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Hydrodynamic interactions induce anomalous
diffusion under partial confinement†

J. Bleibel,*ae A. Domı́nguez,b F. Günther,c J. Hartingcd and M. Oettele
Under partial confinement, the motion of colloidal particles is

restricted to a plane or a line but their dynamics is influenced by

hydrodynamic interactions mediated by the unconfined, three-

dimensional flow of the embedding fluid. We demonstrate that this

dimensionality mismatch induces a characteristic divergence in the

collective diffusion coefficient of the colloidal subsystem. This result,

independent of the specific interparticle forces in the colloid, is solely

due to the kinematical constraint on the colloidal particles, and it is

different from the known divergence of transport coefficients in

purely one or two-dimensional fluids.
The diffusive behavior of macroobjects in solution (colloids,
micelles, polymers.) is of major importance for addressing
fundamental aspects of Statistical Physics and for applications.
Diffusion governs the transport of particles in heterogeneous
environments oen encountered in so matter and biological
systems; therefore normal and anomalous diffusion have been
studied by the corresponding communities from different
viewpoints and with diverse methods.1–6 A fundamental char-
acterization of the diffusive dynamics is provided by diffusion
coefficients. For the simplest case of a dispersion of colloidal
particles, the Fourier components drk(t) of the particle number
density eld evolve according to

vdrk
vt

¼ �DðkÞk2drk (1)
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in the long-time, large-scale regime. This serves to dene the
wave-number dependent coefficient of collective long-time diffu-
sion, D(k), and the associated diffusion constant, D(k / 0). It is
known that D(k) is inuenced by (i) static effects, e.g., the
effective interactions between the macroobjects, and (ii) genu-
inely dynamical effects, in particular the hydrodynamic inter-
actions (HI) mediated by the solvent, usually resulting from the
overdamped regime of motion (Stokes ow).

The dynamics of colloidal solutions in connement or
near physical boundaries has also been of long-standing
interest. The effect of HI has been investigated theoretically
on systems conned between walls,7–9 close to a free inter-
face,10,11 or on solutions with a matrix of xed obstacles.12

Trapped objects in (uid) membranes also show peculiar
diffusion behavior.13,14 In this communication, we investigate
the generic case of partial connement: one part of the system,
namely the colloidal particles, is restricted to move in one
or two dimensions, whereas the other part, namely the
embedding solvent, evolves in a (essentially unbound) three-
dimensional (3D) domain. Examples of experimental reali-
zations of such a partial connement setup are numerous,
e.g., a colloidal monolayer at a uid interface,15 or particles
restricted by optical tweezers to stay in a plane or a line.16

Here we study this problem both theoretically with a simpli-
ed model and numerically with simulations of a more
complete model. The main result is that the HI induce
anomalous fast diffusion.
Theory

We present the fundamental idea (further elaborated in the
ESI†) with a theoretical model for the long-time, collective
diffusion specic to particles conned to a planar monolayer.
We use the convention that z-components of any 3D position
vector are set to zero (location of the plane), r¼ (x,y,0). The areal
number density r(r,t) of particles at the plane and the particle
velocity eld v(r,t) ¼ (vx,vy,vz ¼ 0) are related by the continuity
equation,
Soft Matter, 2014, 10, 2945–2948 | 2945
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vr

vt
¼ �V$ðrvÞ: (2)

The particles are acted upon by a thermodynamic general-
ized force, e.g., Brownian or due to direct particle–particle
interactions, and simultaneously transported by the ambient
ow in the surrounding 3D uid. Thus, in the overdamped limit
we approximate

v ¼ Gf + u, (3)

where G is the effective mobility of a particle at the plane, f(r,t) is
the average force per particle and u(r,t) is the 3D ambient ow
eld. The force eld f(r,t) is assumed to be expressible as a
functional of the density eld; this includes many cases of
physical relevance, e.g., local thermal equilibrium. The ambient
ow u(r,t), being induced by the motion of the particles, is
responsible for the HI between the particles and must be
determined self-consistently as a function of the force eld
f(r,t). The ambient ow, characterized by the dynamical
viscosity h, is 3D incompressible and laminar, and assumed
smooth at the monolayer plane. Under these conditions, the
stationary ambient ow prole is modeled as

uðr; tÞ ¼ 1

8ph

ð
d2r0rðr0; tÞfðr0; tÞ$Gðr� r0Þ;

