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Force spectroscopy of polymer desorption: theory
and molecular dynamics simulations

Jarosław Paturej,ab Johan L. A. Dubbeldam,c Vakhtang G. Rostiashvili,d

Andrey Milchevde and Thomas A. Vilgisd

Forced detachment of a single polymer chain, strongly adsorbed on a solid substrate, is investigated by two

complementary methods: a coarse-grained analytical dynamical model, based on the Onsager stochastic

equation, and Molecular Dynamics (MD) simulations with a Langevin thermostat. The suggested approach

makes it possible to go beyond the limitations of the conventional Bell–Evansmodel. We observe a series of

characteristic force spikes when the pulling force is measured against the cantilever displacement during

detachment at constant velocity vc (displacement control mode) and find that the average magnitude of

this force increases as vc increases. The probability distributions of the pulling force and the end-

monomer distance from the surface at the moment of the final detachment are investigated for different

adsorption energies 3 and pulling velocities vc. Our extensive MD simulations validate and support the

main theoretical findings. Moreover, the simulations reveal a novel behavior: for a strong-friction and

massive cantilever the force spike pattern is smeared out at large vc. As a challenging task for

experimental bio-polymer sequencing in future we suggest the fabrication of a stiff, super-light,

nanometer-sized AFM probe.
1 Introduction

In recent years single-molecule pulling techniques based on the
use of laser optical tweezers (LOTs) or an atomic force micro-
scope (AFM) have gained prominence as a versatile tool in the
studies of non-covalent bonds and self-associating bio-molec-
ular systems.1–9 The latter could be exemplied by the base-pair
binding in DNA as well as by ligand–receptor interactions in
proteins and has been studied recently by means of Brownian
dynamic simulations and the master equation approach.10,11

The LOT and AFM methods are commonly used to manipulate
and exert mechanical forces on individual molecules. In LOT
experiments, a micron-sized polystyrene or silica bead is trap-
ped in the focus of the laser beam by exerting forces in the range
0.1–100 pN. Typically, AFM (which covers the force interval in
the 20 pN–10 nN range) is ideal for investigation of relatively
strong inter- or intramolecular interactions which are involved
in pulling experiments in biopolymers such as polysaccharides,
proteins and nucleic acids. On the other hand, due to the
relatively small signal-to-noise ratio, the AFM experiments have
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limitations with regard to the mechanochemistry of weak
interactions in the lower piconewton regime.

The method of dynamic force spectroscopy (DFS) is used to
probe the force–extension relationship, rupture force distribu-
tion, and the force vs. loading rate dependence for single-
molecule bonds or for more complicated multiply bonded
attachments. Historically, the rst theoretical interpretation of
DFS has been suggested in the context of single cell adhesion by
Bell12 and developed by Evans.13–15 The consideration has been
based on the semi-phenomenological Arrhenius relationship
which describes surface detachment under time-dependent
pulling force, f ¼ rlt, with rl being the loading rate. It was also
assumed that the effective activation energy, Eb( f ), may be
approximated by a linear function of the force, i.e., Eb( f )¼ E (0)

b �
xb f. Here xb is the distance between the bonded state and the
transition state where the activation barrier is located. The
resulting Bell–Evans (BE) equation then gives the mean
detachment force as a function of temperature T and loading

rate rl, i.e., f ¼ kBT
xb

ln
�

rlxb
kBTk0

�
; where k0 is the desorption rate

in the absence of applied pulling force.
As one can see from this BE equation, the simple sur-

mounting of the BE-activation barrier results in a linear
dependence of the detachment force on the logarithm of the
loading rate, provided one uses the applied force as a governing
parameter in the detachment process (i.e., working in an iso-
tensional ensemble when f is controlled and the distance D from
the substrate to the clamped end-monomer of the polymer
Soft Matter, 2014, 10, 2785–2799 | 2785
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chain uctuates). For multiply bonded attachments the inter-
pretation problem based on this equation becomes more
complicated since a non-linear f–ln rl relationship is observed.16

In this case chain detachment involves passage over a cascade of
activation barriers. For example, Merkel et al.16 suggested that the
net rate of detachments can be approximated by a reciprocal sum
of characteristic times, corresponding to jumps over the single
barriers. In particular, regarding the detachment of biotin–
streptavidin single bonds, it was suggested that two consecutive
barriers might be responsible for the desorption process.

