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Random-close packing limits for monodisperse and
polydisperse hard spheres

Vasili Baranau and Ulrich Tallarek*

We investigate how the densities of inherent structures, which we refer to as the closest jammed

configurations, are distributed for packings of 104 frictionless hard spheres. A computational algorithm is

introduced to generate closest jammed configurations and determine corresponding densities. Closest

jamming densities for monodisperse packings generated with high compression rates using

Lubachevsky–Stillinger and force-biased algorithms are distributed in a narrow density range from 4 ¼
0.634–0.636 to 4 z 0.64; closest jamming densities for monodisperse packings generated with low

compression rates converge to 4 z 0.65 and grow rapidly when crystallization starts with very low

compression rates. We interpret 4 z 0.64 as the random-close packing (RCP) limit and 4 z 0.65 as a

lower bound of the glass close packing (GCP) limit, whereas 4 ¼ 0.634–0.636 is attributed to another

characteristic (lowest typical, LT) density 4LT. The three characteristic densities 4LT, 4RCP, and 4GCP are

determined for polydisperse packings with log-normal sphere radii distributions.
I. Introduction

The denition and determination of the random-close packing
(RCP) limit for frictionless hard-sphere particles is a long-
standing problem. For monodisperse particles, there exist at
least three estimates for the RCP limit, with distinct densities 4:
(i) 4 ¼ 0.634–0.636;1–4 (ii) 4 z 0.64;5–8 and (iii) 4 z 0.65.9–16 The
values of 0.634 and 0.65 are supported theoretically.1,15 In our
previous work17 we showed that 4 z 0.64 and 4 z 0.65 refer to
different phenomena and represent the RCP limit and a lower
bound of the glass close packing (GCP) limit.18

The RCP limit is sometimes interpreted as a special density at
which almost every Poisson packing will jam in the process of
innitely fast compressions and is also referred to as the J-point.5

For nite packings, this point is expanded into a J-segment.5,19

The behaviour of the J-segment in the thermodynamic limit is yet
unresolved; it may converge to a single J-point5 or preserve a nite
width.19 Here we do not investigate this issue, but study nite
packings of 104 particles and observe indeed a nite width of the
J-segment for our packings. We nd that 4 ¼ 0.634–0.636 is the
lower bound of this segment, whereas 4RCP z 0.64 is the upper
bound. We also reproduce the density 4GCP z 0.65 in our
simulations. In addition, we determine the RCP limits and lower
bounds of the GCP limits for polydisperse packings.

By jamming we understand in this paper collective jamming
in packings of frictionless particles,20–23 equivalent to mechan-
ical stability1 and innite pressure in systems of particles
sität Marburg, Hans-Meerwein-Strasse,

k@staff.uni-marburg.de; Fax: +49-6421-
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supplied with velocity.24 The equivalence of isostaticity and
jamming is supported experimentally,5,20,25–32 while Salsburg
and Wood proved24 that isostaticity is a necessary condition for
innite pressure and jamming. A packing is referred to as
jammed if there is at least a subset of particles that is jammed
(other particles are rattlers). We do not exclude rattler particles
from the packings when computing packing densities.

For polydisperse packings the GCP limit 4GCP is dened18 as
the innite-pressure limit for the densest glassy state (the ideal
glass state), whereas for monodisperse packings it is the density
above the RCP limit with minimal number of jammed packing
congurations (as revealed by an entropy minimum).9,17 We will
follow these denitions.

In our previous work17 we noticed that the pressure reported
during packing generation using the Lubachevsky–Stillinger
(LS) algorithm is non-stationary, because any packing genera-
tion is a non-equilibrium process. Therefore, innite non-
equilibrium pressure cannot be used as an indicator for
jamming. Instead, the packings should be allowed to equili-
brate. Indeed, monodisperse LS packings expose an average
coordination number below the isostatic value of six for
densities lower than 0.644 and can be densied further using
low compression rates.17

Research has been conducted recently to describe the pres-
sure relaxation process for monodisperse and polydisperse
packings.33 It also shows that LS packings are not always jam-
med despite very high non-equilibrium pressure. We have
suggested17 that stationary pressure aer relaxation may be
substituted into the equation of state (EOS) of Salsburg and
Wood24 to estimate the jamming densities. Some results33 show
that the process of pressure relaxation has time scales
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Closest jammed configuration at a density 4 ¼ 0.662 for a
random packing of 10 000 polydisperse spheres. The sphere radii
distribution is log-normal and has a standard deviation s ¼ 0.3. The
initial unjammed packing was generated with the force-biased algo-
rithm at a density 4 ¼ 0.613.
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comparable with the process of macroscopic packing rear-
rangement. In a certain interval of densities the particles start to
form crystalline regions and the estimated jamming density for
these packings may be as high as the crystalline packing density
(4FCC or 4HCP) for monodisperse packings, or as high as the GCP
limit 4GCP for polydisperse packings.34 Thus, these density
estimates do not represent the jamming densities closest to the
initial packing congurations and will not assist us in dening
the RCP limit 4RCP. Here, we modied the LS packing genera-
tion algorithm to search for the jammed packing congurations
closest to the initial ones (instead of simply estimating their
densities by equilibration) and will base our denition of the
RCP limit on the results produced with this modication.

The paper is structured as follows. Before we present any
experimental results, we use Section II to start with denitions
that become relevant for our subsequent discussion. These are
inherent structure,35 basin of attraction of an inherent structure,
bounding region, bounding surface, and closed bounding region.
We will show that an inherent structure for an arbitrary cong-
uration of hard spheres is a jammed conguration that is the
closest one to the initial conguration. To emphasize that we are
investigating hard particles, not particles with so potential, we
will use throughout this paper the term “closest jammed cong-
uration” instead of “inherent structure” and also refer to the
“closest jamming density” instead of the “density of the inherent
structure”. In Section III we describe the modication of the LS
packing generation algorithm to produce the closest jammed
congurations. The subsequent application of this modication
tomonodisperse and polydisperse packings produced with the LS
algorithm36,37 and force-biased (FB) algorithm38,39 is presented in
Section IV. It reveals that the closest jamming densities for our
nite packings produced with fast compressions are located in
narrow density bands depending on the particle size distribution,
from 4¼ 0.634–0.636 to 4z 0.64 for monodisperse packings. We
attribute 4z 0.64 to the RCP limit 4RCP and interpret 4 ¼ 0.634–
0.636 as well as similar densities for polydisperse packings as
another characteristic density 4LT, the lowest typical (LT)
jamming density. The denitions of 4RCP and 4LT are also
provided. In addition, we estimate lower bounds of the GCP limits
from the results in Section IV by extrapolating packing densities
to innite generation time. We furthermore demonstrate how
these three characteristic densities 4LT, 4RCP, and 4GCP depend on
the polydispersity for nite hard-sphere packings. Section V
presents a summary and conclusions.

The particles in our polydisperse packings have log-normal
radii distributions with standard deviations s from 0.05 to 0.3 in
steps of 0.05 (particle mean diameter is normalized to unity). All
sphere packings were prepared in a fully periodic cubic box (cf.
Fig. 1) and consist of 104 particles. Polydisperse packings are
generated in a wide range of compression rates using the LS and
FB protocols. Each packing is created from an individual Pois-
son conguration of points (independent random uniform
selection of sphere centre coordinates). The applied source code
is available under the MIT free soware license.40

We rely on the phase space packing description24 and use the
terms “limiting polytope”, “hypersurface”, and “hypercylinder”
from that paper.
This journal is © The Royal Society of Chemistry 2014
II. Definitions

In this section we present denitions that will be needed for our
discussion of hard-sphere packing problems.

Each sphere packing conguration of N monodisperse or
polydisperse particles (with predened nominal radii) can be
represented as a point in a 3N-dimensional packing phase space
(3 coordinates per particle center). For the packing box sides Lx,
Ly, Lz, respectively, the total phase space volume equals Vtot ¼
(LxLyLz)

N. The actual particle radii are proportional to the
nominal ones and thus are determined only by the pro-
portionality ratio or by the actual packing density.

In our discussion we will rely on the concept of inherent
structures. Stillinger introduced it for systems of particles with
so potential.35 The earliest description of this concept can be
found in Stillinger et al.41 (eqn (23), Section IV in that paper),
though this term is actually not used. A qualitative description
is also given in Torquato and Jiao42 (Section IV B in that paper).
Inherent structures for systems of particles with so potential
are local potential energy minima in the phase space. The
minimum that is reached by the steepest descent energy mini-
mization for an arbitrary system conguration is an inherent
structure for this conguration. Potential energy in hard-sphere
packings is replaced by the maximum packing density that can
be associated with this conguration (i.e., when there are still
no intersecting particles), taken with the minus sign.