GabðrÞ ¼ 1

jrj

"
dab þ rarb

jrj2
#
: (4)

Notice that G is the Oseen tensor for the 3D ow, even though
only its evaluation at points of the monolayer plane (z ¼ z0 ¼ 0)
is required. The mean-eld-like approximations underlying
eqn (2)–(4) usually imply a restriction to the “macroscopic”
regime of large scales and long times (see ESI, Section 1†).

In the absence of external force elds, the homogeneous,
stationary state, r(r,t) ¼ rhom, f(r,t) ¼ 0, u(r,t) ¼ 0, is a possible
solution of eqn (2)–(4). By linearizing them about the homoge-
neous state, one obtains an equation for the evolution of the
perturbation dr(r,t) ¼ r(r,t) � rhom,

vdr

vt
z� GrhomV$f � rhomV$u: (5)

In this linear approximation, f can be approximated as a
linear functional of Vdr in general, so that the rst term
describes the decay (or growth, in cases of instability) of density
uctuations driven by the force eld. The second term accounts
for the effect of HI and the key point is to note that V $ us 0 in
the 2D layer, that is, the ambient ow at the plane z¼ 0 induces
compression and dilution of the colloidal uid, although the
full 3D ambient ow is not compressible. This is at variance
with the phenomenology when V $ u ¼ 0 (absence of conne-
ment or full connement to 2D), under which conditions the
effect of the HI appears only as a nonlinear coupling (advec-
tion). By introducing the 2D Fourier transform of the elds,
eqn (5) can be cast into the form of eqn (1) with D(k) ¼ [1 + g(k)]
D0(k) (see ESI, Section 2†). Here D0(k), dened from
2946 | Soft Matter, 2014, 10, 2945–2948
fk z [D0(k)/Grhom](�ikdrk), is the diffusion coefficient in the
absence of hydrodynamic couplings, the latter being accounted
for by the function

gðkÞ ¼ rhom

8phG

X2

a;b¼1

kakb

k2

ð
d2xe�ik$xGabðxÞ ¼ 1

kLhydro

(6)

in terms of a characteristic length Lhydro: ¼ 4hG/rhom. The
behavior g(k) f 1/k leads to the central result of our analysis:
Since g(k) > 0, the (linearized) evolution of a given mode drk
proceeds faster, but its stability character, determined by the
sign of D0(k), is unchanged. This effect is maximal for the largest
spatial scales; in particular, since one usually has D0(k / 0) ¼
nite, our result leads to the conclusion that the collective
diffusion is anomalous, D(k / 0) ¼ N; in real systems, this
divergence will be regularized by nite-size effects. The pole in
eqn (6) is a consequence of computing the 2D Fourier transform
of the 3D Oseen tensor and can be traced back directly to the
kinematical constraint imposed by partial connement. Already
intriguing work by Nägele et al.7,8 shows the importance of this
constraint as a source for a similar 1/k-singularity in the short-
time diffusion coefficient. However, from numerics it was
deduced that normal diffusion is just enhanced,8 and no
connection to anomalous diffusion was established.

The anomalous diffusion is illustrated by means of two
physically relevant models lying at opposite extremes. The rst
case is an ideal gas (no direct interparticle force), for which
f ¼ �kBTV ln r and D0(k) ¼ GkBT. The Green function G(r,t) of
eqn (1) is (see ESI, Section 3†)

Gðr; tÞ ¼ thydro

2pD0t2

"
1þ

�
r

Lhydro

�2
thydro

t

� �2
#�3=2

; (7)

for long times, t [ thydro ¼ Lhydro
2/D0. In comparison with the

diffusion without HI, the density at the center (r ¼ 0) is reduced
by a factor 2thydro/t and the decay at large distances is algebraic
instead of Gaussian.