A simple example of multiply bonded bio-assembly is pre-
sented by a singe-stranded DNA (ssDNA) macromolecule,
strongly adsorbed on the graphite substrate. The force-induced
desorption (or peeling) of this biopolymer has been studied
analytically and by means of Brownian dynamics (BD) simula-
tions by Jagota et al.17–20 In ref. 17 the equilibrium statistical
thermodynamics of ssDNA force-induced desorption under
force control (FC) and displacement control (DC) have been
investigated. In the latter case one works in an isometric
ensemble where D is controlled and f uctuates. It has been
demonstrated that the force response under DC exhibits a series
of spikes which carry information about the underlying base
sequence of ssDNA. The Brownian dynamics (BD) simulations18

conrmed the existence of such force spikes in the force–
displacement curves under DC.

The nonequilibrium theory of forced desorption has been
developed by Kreuzer et al.21–23 on the basis of the master
equation approach for the cases of constant velocity and force-
ramp modes in an AFM experiment. The authors assumed that
the detachment of individual monomers represents a fast
process as compared to the removal of all monomers. This
justies a two-state model where all monomers either remain
on the substrate or leave it abruptly. The corresponding tran-
sition rates (which constitute a necessary input in the master
equation approach) must satisfy a detailed balance. As a result
of the master equation solution, the authors obtained a prob-
ability distribution of detachment heights (i.e., distances
between the cantilever tip and the substrate) as well as an
average detachment height as a function of the pulling velocity.

Irrespective of all these efforts, a detailed theoretical inter-
pretation of the dynamic force spectroscopy experiments is still
missing. For example, in terms of Kramers reaction-rate
theory24 the Arrhenius-like BE model holds only when the
effective activation energy Eb( f )[ kBT. On the other hand, it is
clear that for large forces (which we experience in AFM), the case
when Eb( f ) z kBT occurs fairly oen. In this common case the
general approach, based on the BE-model, becomes question-
able. Besides, it can be shown,25 that the activation energy vs.
force dependence, Eb( f ), is itself a nonlinear function, so that
the conventional BE-model, based on the linear approximation,
Eb( f )z E(0)b � xb f, should be limited to small forces. Moreover,
the Arrhenius-like relationship for the detachment rate, which
was used in the BE-model, is a consequence of a saddle-point
approximation for the stationary solution of the Fokker–Planck
equation.24 This contradicts the typical loading regimes, used in
experiments, where the applied force or distance grows linearly
with time.
2786 | Soft Matter, 2014, 10, 2785–2799
The present paper is devoted to the theoretical investigation
of a single molecule desorption dynamics and aimed at inter-
pretation of AFM- or LOT-based dynamic force spectroscopy in
the DC constant-velocity mode. The organization of the paper is
as follows: in Section 2 we give the equilibrium theory of
detachment for the case of strong polymer adsorption. The
mean force (measured at the cantilever tip) versus displacement
diagram is discussed in detail. In particular, the characteristic
force “spikes” structure (which was rst discussed in ref. 17
and 18) can be clearly seen. In Section 3 we give a dynamical
version of the detachment process. Our approach rests on
construction of general free energy functions, depending on
coarse-grained variables, which govern the non-linear response
and structural bonding changes in the presence of external
forces. The corresponding free-energy-based stochastic equa-
tions (known as Onsager equations26) are derived and solved
numerically. This solution makes it possible to provide not only
force–displacement diagrams and the ensuing dependence on
the cantilever displacement velocity vc but also the detachment
force probability distribution function (PDF). In Section 4 the
main theoretical results are then checked against extensive
Molecular Dynamics (MD) simulations. A brief discussion of
results is offered in Section 5.
2 Equilibrium theory in the strong
adsorption case

Recently we suggested a theory of the force-induced polymer
desorption (for relatively weak adsorption energy) in the iso-
tensional27,28 and isometric29 equilibrium ensembles supported
by extensive Monte Carlo (MC) simulations. In the former case,
the fraction of adsorbed monomers changes abruptly
(undergoes a jump) when one varies the adsorption energy or
the external pulling force. In the second case, the order
parameter varies steadily upon changing the height of the AFM-
tip, even though the phase transition is still of rst order. The
total phase diagram in terms of adsorption energy–pulling force
or adsorption energy–end-monomer height has been discussed
theoretically and in terms of MC simulations.