Inherent structures for hard-sphere packings correspond to
jammed congurations. Indeed, if a packing resides in an
inherent structure, there are no innitesimal changes in the
conguration that will allow preserving the density; instead, any
change will always require decreasing the particle radii
(decreasing the density, increasing the energy). Thus, the
Soft Matter, 2014, 10, 3826–3841 | 3827
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packing conguration resides in an innitesimal limiting pol-
ytope and is jammed. Because such an inherent structure is
reached from an initial conguration through a steepest
descent, it is the closest one to the initial conguration.

To emphasize that we are investigating hard particles, not
particles with so potential, we will use throughout this paper
the term “closest jammed conguration” instead of the
“inherent structure”. We are unaware of precise mathematical
denitions of the closest jammed conguration, especially of
those accounting for rattler particles, so we provide a mathe-
matical denition in the Appendix (Subsection C). We will not
use precise denitions to implement searching for the closest
jammed congurations. Instead, we modify the LS algorithm in
Section III. The closest jammed conguration is dened
uniquely for any unjammed packing conguration, except for
saddle points in the potential energy landscape. The precise
denition in the Appendix denes the closest jammed cong-
uration uniquely even for saddle points.

An initial packing conguration belongs to a basin of
attraction of a given jammed conguration if this jammed
conguration is the closest one for the initial packing. Any
phase space point belongs to one and only one basin of
attraction, because the closest jammed conguration is dened
uniquely for any conguration.

Similarly, let us dene the bounding region of a given jam-
med conguration at a given density as the intersection of this
conguration's basin of attraction with available phase space
(contact hypercylinders for that density excluded). All available
phase space is uniquely split into bounding regions. When the
particle radii are large enough, bounding regions become
closed and are then transformed into limiting polytopes.

We can also dene bounding surfaces, i.e., the surfaces of
these bounding regions (comprised of hypercylinder surfaces
and “wormholes” between bounding regions). The bounding
region is closed if the bounding surface is fully formed by
hypercylinder surfaces. Any conguration in a closed bounding
region is called a glassy state.18 The glass transition occurs when
the bounding region becomes closed.

The denitions from this section together with the pressure
criterion for jamming24 allow us to transform the conventional
denition of the GCP limit for polydisperse particles18 (“the
innite-pressure limit for the densest glassy state”) into a
“jammed conguration with the highest density”. Precise de-
nitions for these concepts can also be found in Subsection D of
the Appendix.
III. Algorithm used to search for the
closest jammed configurations

In this section, we present a modication to the LS packing
generation algorithm. This modied LS (MLS) algorithm was
used to search for the closest jamming densities.
A. General idea

The LS algorithm in its conventional form cannot be used to
search for the closest jammed congurations. This algorithm
3828 | Soft Matter, 2014, 10, 3826–3841
terminates too early for fast compressions because of the non-
equilibrium pressure excess. Limiting polytopes have not yet
collapsed into single points. If we apply slow compressions to
unjammed packings, they will terminate in almost jammed
congurations, but the latter will not correspond to the initial
bounding regions and will have higher densities than the
closest jammed congurations.17

Therefore, one way of searching for the closest jammed
conguration is to use fast compressions at the beginning of the
packing generation (to preserve the conguration point in an
initial bounding region) and to use slow compressions at the
end of the generation (to arrive at a truly jammed congura-
tion). In order to merge these two regimes, we should gradually
reduce the compression rate during the packing generation. We
run the LS packing generation with a high compression rate,
until the non-equilibrium reduced pressure is high (reaches a
conventional value of 1012), then decrease the compression rate
and run the LS generation again, until the pressure is high
enough again, and repeat this procedure until the compression
rate is low enough. High compression rates at the initial stages
will lead to a very fast movement of the bounding surfaces and
to the closing of most of the wormholes between the bounding
regions. Low compression rates at the end of the generation will
ensure that the pressure is almost stationary, and the high
pressure is a sign of the proximity to jamming. Slow compres-
sions will also allow the conguration point to explore the
bounding region and to exit the dead ends formed by concave
boundaries and follow the movement of the bounding surfaces.
B. Details of the modied Lubachevsky–Stillinger (MLS)
algorithm

We use the following packing generation parameters: the root
mean square particle velocity is

ffiffiffiffiffiffiffiffiffiffiffi
3$0:2

p
, which corresponds to a

packing temperature of 0.2, because we set the mass of all the
particles and the Boltzmann constant to unity. The initial
compression rate is 10 and the termination compression rate is
#10�4; we decrease the compression rate by a factor of two each
time the reduced pressure (computed from 20 collisions per
particle, 2 � 105 collisions for our packings comprised of 104

particles) reaches a value of 1012. This factor of two is referred to
as the “compression rate decrease factor”. To avoid the imme-
diate termination of the packing generation aer the compres-
sion rate is updated (as far as the reduced pressure remains high)
we perform equilibration with zero compression rate until the
reduced pressure is below 1012 (also computed from 2 � 105

collisions). If the reduced pressure is still above 1012 aer 50
cycles of 2� 105 collisions, we assume that the packing is close to
jamming and terminate the generation completely. The proce-
dure above always terminates in nearly jammed congurations.
We refer to this modication as the MLS algorithm.

The code for this modication is available online.40 The MLS
algorithm is validated in Section IV (Subsection B), aer we
provide an overview of the results that we obtained by applying
this algorithm with the current parameters (Subsection A).

The idea of decreasing the compression rate has already
been applied to the LS algorithm in order to produce nearly
This journal is © The Royal Society of Chemistry 2014
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jammed congurations, as can be found in Torquato and Jiao42

(Section V A), Skoge et al.44 (Section II), Jiao et al.45 (Section II A),
and Biazzo et al.46 These papers do not, in general, contain the
requirement to start packing generation from fast compres-
sions. To our knowledge, packing generation which starts from
fast compressions has never been interpreted as searching for
the closest jammed conguration.
IV. Results and discussion

Here, we present our packing generation results and the results
of searching for the closest jammed congurations of the
generated packings. We estimate the GCP limits 4GCP for
monodisperse and polydisperse packings on the basis of their
densities obtained aer slow compressions. We analyze packing
densities for fast compressions, dene the RCP limits 4RCP and
the lowest typical (LT) jamming densities 4LT, and determine
these densities for monodisperse and polydisperse packings.
We provide an overview of our data in Subsection A. In
Subsection B we validate the MLS algorithm; this validation
relies on the data overview and therefore cannot be presented
earlier. We analyze the data in Subsection C. This analysis leads
us to denitions of the RCP limits, which we introduce in
Subsection D. Subsection E presents concepts of typical and
untypical basins of attraction, dened through the RCP limits.
Table 1 Important symbols used in the text

Symbol Short description Key gure

s Standard deviation of the log-
normal particle radii distributions

g Compression rate for initial packing
generation

X-axis in

4 Initial packing density aer LS or FB
generation

Y-axis in F

4J Closest jamming density of a
packing

Y-axis in F

4fast
min Minimum closest jamming density

for packings produced with fast
compressions

Fig. 4 and

4fast
max Maximum closest jamming density

for packings produced with fast
compressions

Fig. 4 and

4LT Lowest typical jamming density or
its estimate, 4LT ¼ 4fast

min

Fig. 5 and

4RCP Random-close packing limit or its
estimate, 4RCP ¼ 4fast

max

Le sides
Table 4

4GCP Glass close packing limit or its
estimate

Right side
Tables 2 a

4HCP Crystalline packing density for
monodisperse packings (FCC or
HCP crystals)

4max Highest packing density: 4HCP for
monodisperse packings, 4GCP for
sufficiently polydisperse packings

4L Lowest possible jamming density, at
least 2=3$4HCP for monodisperse
packings (density of tunnelled
crystals43)

This journal is © The Royal Society of Chemistry 2014
We discuss our results in Subsection F. Our ndings are
summarized in Fig. 5 and 6. To ease the reading of this section,
we provide with Table 1 an overview of the symbols used below.
Some of them have already been introduced, some will be
introduced later.
A. Data overview

The dependence of the packing densities 4 on the inverse
compression rates g�1 for packings produced with the LS and
FB algorithms is shown in Fig. 2a and c, respectively. The closest
jamming densities 4J obtained with the MLS algorithm vs. the
inverse compression rates g�1 for the same LS and FB packings
are shown in Fig. 2b and d, respectively. All packings in Fig. 2b
and d are nearly isostatic and have very high equilibrium
reduced pressure (1012).

