation examples of an ideal gas (dilute limit)
and a monolayer of capillary monopoles at a fluid interface
(long-ranged interparticle attraction) obtained with effectively
2D Stokesian dynamics truncated at the two-body level and with
3D Lattice-Boltzmann/Molecular Dynamics simulations.
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