On the other hand, the AFM experiments deal with relatively
strong forces (20 pN–10 nN (ref. 1)) so that in the case of a single
molecule desorption experiment only a really strong adsorption
energy is essential. This limit has been discussed in the recent
papers by Jagota et al.17–20 and Kreuzer et al.21–23 Here we
consider this problem in a slightly more general form. In doing
so we distinguish between two different models: with friction-
less- and strong-friction substrates, as indicated in Fig. 1.
2.1 Frictionless substrate

This case has been considered in ref. 17, 18 and 21–23 and is
based on the assumption that the force resisting sliding is
sufficiently small, i.e., the cantilever tip and the contact point c
are both placed along the same z-axis (see Fig. 1 (le panel)).
The total partition function for a xed cantilever distance D, i.e.,
Xtot(D), is a product of partition functions of the adsorbed part,
Xads(n), of the desorbed portion (a stretched polymer portion),
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Principal scheme of a single molecule forced desorption experiment based on the AFM: (left panel) There is no friction between the
adsorbed portion and substrate. (right panel) Strong friction case.
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Xpol(n, R), and of the cantilever itself, Xcan(D� R), where n is the
number of desorbed polymer segments, and R denotes the
distance between the clamped end of this desorbed portion and
the substrate. As a result,

XtotðDÞ ¼
XN
n¼0

XadsðnÞ
ðbn
0

dRXpolðn;RÞqðD� RÞXcanðD� RÞ; (1)

where the integration interval, 0 < R < bn, and the step-function,
q(D � R), imply that restrictions, R < bn and R < D, should be
applied simultaneously. In this representation D is the control
variable (which is monitored by the corresponding AFM oper-
ating mode) whereas n and R are coarse-grained dynamic vari-
ables which should be integrated (in our case, an integral over
R, and summation over n) out. Moreover, if we introduce the
function

minðbn;DÞ ¼
�
bn for bn\D

D for D\bn
; (2)

then eqn (1) can be rewritten as

XtotðDÞ ¼
XN
n¼0

XadsðnÞ
ðminðbn;DÞ

0

dRXpolðn;RÞXcanðD� RÞ (3)

In the strong adsorption regime, Xads(n) attains a simple
form

Xads(n) ¼ exp[3(N � n)], (4)

where 3 is the dimensionless adsorption energy (i.e. energy per
kBT). The cantilever manifests itself as a harmonic spring with a
spring constant kc, i.e., the corresponding partition function
reads

XcanðD� RÞ ¼ exp

�
� kc

2kBT
ðD� RÞ2

�
(5)

Finally, we derive the partition function of the desorbed part
of the polymer as a function of the dynamic variables n and R,
based on the Freely Jointed Bond Vector (FJBV) model.30,31 The
corresponding calculations using the Legendre transformation
are relegated to Appendix A. Thus, the polymer partition func-
tion takes the form

Xpol(n, R) ¼ exp[nG(~f )], (6)

where G(x) ¼ ln[sinh(x)/x] + 1 � x coth(x). In eqn (6) the

dimensionless force ~f ¼def bf =kBT should be expressed in terms
This journal is © The Royal Society of Chemistry 2014
of R/bn as follows: ~f ¼ L �1(R/bn), where L �1(x) denotes the
inverse of the Langevin function L (x) h coth(x) � 1/x.