The second case is a system of colloidal particles trapped by
wetting forces at the interface between two uids. They deform
the interface slightly and an effective mutual interaction of
capillary origin arises (see, e.g., ref. 17). In the simplest model
(two-body force between capillary monopoles), the pairwise,
attractive interaction potential is proportional to the Bessel
function K0(r/l), dependent on the capillary length l. When
l/N, this reduces to the Newtonian gravitational potential in
2D. For realistic congurations (l � mm, typical particle
size � mm), the attraction is extremely long-ranged and one can
use the mean-eld approximation to compute the force f and
derive (see ESI, Section 4†)

D0ðkÞ ¼ 1

T

�
1

K 2
� 1

k2 þ l�2

�
: (8)

Here, T is a characteristic time scale and K �1 is a charac-
teristic length scale. Eqn (8) predicts a clustering instability
dominated by the large scales (D0(k) < 0 if k < K ) provided
lK > 1. For these modes, HI-induced faster evolution is pre-
dicted too because, regarding the ambient ow, one can dismiss
the tiny interfacial deformation, so that the Oseen tensor in the
This journal is © The Royal Society of Chemistry 2014
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monolayer plane (see eqn (4)) holds either asymptotically for
large separations, or exactly in the absence of a viscosity
contrast at the uid interface.19
Fig. 2 Collapse of an initial top-hat profile (radius R, density r0, see ESI,
Section 5.3†) for 2D gravity (l/N) without (dashed line, from theory)
and with HI (symbols, from tSD and LB simulations).
Results from simulations

The preceding theoretical analysis has been tested and
extended beyond the linear regime by means of simulations of a
colloidal monolayer. As our workhorse simulation method, we
choose quasi-2D Brownian Dynamics (BD) simulations.18 We
include HI, truncated at the two-body level, through the Rotne–
Prager approximation, leading to a truncated Stokesian
Dynamics (tSD)20 that already incorporates the Oseen tensor
and thus the physics discussed in the previous paragraphs (see
ESI, Section 5.1†). The tSD simulations are validated using a
combined 3D multicomponent lattice Boltzmann (LB) and
Molecular Dynamics algorithm21 which includes HI at the
many-body level (see ESI, Section 5.2†). Using these simulation
techniques, we illustrate the effect of HI on two aspects of the
dynamics in the capillary collapse scenario and, as a third
example, on the diffusional behavior in a 2D ideal gas of
colloidal particles:

(i) HI-enhanced diffusion coefficient in capillary collapse: we
check the linear prediction rk(t) f exp (�D(k)k2t) from eqn (1)
for capillary monopoles using tSD simulations. As Fig. 1 illus-
trates, simulation results are described very well by theory and
clearly show the enhancement due to the 1/k divergence of the
diffusion coefficient compared with the corresponding results
without HI. (The deviations at large values of k/K are due to
nonlinear effects, and to corrections to mean-eld from the
short-range repulsion.)

(ii) Speedup of nonlinear capillary collapse: a particularly
simple limit case of the instability corresponds to K , l / N in
eqn (8) (dubbed “cold collapse” in 2D Newtonian gravity),
allowing for an exact solution of the nonlinear evolution equa-
tions in the absence of HI:18 an initially homogeneous circular
patch of particles (top-hat prole) remains top-hat during the
evolution towards the simultaneous collapse of all the particles
at the center at a time t ¼ T . Fig. 2 addresses the effect of HI on
this solution by means of tSD and LB simulations: due to the
faster dynamics of the low-k modes induced by HI, the collapse
Fig. 1 Growth of rk(t) from tSD simulations (symbols) and from linear
theory, eqn (1) and (8) (thick lines; thin lines in the absence of HI). See
ESI, Section 5.3.†