We did not average the data in Fig. 2; each point in these
gures corresponds to a single packing. To guide the eye, points
have been connected by straight lines. Averaging assumes that
uctuations in the data will disappear in the thermodynamic
limit. This question is still unresolved and we do not discuss it
here.5,19 Additionally, averaging would remove the information
about the exact boundaries of jamming intervals for nite
packings.

We distinguish between two packing generation regimes in
Fig. 2: slow compressions (i.e., high inverse compression rates,
s and tables Values for s ¼ 0

Fig. 2

ig. 2a and c

ig. 2b and d

Table 3 �0.635 (for packings in this study)

Table 3 �0.64

Table 4 �0.635 (for packings in this study)

of Fig. 2b and d and 5 and �0.64

s of Fig. 2 and 5 and
nd 4

�0.65

�0.74

�0.74

�0.49

Soft Matter, 2014, 10, 3826–3841 | 3829
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Fig. 2 Packing density vs. inverse compression rate g�1. (a) Densities 4 of sphere packings generated with the Lubachevsky–Stillinger (LS)
algorithm. (b) Closest jamming densities 4J for the packings in panel a. (c) Densities 4 of sphere packings generated with the force-biased (FB)
algorithm. (d) Closest jamming densities 4J for the packings in panel c. The meaning of colour for the different standard deviations s of the log-
normal sphere radii distributions is explained in the legends. Horizontal lines with corresponding colours to the left and to the right of the figures
represent the RCP limits (4RCP) and the GCP limits (4GCP), respectively.
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long generation times) and fast compressions (i.e., low inverse
compression rates, short generation times). We consider the
generation as slow for the FB packings with g�1 > 0.2 � 104 and
for LS packings with g�1 > 0.6 � 102. We consider the genera-
tion as fast for the FB packings with g�1 < 103 and for LS
packings with g�1 < 5.

For slow compressions, the jamming densities in Fig. 2b and
d remain close to the initial densities for all the packing types.
This occurs because the packings are already trapped in closed
or nearly closed bounding regions and are almost jammed. The
search for the closest jammed conguration only slightly
increases their densities. Though the plots for the LS and FB
algorithms look similar, the inverse compression rates for the
FB packings are shied by two orders of magnitude with respect
to the LS packings.

The obtained narrow horizontal bands for jamming densi-
ties aer the fast initial compressions in Fig. 2b and d can be
explained as follows. Fast generations do not allow the packings
(with Poisson distribution of points as starting conguration) to
leave the initial bounding regions, though the packings are not
jammed at the end of the fast compressions. The search for the
3830 | Soft Matter, 2014, 10, 3826–3841
closest jamming density will also retain packings in their initial
bounding regions, but will compress the regions into polytopes
and nally into jammed congurations, slightly increasing the
packing density. Therefore, the jamming density distribution
for fast compressions should correspond to the closest
jamming density distribution for Poisson packings, i.e., to the
uniform sampling of the phase space.
B. Validation of the modied Lubachevsky–Stillinger (MLS)
algorithm

Prior to a detailed discussion of the data in Fig. 2, we analyze
how the estimated closest jamming densities depend on algo-
rithm parameters. For this purpose, we selected several LS
packings with s ¼ 0 (monodisperse packings) and s ¼ 0.3
(widest particle size distribution in this work) and searched for
their closest jamming densities with varied search parameters.
We changed the compression rate decrease factor (i.e., the
number we used to divide the compression rate as the pressure
becomes high enough), the initial compression rate, and the
nal compression rate. For the compression rate decrease
This journal is © The Royal Society of Chemistry 2014
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factor we used the values 1.5, 2, 2.5, 3, and 4; for the initial
compression rate – 1, 10, and 20; and for the nal compression
rate – 10�4 and 10�5. This results in a total of 30 combinations.

Fig. 3a shows how the nal jamming densities depend on the
compression rate decrease factor. The dependence on the initial
compression rate is depicted in Fig. 3b. All 30 combinations are
represented in each gure, but are coloured according to one of
the varied parameters.

Fast compressions. Packings obtained with fast compres-
sions (g�1 < 5 in Fig. 3b) jam at slightly different, but very close
congurations. There is no apparent correlation between the
chosen parameters and the nal jamming densities, i.e., the
nal jamming density varies randomly with the algorithm
parameters. There are no visible correlations for the nal
compression rate as well (data not shown). We explain this as
follows: for packings obtained with fast compressions, the
available phase space is highly connected18 and there are many
achievable jammed congurations in the vicinity of the true
closest jammed conguration. With changing parameters, the
algorithm may randomly switch between one of these congu-
rations. The interval of densities where the packings jam is the
same as with the fast compressions in Fig. 2b and d (for the
corresponding sphere radii distributions with s ¼ 0 and s ¼
0.3). Further in this paper, we are only interested in the lower
and upper bounds of the closest jamming density intervals for
fast compressions. Thus, results below for fast compressions do
not depend on the exact algorithm parameters. If the initial
compression rate is 0.01, the interval of jamming densities is
shied upward and is [0.637, 0.647] for monodisperse parti-
cles42 (Table 1 in that paper). It means that this initial
compression rate is already too low to correctly search for the
closest jammed congurations.

We found that with a compression rate decrease factor of 10
the jamming densities for fast compressions are systematically
shied upward. It means that the compression rate decreases
too quickly. Aer several decreases it is so low that the packings
have enough time (until pressure becomes high again) to leave
Fig. 3 Estimated closest jamming density 4J vs. inverse compression rat
are varied. (a) Dependence on the compression rate decrease factor. (b) D
obtained with the Lubachevsky–Stillinger (LS) algorithm and have sphere

This journal is © The Royal Society of Chemistry 2014
the initial bounding region and travel to bounding regions with
higher jamming densities.

Slow compressions. For slow compressions (g�1 > 0.6 � 102

in Fig. 3b) uctuations in jamming densities quickly disappear.
This happens because the bounding regions where the packings
initially reside aer slow compressions have less “wormholes”
to neighbouring regions; the available phase space is less con-
nected. Thus, the algorithm does not switch randomly between
jammed congurations in the vicinity of the true closest jam-
med conguration and always terminates at the latter. It shows
that the results for slow compressions below also do not depend
on the exact algorithm parameters.
C. Data analysis

Slow compressions, estimation of the GCP limits 4GCP.
Extrapolation of the 4J(g

�1) plots for polydisperse packings in
Fig. 2b and d to zero compression rate (innite generation time)
provides the highest densities that can be obtained with these
algorithms. We interpret these densities as the GCP limits 4GCP:
(i) the LS and FB algorithms are able to reach and overcome the
structural transition density of 4 z 0.65 for monodisperse
packings (s ¼ 0), which we also interpreted as the GCP limit;17

(ii) both algorithms are able to generate almost crystalline
congurations for monodisperse packings. These densities may
be regarded as lower bounds of the GCP limits, as it is some-
times argued that the GCP limits are unreachable (see, e.g.,
Subsection II B 2 in Parisi and Zamponi18). Resolving the
question whether they can be reached or not is beyond the
scope of the present paper.

We approximate the 4J(g
�1) plots by the least-squares

method with an asymptotic expansion 4J ¼
X3
i¼0

cið ffiffiffi
g

p Þi and

extrapolate it to zero compression rate (innite generation
time). Estimates of the GCP limits are then found as 4GCP ¼ c0.
We took the 80 last data points to the right in Fig. 2b to t the LS
data and 300 points to t the FB data (Fig. 2d). Both numbers
e g�1, when search parameters for the closest jammed configurations
ependence on the initial compression rate. Initial sphere packings were
radii standard deviations s ¼ 0 and s ¼ 0.3.
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were selected to exclude points from the horizontal plateaus at
short generation times. Estimates of 4GCP along with 95%
condence intervals for the LS and FB packings are reported in
Table 2 in the rows “LS, densied” and “FB, densied”. These
estimates are displayed as horizontal lines to the right in Fig. 2b
and d, respectively.

As the packings generated by sufficiently slow compressions
are almost jammed, we may use the densities of initially created
packings for the same asymptotic expansion to estimate the
GCP limits. We used 125 data points to the right in Fig. 2a to t
the LS data and 300 points to the right in Fig. 2c to t the FB
data. The GCP limit estimates along with 95% condence
intervals for the LS and FB packings are reported in Table 2 in
the rows “LS, initial” and “FB, initial”. These estimates are
displayed as horizontal lines to the right in Fig. 2a and c,
respectively. Plots from Fig. 2 built vs.

ffiffiffi
g

p
, along with their

polynomial ts, can be found in Appendix G (asymptotic
expansion of packing densities to the GCP limits).