This journal is © The Royal Society of Chemistry 2014
occurs earlier and the top-hat prole is destroyed, with a faster
increase of density at the center (clearly seen at time t/T ¼ 0.5),
until close-packing effects become important (at t/T ¼ 0.8) and
halt the collapse. The agreement between the results from tSD
and LB is reassuring that the phenomenological effect by HI is
captured already by the Oseen approximation. When the
capillary attraction is screened (l < initial patch radius), the
collapse develops a shockwave-like feature at the outer rim.22 As
illustrated by Fig. 3, the incorporation of HI does not alter this
qualitative spatial structure but the faster time evolution
towards the collapse is very prominent.

(iii) Anomalous diffusion in an ideal gas: we have considered
an initial top-hat prole immersed in a homogeneous back-
ground. Despite the absence of (static) interactions, the evolu-
tion is affected by the HI if a nonvanishing hydrodynamic
radius rH of the particles is assumed. This corresponds to the
idealized case of, e.g., mutually interpenetrable polymeric
particles whose radius of gyration denes rH. Fig. 4 shows the
effect of HI by means of simulations and the numerical solution
of eqn (2)–(4). One can observe how the HI reduce the diffusion
time and induce the development of a tail consistent with the
r�3 decay predicted by eqn (7).
Fig. 3 Same as Fig. 2 but for a larger system (see ESI, Section 5.3†) and
screened capillary attraction (l < N) without (open symbols, from BD
simulations) and with HI (filled symbols, from tSD simulations).

Soft Matter, 2014, 10, 2945–2948 | 2947
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Fig. 4 Diffusion of a top-hat overdensity of ideal gas without (filled
symbols, from BD simulations) and with HI (open symbols, from tSD
simulations). Lines represent the numerical solution of eqn (2)–(4). For
simulation parameters, see ESI, Section 5.3.†
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Discussion and conclusions

The singularity in D(k) of a monolayer is derived from a 3D ow
which affects the particle dynamics already at the linear level
because it is compressible in the plane of colloidal motion. Thus,
it is distinct from the well known divergence of the diffusion
coefficient in purely 2D systems. The latter is related to the
Stokes paradox and due to a long-time tail in the velocity
autocorrelation, induced by the nonlinear coupling of the
particle motion with the build-up in time of a 2D incompress-
ible ow. Likewise, it differs from the divergence in lateral
diffusion in uid membranes, related also to the Stokes
paradox for the 2D incompressible ow inside the membrane.13

The singularity in D(k) is a sole consequence of the partial
connement and is a quite robust result, being qualitatively
independent of the specic properties (strength, range) of the
effective, static interaction between the particles. Similarly, the
model can be applied to the dynamics of particles restricted to a
line, and eqn (6) predicts 1D anomalous collective diffusion,
D(k / 0) � ln k (see ESI, Section 2†). Thus, dynamic signatures
of this singularity can be expected wherever the conditions of
restricted colloidal motion and unrestricted hydrodynamic
interactions are met. Possibly related to our results on the
collective long-time diffusion is the experimental observation of
an enhanced collective short-time‡ diffusion reported in ref. 23.
We also note the experimental observation of an enhancement
of self diffusion in monolayers,10,24 which the authors interpret
as a consequence of HI mediated by 3D ow.

In conclusion, under partial connement, i.e., colloidal
motion restricted to a plane or a line but with hydrodynamic
interactions originating from 3D ow of a surrounding uid,
peculiar collective diffusion properties emerge. Using a mean-
eldmodel, we have identied a singularity in the collective long-
time diffusion coefficient responsible for anomalous diffusion.
The dominating dynamical effect of this singularity has been
illustrated by simulation examples of an ideal gas (dilute limit)
and a monolayer of capillary monopoles at a uid interface
(long-ranged interparticle attraction) obtained with effectively
2D Stokesian dynamics truncated at the two-body level and with
3D Lattice-Boltzmann/Molecular Dynamics simulations.
2948 | Soft Matter, 2014, 10, 2945–2948
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