We do not estimate the GCP limit for monodisperse pack-
ings by asymptotic expansion, because the 4(g�1) and 4J(g

�1)
plots do not exhibit asymptotes for low compression rates.
Instead, they start to grow rapidly as densities 4z 4Jz 0.65 are
reached. It is known that monodisperse packings demonstrate
an entropy minimum and the onset of crystallization at 4 z
0.647–0.651.9–17 In our previous paper,17 we reproduced these
features at 4 z 0.647–0.651 for the monodisperse FB packings
shown in Fig. 2c (as well as for LS packings created with the
code of Skoge et al.,44 not used in the present paper). We
analyzed the Voronoi volumes standard deviation,1,47,48 Voronoi
volumes entropy,9,14 pore-size entropy,17 and the local bond-
orientational order Q6

local.49 Here, we also applied these
measures to the monodisperse LS packings (Fig. 2a) and to the
monodisperse densied LS and FB packings (Fig. 2b and d). We
conrm that the behaviour of the measures remains
unchanged: entropy-like measures have a local minimum at 4
z 4J z 0.647–0.651 and local order starts to increase rapidly at
the same density (data not shown). Thus, we associate the
growth in the 4(g�1) and 4J(g

�1) plots at 4z 4J z 0.65 with the
onset of crystallization; and interpret the entropy minimum for
monodisperse packings as the GCP limit, 4GCP z 0.65. It is easy
to show why the GCP limit implies the onset of crystallization. If
Table 2 Estimates of the GCP limit (4GCP) along with 95% confidence
expansion of actual sphere packing densities, see Fig. 2a and c. (ii) “LS/FB,
Fig. 2b and d. Data are provided for different standard deviations s of th

s

0.05 0.1 0.15

LS, initial 0.6528 �
1.8489 � 10�4

0.6557 �
1.955 � 10�4

0.6600 �
2.2824 �

FB, initial 0.6528 �
1.4523 � 10�3

0.6540 �
1.9576 � 10�3

0.6608 �
1.9004 �

LS, densied 0.6530 �
3.5721 � 10�4

0.6561 �
3.4474 � 10�4

0.6607 �
3.8526 �

FB, densied 0.6519 �
1.5772 � 10�4

0.6556 �
1.9659 � 10�4

0.6603 �
2.4266 �

3832 | Soft Matter, 2014, 10, 3826–3841
4GCP z 0.65 is the highest achievable density for monodisperse
packings with suppressed crystallization (e.g., by pinning a
certain fraction of particles50), the only way to reach still higher
densities – for generation protocols that try to avoid crystalli-
zation as long as possible – is to prepare crystalline inclusions
in the packings at 4GCP. We assume that, if crystallization is
articially suppressed in monodisperse packings, the 4(g�1)
and 4J(g

�1) plots look similar to those for polydisperse pack-
ings, reaching asymptotes 4 ¼ 4GCP or 4J ¼ 4GCP at g�1 ¼ N,
with 4GCP z 0.65.

Fast compressions, determination of 4fast
max. Let 4HCP be the

crystalline packing density for monodisperse packings (FCC or
HCP crystals); let also 4max be the highest possible packing
density: it is 4HCP for monodisperse packings and 4GCP for
sufficiently polydisperse packings. 4GCP and 4max depend on the
particle radii distribution.

Closest jamming densities for fast compressions (horizontal
density bands) have clear lower and upper bounds in Fig. 2b
and d. We determine the horizontal parts of the plots visually,
i.e., consider the plots of packing density vs. the inverse
compression rate for the LS and FB algorithms as horizontal for
g�1 < 5 (Fig. 2b) and for g�1 < 103 (Fig. 2d), respectively. The
number distributions of the closest jamming densities for fast
compressions by the LS and FB algorithms are presented in
Fig. 4. These distributions are localized in narrow density
bands. The maximum and minimum densities for LS and FB
packings in these bands are provided in Table 3. The maximum
achievable density for monodisperse packings is �0.64 for both
algorithms.

We denote these maximum and minimum densities from
Table 3 as 4fast

max and 4fast
min, respectively. They depend on the

particle radii distribution.
We assume that our results for the GCP limits and further

discussion for the RCP limits are protocol-independent. We
base our assumption on the following points: (i) the behaviour
of 4J(g

�1) plots is qualitatively the same for both the FB and LS
protocols; (ii) the differences between the corresponding values
of 4fast

min for different protocols are #10�3; (iii) the differences
between the corresponding values of 4fast

max for different proto-
cols are #10�3; (iv) the differences between the corresponding
4GCP estimates from Table 2 are #2 � 10�3.
intervals obtained by different methods. (i) “LS/FB, initial”: asymptotic
densified”: asymptotic expansion of the closest jamming densities, see
e log-normal sphere radii distributions

0.2 0.25 0.3

10�4
0.6650 �
2.8891 � 10�4

0.6711 �
3.4862 � 10�4

0.6777 �
4.5487 � 10�4

10�3
0.6650 �
1.7833 � 10�3

0.6711 �
3.0192 � 10�3

0.6790 �
3.8918 � 10�3

10�4
0.6658 �
5.2342 � 10�4

0.6716 �
6.517 � 10�4

0.6786 �
9.4406 � 10�4

10�4
0.6658 �
3.0977 � 10�4

0.6725 �
4.2419 � 10�4

0.6787 �
5.0797 � 10�4

This journal is © The Royal Society of Chemistry 2014
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Fig. 4 Closest jamming density distributions for sphere packings created with fast compressions. (a) Packings generated with the Lubachevsky–
Stillinger (LS) algorithm. (b) Packings generated with the force-biased (FB) algorithm. The meaning of symbols for the different standard devi-
ations s of the log-normal sphere radii distributions is explained in the legends. 4fast

max and 4RCP are determined for each s as the rightmost points
of the distributions, 4fast

min and 4LT are determined for each s as the leftmost points of the distributions. These values are summarized in Table 3.

Table 3 Minimum (4fast
min) and maximum (4fast

max) closest jamming
densities for sphere packings generated with fast compressions using
the Lubachevsky–Stillinger (LS) and force-biased (FB) algorithms. Data
are provided for different standard deviations s of the log-normal
sphere radii distributions. 4fast

min and 4fast
max are the leftmost and the

rightmost points, respectively, of the corresponding distributions in
Fig. 4

s

0.0 0.05 0.1 0.15 0.2 0.25 0.3

4fast
min, LS 0.6349 0.6367 0.6391 0.6425 0.6480 0.6542 0.6601

4fast
min, FB 0.6356 0.6364 0.6388 0.6428 0.6469 0.6540 0.6593

4fast
max, LS 0.6406 0.6414 0.6437 0.6485 0.6536 0.6599 0.6675

4fast
max, FB 0.6404 0.6428 0.6443 0.6487 0.6547 0.6601 0.6676
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D. Denition of the RCP limits 4RCP through 4fast
max

Fig. 4 and Table 3 show that 4fast
max is the highest practically

obtained closest jamming density for sufficiently large Poisson
packings or packings created with fast compressions. It implies
that basins of attraction with jamming densities 4J > 4fast

max are
practically impossible to sample for sufficiently large packings;
in other words, basins of attraction with 4J # 4fast

max cover for
such packings the fraction of the phase space that is close to
unity. We associate 4fast

max with the random close packing limit
4RCP. We assume that in the thermodynamic limit the lowest
density 40, for which the basins of attraction with 4J # 40 still
cover the almost entire phase space, is also close to 4fast

max. Under
this assumption, we dene the random close packing limit 4RCP

for innite packings as the minimum density for which basins
of attraction with jamming densities # 4RCP cover the almost
entire phase space. The RCP limit for sufficiently large packings
is thus the highest practically obtained closest jamming density
for Poisson congurations or packings created with fast
compressions. When packings are relatively small and all
basins of attraction can in practice be sampled by Poisson
This journal is © The Royal Society of Chemistry 2014
congurations, we have to select an arbitrary fraction a, e.g., a¼
0.95, and dene the RCP limit as the density for which basins of
attraction with 4J # 4RCP cover the selected fraction a of the
phase space.

In the same manner we dene for innite packings another
characteristic density 4LT as the maximum density for which
basins of attraction with jamming densities $ 4LT cover the
almost entire phase space. The LT limit for sufficiently large
packings is the lowest practically obtained closest jamming
density for Poisson congurations or packings created with fast
compressions. Thus, for the packings under study 4LT ¼ 4fast

min.
Mathematical formulations for both nite and innite packings
are given in the Appendix (Subsection F).

We do not investigate the dependence of 4LT, 4RCP, and 4GCP

on the number of particles in the packings, but add the
following remarks. As mentioned, monodisperse packings
exhibit a structural transition and the onset of crystallization at
4GCPz 0.65.9–17 This density is reported even for packings of 105

particles,11 which suggests that 4GCP is preserved in the ther-
modynamic limit. 4LT and 4RCP depend on the number of
particles in a packing;5 4LT increases and 4RCP slightly decreases
as the number of particles increases. There are two possible
scenarios for their behaviour for innite packings: they
converge to a single J-point (at 4 z 0.64 for monodisperse
packings),5 or 4LT reaches an asymptote below 4RCP.19 In both
cases 4GCP is different from 4LT and 4RCP in the thermodynamic
limit.

Further below, under 4LT and 4RCP we will understand the
corresponding densities for nite packings of 104 particles. It
follows from Fig. 4 that 4RCP ¼ 4fast

max and 4LT ¼ 4fast
min. Now, we

join all the characteristic points obtained so far for the different
particle radii distributions in a single table and in a single plot
(Table 4 and Fig. 5). 4LT was estimated by averaging the
minimum closest jamming densities aer fast compressions
4fast
min from Table 3 for both LS and FB packings; 4RCP was esti-

mated by averaging the maximum closest jamming densities
Soft Matter, 2014, 10, 3826–3841 | 3833
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Table 4 Characteristic densities for hard-sphere packings: lowest
typical jamming densities (4LT), RCP limits (4RCP), and GCP limits (4GCP).
Data are provided for different standard deviations s of the log-normal
sphere radii distributions. 4GCP is obtained by averaging columns in
Table 2. 4LT and 4RCP are estimated by averaging 4fast

min and 4fast
max from

Table 3, respectively. 4LT, 4RCP, and 4GCP are plotted vs. s in Fig. 5

s

0.0 0.05 0.1 0.15 0.2 0.25 0.3

4LT 0.6353 0.6366 0.6390 0.6426 0.6475 0.6541 0.6597
4RCP 0.6405 0.6421 0.6440 0.6486 0.6542 0.6600 0.6676
4GCP 0.65 0.6526 0.6554 0.6606 0.6651 0.6716 0.6787

Fig. 5 Characteristic densities for finite packings of 104 spheres with
log-normal sphere diameter distribution: red circles (B) are lowest
typical (LT) jamming densities 4LT; magenta crosses (+) are RCP limits
4RCP; blue squares (,) are 4RCP estimates obtained by Farr and
Groot;51 and cyan crosses (�) are GCP limits 4GCP. All values (except
the Farr–Groot data) can be found in Table 4.
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aer fast compressions 4fast
max from Table 3 for both LS and FB

packings; 4GCP was estimated by averaging the columns in
Table 2; and 4GCP for monodisperse packings was taken at a
conventional value of 4 ¼ 0.65.17 For monodisperse packings
4LT z 0.635 and 4RCP z 0.64.

The plots in Fig. 5 demonstrate that all of the characteristic
densities increase with the width of the particle size distribu-
tion. The increase of 4GCP is natural, as far as polydisperse
packings have more degrees of freedom (not only three coor-
dinates per particle, but also a radius), and there are more
possibilities to arrange the packings in order to achieve a
desired density. The increase of 4RCP can be explained in a
similar way. While 4LT, 4RCP, and 4GCP vary with the particle
radii standard deviation, the differences between them do not
change much, e.g., 4GCP � 4RCP z 0.01 for all standard devia-
tions. Such a small difference explains why it is hard to discern
4RCP and 4GCP experimentally. We also provide in Fig. 5 a plot
for the semi-theoretical RCP limit estimates obtained by Farr
and Groot.51 This plot has a very similar shape and is shied
slightly upward compared with our 4RCP estimates.
3834 | Soft Matter, 2014, 10, 3826–3841
E. Typical and untypical basins of attraction

We distinguish between typical basins of attraction and
untypical ones. Basins of attraction with jamming densities in
the range [4LT, 4RCP] are typical by denition; the others are
untypical. The probability to sample an untypical basin of
attraction with Poisson packings or with packings produced by
fast compressions tends to zero in the thermodynamic limit. It
is close to zero already for packings of 104 particles. This
happens because the phase space is dominated by typical
basins; their total volume is almost equal to the total phase
space volume in the thermodynamic limit.

If there is a way to distinguish typical from untypical basins
of attraction without relying on their jamming densities, it will
be possible to provide another denition for 4RCP: it is the
highest jamming density for typical basins of attraction or the
highest typical closest jamming density of Poisson packings. In
the same manner we can dene 4LT: it is the lowest jamming
density for typical basins of attraction or the lowest typical
closest jamming density of Poisson packings. This is the reason
for using LT (lowest typical) as subscript for 4LT.

It was suggested that the RCP limit is a special density at
which almost every innite Poisson packing will jam in the
process of innitely fast compressions and was referred to as
the J-point.5 In other words, it is the closest jamming density for
almost every Poisson packing. We conrmed that this point is
rather a segment [4LT, 4RCP] for nite packings.5,19 It is some-
times argued that even in the thermodynamic limit this
segment does not collapse to a single J-point.19 The estimate for
4LT for monodisperse packings by Pica Ciamarra et al.19 (4 ¼
0.635–0.636) is in good agreement with our result (4LT z 0.635).
We note that 4LT is referred to as the random-loose packing
(RLP) density in these papers. We use a separate term, the
“lowest typical” density, to avoid confusion with another de-
nition and estimate for the RLP limit at 4RLP ¼ 0.536–0.55,1,52,53

as well as to emphasize that we are investigating frictionless
particles.

Here we observed untypical jammed congurations only in
the range (4RCP, 4max]. There should be another set of untypical
jammed congurations with densities below 4LT. Examples of
such congurations for monodisperse particles are tunnelled
crystals, discovered by Torquato and Stillinger.43 These
tunnelled crystals form an uncountable set of untypical jammed
congurations at 4J ¼ 2=3$4HCP ¼ ffiffiffi

2
p

p=9z0:49365. Another
special procedure has been proposed to systematically create
untypical jammed congurations with jamming densities in the
range [0.6, 4LT) for monodisperse packings.42,45 One has to
select a typical jammed packing, remove a certain fraction of
particles and apply a special sequential linear programming
generation algorithm,42 which is also believed to produce the
closest jammed congurations. The untypical jamming densi-
ties below 4LT should also have a lower limit, which we denote
as 4L, the lowest density of jammed congurations. Thus, for
monodisperse packings 4L is at least

ffiffiffiffiffiffi
2p

p
=9z0:49365. The

existence of untypical jammed congurations below 4LT and a
lower bound for their densities has been proposed by Pica
Ciamarra et al.54,55 along with a special algorithm to generate
This journal is © The Royal Society of Chemistry 2014
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jammed untypical two-dimensional packings below 4LT. This
lower bound is called the “random very loose packing” density
in these papers. Since we want to avoid the mixing of “lowest
typical” jamming density and “random loose packing” density,
we use the term “lowest” jamming density in this paper.
Fig. 6 Schematic jamming phase diagram for finite packings. Dashed
lines refer only to monodisperse packings. Red lines denote bound-
aries for typical configurations. 4HCP is the highest jamming density for
monodisperse packings, 4GCP is the glass close packing limit, 4RCP is
the random close packing limit (or the highest typical jamming
density), 4LT is the lowest typical jamming density, and 4L is the lowest
jamming density.
F. Discussion

The denition of the RCP limit for monodisperse packings
shows excellent agreement with the recurring experimental
value of 4RCP z 0.64.5–8 We suggest that the two common 4RCP

estimates for monodisperse packings (i.e., 0.64 and 0.65) actu-
ally correspond to two distinct characteristic points:

(1.) 4 z 0.64.5–8 We interpret it as the RCP limit 4RCP, the
highest jamming density for typical basins of attraction.

(2.) 4 z 0.65.9–17 We interpret it as the GCP limit 4GCP, the
highest jamming density for polydisperse packings and the
density above the RCP limit with a minimum number of jam-
med congurations for monodisperse packings.

For nite packings, even innitely fast compressions of
Poisson congurations produce jamming densities in the range
[4LT, 4RCP]. The lowest jamming density 4LT for monodisperse
packings of 104 particles under study is �0.635.

Chaudhuri et al.28 demonstrated that the jamming densities
depend on preparation history and should exist in a certain
range. This discovery complies very naturally with the picture
we present. Indeed, the jamming densities should depend on
the employed generation protocol and can be found at any
density in the range [4L, 4max]; but searching for the closest
jammed conguration for sufficiently large Poisson packings
will in practice always produce a density in the range [4LT, 4RCP].

Kamien and Liu56 showed that there may be an uncertainty
in the range of densities where the reduced pressure reaches
innity during packing densication. We showed that the
pressure can reach innity during a single packing densica-
tion in the entire range of densities [4L, 4max]; again, searching
for the closest jammed conguration for sufficiently large
Poisson packings will in practice always produce a density in the
range [4LT, 4RCP]. Our denition of the RCP limit as the highest
typical jamming density is also consistent with experimental
observations, which state that 4RCP is the jamming density
maximally achievable in experiments.7

In Fig. 6 we schematically display how the closest jamming
densities depend on the generation time for nite packings. We
assume that algorithms start from Poisson packings and update
the conguration continuously with generation time. The
typical closest jamming densities were previously dened only
for Poisson packings or for zero initial packing density. Under
typical closest jamming densities for non-zero initial packing
densities we understand the closest jamming densities that will
be almost always found for packings created at a given density
using a given algorithm. The right part of the plot (cf. vertical
gray dividing line) depends on the packing generation protocol,
and we depict it for protocols capable of approaching the GCP
limit for polydisperse packings and reaching crystalline
congurations for monodisperse packings. Other protocols may
converge to lower densities instead, as low as 4LT or even 4L.
This journal is © The Royal Society of Chemistry 2014
Indeed, the protocol of Khirevich et al.2 produces packings with
densities close to 4LT for innite generation times. The form of
the plot 4J(g

�1) in Fig. 6, as well as in Fig. 2b and d, was con-
jectured by Parisi and Zamponi18 (see Fig. 2a in that paper). The
major difference is the presence of the plateau at 4GCP in the
conjectured plot for monodisperse packings.

In the future we like to measure the characteristic densities
4LT, 4RCP, and 4GCP for other particle radii distributions, e.g.,
Gaussian and bidisperse,57 and compare the results to predic-
tions from other models.58,59 Our methodology provides a
framework for investigating these densities for hard particles of
arbitrary shape and dimensionality.

V. Summary and conclusions

We introduced a modication to the LS packing generation
algorithm to directly produce the closest jammed congura-
tions (inherent structures of hard spheres) for arbitrary pack-
ings. The application of this protocol to LS and FB packings
consisting of 104 particles yields the following conclusions,
independent from the employed packing generation protocol:
closest jamming densities for Poisson packings and packings
produced with fast compressions are located in narrow density
bands depending on particle size distribution, from 4 ¼ 0.634–
0.636 to 4 z 0.64 for monodisperse particles; closest jamming
densities for packings created with slow compressions converge
to certain asymptotic values (4 z 0.65 for monodisperse
particles).

We attribute the asymptotic packing densities for innitely
slow compressions to lower bounds of the GCP limits.18 We
attribute 4 z 0.64 (monodisperse packings) to the RCP limit
and interpret 4 ¼ 0.634–0.636 and similar densities for poly-
disperse packings as another characteristic density 4LT. Thus,
Soft Matter, 2014, 10, 3826–3841 | 3835

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c3sm52959b


Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
M

ar
ch

 2
01

4.
 D

ow
nl

oa
de

d 
on

 1
1/

14
/2

02
5 

2:
27

:5
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
we dene the RCP limit 4RCP for sufficiently large nite pack-
ings as the highest practically achievable closest jamming
density of Poisson congurations. Similarly, 4LT is the lowest
practically achievable closest jamming density of Poisson
congurations. In the thermodynamic limit, 4RCP and 4LT may
coincide and thus form a J-point, but they are different for nite
packings.

These denitions led us to the distinction between typical
jammed congurations and corresponding basins of attraction,
which have jamming densities in the range [4LT, 4RCP] and in
the thermodynamic limit occupy the almost entire phase space,
and untypical ones, whose jamming densities reside in the
ranges [4L, 4LT) and (4RCP, 4max] and which in the thermody-
namic limit occupy a portion of the phase space with zero
probability measure. The RCP limit is thus the highest typical
closest jamming density of Poisson packings and packings
produced with sufficiently fast compressions; 4LT is the lowest
typical closest jamming density of Poisson packings and pack-
ings produced with sufficiently fast compressions.

The characteristic densities 4LT, 4RCP, and 4GCP depend on
the standard deviation of the employed log-normal particle
radii distributions, but differences between them do not change
much, e.g., 4GCP � 4RCP z 0.01 for all standard deviations. This
small difference explains why it is challenging to differentiate
between 4RCP and 4GCP experimentally.
VI. Appendix

Here we present precise denitions for the closest jammed
conguration (inherent structure of hard spheres), basin of
attraction, and bounding region. We also give mathematical
denitions for the random-close packing limit 4RCP and the
lowest typical density 4LT.
A. Mathematical difficulty with the denition in the main
text

In the denition for the closest jammed conguration below
(Subsection C) we will use an approach slightly different from
that in the main text, but will show their equivalence. At rst, we
explain the mathematical difficulty with the denition in the
main text.

We dened the articial potential energy for hard-sphere
packings as the maximum density that can be specied for a
given packing conguration (to avoid particle intersections)
taken with the minus sign. This potential energy is a non-
smooth function over particle coordinates. Indeed, this
maximum density is controlled by the closest pair of particles.
The potential energy is a smooth function in a certain range of
coordinates of one of the particles in the closest pair (around its
initial position). But for a sufficiently large displacement of this
particle some other particle will form the closest pair with it.
The potential energy will not be smooth at the position of the
rst particle where the closest pair changes. The gradient of the
potential energy is undened at this point.

The closest jammed conguration is specied in the main
text as the local minimum in the potential energy that is
3836 | Soft Matter, 2014, 10, 3826–3841
reached through the gradient descent (steepest descent) in the
potential energy landscape from the initial packing congura-
tion. The steepest descent is undened at the points with
undened gradient. Thus, we have to use a different approach.
B. Closest jammed conguration, general idea

Each packing conguration of N monodisperse or polydisperse
particles (with predened nominal radii) can be represented as
a point in a 3N-dimensional packing phase space (3 coordinates
per particle center). For packing box sides Lx, Ly, Lz, respectively,
the total phase space volume equals Vtot ¼ (LxLyLz)

N. The actual
particle radii are proportional to the nominal ones and thus are
determined only by the proportionality ratio or by the actual
packing density. If there is a particle pair in contact in a
packing, the conguration point resides on the corresponding
hypercylinder surface. If there are multiple pairs in contact, the
conguration point resides on the intersection of the corre-
sponding hypersurfaces.

Packing contraction is equivalent to simultaneous particle
radii growth so that all radii remain equally proportional to
their nominal values. It is equivalent to hypercylinder radii
growth in the phase space. We proportionally increase the
particle radii and simultaneously drag the conguration point
so that no particle intersections appear. At the same time we
require that the conguration point moves as little as possible
in the sense of the Euclidean distance. This condition ensures
that the conguration point always remains on the initial
hypercylinder surfaces, i.e., all the particle contacts are
preserved and no intersections between particles in contact
appear. Indeed, if one of the contacts is broken (a particle pair is
split), it means that the conguration point has moved too far
away from the corresponding hypersurface, which is not the
minimal possible movement of the conguration. The minimal
possible movement would be to preserve the point on the given
hypersurface. If there is a single particle pair in contact, it will
correspond to moving the point along the normal of the contact
hypercylinder. If the packing is also monodisperse, it implies
symmetric particle-pair spreading.

While growing, more hypersurfaces will approach the
conguration point and some will cross it. The hypersurfaces
will form a disjoint phase space region and nally collapse into
a single innitesimal point, a jammed conguration. As far as
we required minimization of conguration displacement, we
dene this very jammed conguration as the closest (to the
initial one) jammed conguration.

Until the conguration point resides in the innitesimal
limiting polytope (or a hyperinterval), it is always possible to
contract a packing (increase particle radii) and update the
conguration to avoid intersections. Thus, the closest jammed
conguration is dened for any unjammed conguration. As far
as we require minimization of conguration displacement, it is
also dened uniquely.

We cannot simply dene the closest jammed conguration
as the jammed conguration with the minimum Euclidean
distance to the current conguration, because this jammed
conguration may be separated by regions of the phase space
This journal is © The Royal Society of Chemistry 2014
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that correspond to particle intersections. In other words, this
jammed conguration may be unreachable for any physical
compression algorithm. Our denition automatically conforms
to the requirement of physical accessibility for the closest
jammed conguration.

This denition is equivalent to the denition from the main
text (searching for a potential energy minimum with the
steepest descent, where the potential energy is the maximum
density at a given conguration taken with a minus sign).
Indeed, (i) displacement minimization during the increase of
particle radii is equivalent to the gradient descent in the land-
scape of our articial potential energy at points where the
gradient is dened; (ii) both denitions terminate at jammed
congurations.

If a jammed packing contains rattler particles, there is only a
subset of particles that is jammed; in other words, there is a
subspace of the total phase space that has collapsed into a
single point. Rattler particles are allowed to move and thus
transform this point into a hyperline in the entire phase space.
As far as rattler particles are usually trapped in cages formed by
other particles, this hyperline is usually a hyperinterval. Such
hyperlines (hyperintervals) have zero volume as their projection
on the subspace of jammed particles has zero volume. Though
Salsburg and Wood24 do not explicitly mention rattlers, their
discussion can be amended to incorporate rattler particles. For
example, predictions of the coordination number shall be
formulated for a subset of jammed particles (for a subspace that
collapses into a point). When we talk about limiting polytopes
and innitesimal points into which they collapse, we keep in
mind that they are dened for jammed subsets of particles and
should be expanded into hyperintervals if rattlers are taken into
account.

If rattlers are considered, the closest jammed conguration
is not a single point, but a hyperinterval of zero volume with the
same density for each conguration. We combine all these
congurations into a single equivalence class.

In the next subsection we provide a precise mathematical
denition for the closest jammed conguration. We will not use
this denition directly to search for such congurations;
instead, we modify the LS algorithm.
C. Closest jammed conguration, denition

We introduce the following notations.~xi is a coordinate of the
ith particle, ~x ¼ f~x1;~x2;.;~xNg is the packing conguration
vector in the phase space,~xij is the vector from the ith to the jth
particle (accounting for boundary conditions, if necessary; ~xii
may thus be non-zero), and Di is the nominal diameter of the ith
particle (its absolute value is unimportant, relative values

matter in the current denition). Dij ¼ Di þ Dj

2
is the nominal

distance between particles in contact. We also introduce time t
and specify that the actual particle radii grow as Di(t) ¼ tDi; the
initial time is selected to avoid intersections (initially, there may
be no contacts at all). The actual distance between particles in
contact grows as Dij(t) ¼ tDij. Let us also introduce particle

velocities~yi ¼ d~xi
dt

and a 3N-dimensional velocity vector for the
This journal is © The Royal Society of Chemistry 2014
conguration point~y ¼ f~y1;~y2;.;~yNg. We further introduce the
concept of bonds, i.e., pairs of particles in contact. At each time
there is a nite number of bonds K, which corresponds to a

coordination number c ¼ 2K
N
. We enumerate bonds by the index

k ¼ 1;K . We dene ~xik jk as the vector between particles in the
kth bond and Dik jk(t) as the actual distance between these
particles.

While contracting the packing (increasing particle radii)
between new bond formations, we (i) avoid intersections between
particles; and (ii) minimize particle velocities. As we have already
found out, it is equivalent to (i) ensuring that the conguration
point always resides at the initial hypercylinder surfaces; and (ii)
minimizing~y. The mathematical formulation is:

�
~xikjk

�2¼ �
Dikjk t

�2
; k ¼ 1;K; and k~yk ¼ min:

Aer differentiating the restrictions for bonds with respect to
time we obtain a system of linear equations, which we supply in
the complete denition:

~xikjk$
�
~yjk �~yik

� ¼ Dikjk
2t; k ¼ 1;K; (1)

XN
i¼1

~yi
2 ¼ min; (2)

d~xi

dt
¼~yi: (3)

The search for the closest jammed conguration is dened
as the integration of eqn (3) in time, with velocities determined
from eqn (1) and (2), until the system is jammed. A general way
to determine jamming is through the innite stationary pres-
sure produced by particles supplied with velocities.24

The denition by eqn (1)–(3) does not require that at least
one pair of particles is initially in contact. If no particles are in
contact, the trivial solution to the system is zero velocities for all
particles, so that they grow without movement until the rst
contact is formed. Therefore, integration can always be formally
started from zero time.

Eqn (1) and (2) form an operator acting on the hypervectors
of the phase space, which we denote as C; it produces hyper-
velocity for a packing conguration, ~y ¼ C~x. Thus, the closest
jammed conguration ~xJ is dened mathematically for an
arbitrary initial conguration~x0 as

~xJ

�
~x0

� ¼ ðtjam
0

C~xðtÞ dt; (4)

where~xð0Þ ¼~x0, and tjam denotes the time at which the packing
jams.

Eqn (1) and (2) pose a well-known problem of a minimum-
norm solution to a linear system. Here, the particle velocities
are unknown variables, and eqn (1) can be rewritten as A~y ¼~b. It
is known that if a linear system has at least one solution, then
~y ¼ Aþ~b is one of its minimum-norm solutions. Here, A+ is a
Moore–Penrose matrix pseudoinverse for A. To search for the
Soft Matter, 2014, 10, 3826–3841 | 3837
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closest jamming density, we select this solution by denition.
As far as particle radii can always be increased for unjammed
congurations, there is at least one solution to the system (1). It
makes the closest jammed conguration uniquely dened for
any unjammed packing.

Because the probability to encounter linearly dependent
rows in the matrix A tends to zero for packings in the thermo-
dynamic limit, we assume that for such packings the linear
system (1) will be of full rank. For such systems~y ¼ Aþ~b is the
only minimum-norm solution, and A+ can be found explicitly as
AT(AAT)�1. It means that in the thermodynamic limit the choice
of~y ¼ Aþ~b as a solution to (1) is unambiguous.

If rattler particles are present in the nal jammed packing,
the closest jammed conguration is still dened uniquely. But
we would like to join all the congurations from the limiting
hyperinterval into an equivalence class; i.e., consider this very
packing with arbitrary positions of rattlers as the same jammed
conguration. Mathematically, we dene a projection operator J
that selects coordinates of jammed particles from the entire
conguration vector. Two jammed congurations ~x and ~y
belong to the same equivalence class, if

J~x ¼ J~y: (5)

Each packing will jam at one and only one equivalence class
of the closest jammed congurations.

The system (1)–(3) is a modied formulation of the packing
generation algorithm by Zinchenko.3 The algorithm did not
contain the requirement of the hypervelocity minimization, and
the solution for the system (1), underdetermined at the initial
stage, was searched for with the conjugate gradient algorithm
using previous or random velocities as an initial conjugate
gradient state.
D. Further denitions

Let U be the entire phase space, UP(t) be the phase space
occupied at a given time by hypercylinders of particle contacts,

UPðtÞ ¼
n
~x˛U

���di; j; k~xijk\DijðtÞ
o
; (6)

and UA(t) be the part of the phase space available for packing
congurations at a given time,

UA(t) ¼ U\UP(t). (7)

The basin of attractionUð~x0Þ of the jammed conguration~x0
can then be dened as

U
�
~x0

� ¼ n
~x˛U

���J~xJ

�
~x
�
¼ J~x0

o
: (8)

A bounding region for the given jammed conguration~x0 at
a given time (equivalently, for a given density) is dened as

B
�
~x0; t

� ¼ U
�
~x0

�
XUAðtÞ: (9)

Let G be an operator that produces a surface of a set. Then
the bounding surface for the given bounding region is GBð~x0; tÞ,
3838 | Soft Matter, 2014, 10, 3826–3841
and the bounding region is closed if the bounding surface is
fully formed by hypercylinder surfaces:

GB
�
~x0; t

�
3GUPðtÞ: (10)

A state ~x at a given density is called a glassy state,18 if it
resides in a closed bounding region:

GB
�
~xJ

�
~x
�
; t
�
3GUPðtÞ: (11)

E. Additional properties of the closest jammed congurations

Here we investigate some additional properties of the closest
jammed congurations.

Total zero velocity. Eqn (1) and (2) automatically imply zero
total velocity for a packing:

XN
i¼1

~yi ¼~0: (12)

Let us assume that the solution to the system (1) and (2) has a
non-zero total velocity, which gives an additional velocity per

particle ~y0 ¼ 1
N

XN
i¼1

~yi. We examine the solution ~y 0i ¼~yi �~y0. It

corresponds to changing the reference system and automati-
cally complies with (1), which can be checked directly. The sum
in eqn (2) will then be transformed into

XN
i¼ 1

~y 02
i ¼

XN
i¼ 1

~yi
2 � 2~y0$

XN
i¼ 1

~yi þN~y0
2 ¼

XN
i¼ 1

~yi
2 � 2N~y0$~y0 þN~y0

2

¼
XN
i¼ 1

~yi
2 �N~y0

2\
XN
i¼1

~yi
2;

which means that the initial set of velocities cannot be a
minimum-norm solution for (1). As eqn (12) automatically
decreases the number of degrees of freedom by three, we do not
follow the convention from Salsburg and Wood24 and do not x
one of the particles at the origin of the coordinates to get rid of
three redundant degrees of freedom.

Isostaticity of random jammed packings. As proved by
Salsburg and Wood,24 the lowest estimate for the maximum
number of bonds in a jammed subset of particles, excluding
rattlers, for a fully periodic packing is K0(N0) ¼ 3(N0 � 1) + 1 (a
necessary condition for polytope enclosure; N0 is the number of
non-rattlers). If the limiting polytope for a jammed subset of
particles has K0(N0) hyperplanes and the number of bonds rea-
ches this value, it means that the conguration point lies in the
vicinity of each of the polytope hyperplanes (as hyperplanes
correspond to contacts), which implies that the polytope has
collapsed into a single point, a jammed conguration. Some
polytopes may have more than K0(N0) hyperplanes, the corre-
sponding jammed packings are hyperstatic.

There is always a simple solution to the system (1) for a fully

periodic packing: ~yi ¼
~xi
t

with simultaneous periodic box

expansion (which can almost immediately be veried directly).
If the number of bonds for any subset of N0 particles equals
This journal is © The Royal Society of Chemistry 2014
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K0(N0), eqn (12) together with (1) form a linear system of 3N0 + 1
equations for 3N0 unknown velocity components and an
unknown box expansion rate. As far as the matrix for the linear
system (1) will be of full rank for random packings in the

thermodynamic limit, the solution ~yi ¼
~xi
t

for this subset of

particles will be unique and this subset of particles is jammed.

Other particles (rattlers) may also be assigned velocities~yi ¼
~xi
t
.

This proves why K0 is not only the minimum number of bonds
for non-rattlers to jam a packing, but also the only possible one
in random packings, and thus would explain numerous exper-
iments reproducing the coordination number�6 for non-rattler
particles in jammed packings. This also leads to a convenient
termination condition for the system (1)–(3): the integration in
(4) should be stopped when the number of bonds for non-rattler
particles is equal to K0 ¼ 3(N0 � 1) + 1.

F. Denition of the RCP limit

We recall that by Vtot we understand the total volume of the phase
spaceU and byN the number of particles,~xi is a coordinate of the
Fig. 7 Packing density vs. square root of the compression rate
ffiffiffi
g

p
. (a) De

(LS) algorithm. (b) Closest jamming densities 4J for the packings generat
with the force-biased (FB) algorithm. (d) Closest jamming densities 4J for
for the different standard deviations s of the log-normal sphere radii dis
square polynomial fits. Horizontal lines to the left are the estimated GCP

This journal is © The Royal Society of Chemistry 2014
ith particle, ~x ¼ f~x1;~x2;.;~xNg is the packing conguration
vector in the phase space. Let us denote by 4Jð~xÞ a function that
produces a density for the closest jammed conguration if the
packing generation is started at a conguration~x. Let us denote
by Vpack ¼ LxLyLz the packing box volume. Then

4Jð~x Þ ¼

"XN
i¼ 1

p

6
Di

3
�
tjam

�#

Vpack

; (13)

where tjam is taken from (4). For jammed congurations, it
simply returns jamming densities. That is, as the integration in
(4) starts from zero particle radii, particles grow without
movement until the rst contact appears; for jammed congu-
rations, all the contacts appear simultaneously and the packing
becomes jammed at once. Let us also introduce an indicator
function I{p} dependent on a logical predicate p. I is equal to
unity if the predicate is true; otherwise, it is zero. Let us intro-
duce P{p} as a probability to sample a basin of attraction which
conforms to a certain logical predicate. Let us also dene a
nsities 4 of sphere packings generated with the Lubachevsky–Stillinger
ed with the LS algorithm. (c) Densities 4 of sphere packings generated
the packings generated with the FB algorithm. The meaning of colour
tributions is explained in the legends. Black lines are third-order least-
limits.
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probability P#(40) for Poisson packings to encounter a basin of
attraction with a jamming density below 40:

P# ð40Þ ¼ P
n
4Jð~x Þ#40

o
¼ 1

Vtot

ð
U

I
n
4Jð~x Þ#40

o
d~x: (14)

Now we can mathematically dene the random close
packing limit as

4RCP ¼ inf

�
40

��� lim
N/N

P# ð40Þ ¼ 1

	

¼ inf

�
40

���� lim
N/N

1

Vtot

ð
U

I
n
4Jð~x Þ#40

o
d~x ¼ 1

	
; (15)

where inf{x|p(x)} is the inmum of the values x for which the
predicate p(x) is true. In the same manner we can dene the
density 4LT as

4LT ¼ sup

�
40

��� lim
N/N

P$ ð40Þ ¼ 1

	

¼ sup

�
40

���� lim
N/N

1

Vtot

ð
U

I
n
4Jð~x Þ$40

o
d~x ¼ 1

	
; (16)

where sup{x|p(x)} is the supremum of the values x for which the
predicate p(x) is true.

Now we transform these denitions for nite-size packings.
For sufficiently large nite packings, untypical basins of
attraction are still practically impossible to sample. Thus, we
transform eqn (15) into

4RCP ¼ inf

�
40

���� 1

Vtot

ð
U

I
n
4Jð~xÞ#40

o
d~xz1

	
: (17)

Eqn (16) can be transformed similarly. When packings are
relatively small and all basins of attraction can in practice be
sampled by Poisson packings, we have to select an arbitrary
probability threshold a, e.g., a¼ 0.95, and dene the RCP limit as

4RCP ¼ arg40

�
1

Vtot

ð
U

I
n
4Jð~x Þ#40

o
d~x ¼ a

	
: (18)

Eqn (16) can be transformed similarly. Eqn (17) and (18) can
be regarded as denitions of the RCP limit for nite packings,
or as estimates for the RCP limit of innite packings.
G. Asymptotic expansion of packing densities to the GCP
limits

In this subsection of the Appendix we present the plots from
Fig. 2 built against

ffiffiffi
g

p
(Fig. 7). We t the plots 4Jð ffiffiffi

g
p Þ and

4ð ffiffiffi
g

p Þ in the main text with third-degree polynomials and
expand to g ¼ 0 (innite generation time) to obtain GCP limit
estimates. Polynomial ts are depicted as black lines under the
actual data. The GCP limit estimates (t values at g ¼ 0) are
depicted as horizontal lines of corresponding colour to the le
of the images. The plots for data from computer simulations
have no drastic changes in behavior and are tted well, except
for monodisperse packings, where crystallization starts for very
3840 | Soft Matter, 2014, 10, 3826–3841
slow compressions. It suggests that our estimates of the highest
jamming densities are close to the real GCP limits.
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cation of special CPU-time grants (NIC project numbers: 5658
and 6550, JSC project ID: HMR10).

References

1 C. Song, P.Wang andH. A.Makse,Nature, 2008, 453, 629–632.
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So Matter, 2012, 8, 9731–9737.

56 R. D. Kamien and A. J. Liu, Phys. Rev. Lett., 2007, 99, 155501.
57 K. Lochmann, L. Oger and D. Stoyan, Solid State Sci., 2006, 8,

1397–1413.
58 M. Clusel, E. I. Corwin, A. O. N. Siemens and J. Brujic,

Nature, 2009, 460, 611–615.
59 K. A. Newhall, I. Jorjadze, E. Vanden-Eijnden and J. Brujic,

So Matter, 2011, 7, 11518–11525.
Soft Matter, 2014, 10, 3826–3841 | 3841

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c3sm52959b

	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres

	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres

	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres
	Random-close packing limits for monodisperse and polydisperse hard spheres

	Random-close packing limits for monodisperse and polydisperse hard spheres