By making use of eqn (4)–(6), the total partition function
given by eqn (1) reads

XtotðDÞ ¼
XN
n¼0

ðminðnb;DÞ

0

dR exp½3ðN � nÞ�exp
h
nG

�
~f
�i

� exp

�
� kc

2kBT
ðD� RÞ2

�
: (7)

The corresponding effective free energy function in terms of
n and R reads

F ðn;RÞ ¼ �kBT3ðN � nÞ � kBTnG
�
~f
�þ kc

2
ðD� RÞ2 (8)

In the limit of a very stiff cantilever, kcb
2/kBT [ 1, the

cantilever partition function approaches a d-function:21

XcanðD� RÞ ¼ exp

�
� kc

2kBT
ðD� RÞ2

�
/ð2pkBT=kcÞ1=2dðD� RÞ;

(9)

and eqn (7) takes the form

XtotðDÞ ¼
XN
n¼0

exp½3ðN � nÞ�exp	nG� ~f �
qðnb�DÞ; (10)

where ~f ¼ L �1(D/bn) and the step-function q(bn � D) ensures
that the condition bn > D holds. It is this very stiff cantilever
limit that was considered in ref. 17 and 18.

For the isometric ensemble, i.e., in the D-ensemble, the
average force hfzi, measured by the AFM experiment, is given by

h fzi ¼ � kBT
v

vD
ln XtotðDÞ ¼ kc

XtotðDÞ
XN
n¼0

exp½3ðN � nÞ�

�
ðminðbn;DÞ

0

dRðD� RÞ exp	nG� ~f �
 exp�� kc

2kBT
ðD� RÞ2

�
;

(11)

where Xtot(D) is given by eqn (7).
The numerical results, which follow from eqn (11), are

shown in Fig. 2. One can immediately see the “sawtooth”-, or
force-spikes structure in the force–displacement diagram as it
was also found by Jagota et al.17 in the limit of a very stiff
cantilever. Physically, spikes correspond to the reversible tran-
sitions n % n + 1, during which the release of the polymer
stretching energy is balanced by the adsorption energy. The
Soft Matter, 2014, 10, 2785–2799 | 2787
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Fig. 2 The equilibrium force–displacement diagrams calculated according to eqn (11). The sawtooth structure becomesmore pronounced with
increasing adsorption energy 3 and spring constant kc.
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corresponding thermodynamic condition reads F (n, R)¼F (n +
1, R). This condition also leads to the spike amplitude law famp

f exp(3/n),17 i.e. the spike amplitude gradually decreases in the
process of chain detachment (i.e., with growing n – cf. Fig. 2).

This structure is more pronounced at larger adsorption
energy 3 and cantilever spring constant kc. Thus, while the force
oscillates, its mean value remains nearly constant in a broad
interval of distances D, exhibiting a kind of plateau. Comple-
mentary information (for xed kc at different values of 3) is given
in Fig. 3. One can verify that the plateau height is mainly
determined by 3 whereas the spike amplitude is dictated by the
cantilever spring constant kc.

It should be noted that similar spikes have been indeed
observed in experiments on single-molecule stretching of
proteins due to unfolding of the multidomain biopolymer
structure.21 As far as the size of each such domain is much
larger than that of a single segment, resolving this “sawtooth”
behavior is signicantly easier than in the present case of
monomer peeling.
Fig. 4 Adsorption–desorption potential profiles for two different
strengths 3 ¼ 5 and 3 ¼ 10 of surface attraction. The integer n-values
correspond to minima whereas at half-integer n-values the potential
has local maxima. The dashed lines denote the corresponding contact
potential Fads ¼ �3(N � n) which has been used in Section 2.
2.2 Strong polymer–substrate friction

In this limit one has to take into account the specic geometry
of an AFM experiment, shown in Fig. 1 (right panel). For
simplicity, an innite friction of the polymer at the surface is
assumed. The adsorbed polymer portion may be considered as
a two-dimensional self-avoiding chain comprising N � n
segments. The last contact point (marked as c in Fig. 1) can
Fig. 3 The equilibrium force–displacement diagrams calculated accord

2788 | Soft Matter, 2014, 10, 2785–2799
move due to adsorption or desorption elementary events. In
ref. 32 this was classied as the sticky case. In Fig. 1, D is the
distance from the cantilever base to the substrate, Rz is the
height of the cantilever tip above the substrate, and R is
the distance between the cantilever tip and the contact point c.
Eventually, Rx is the lateral distance between the cantilever
base and the contact point c. One may assume that initially the
desorbed portion of n segments has occupied a distance of Rx
ing to eqn (11). The same as in Fig. 2 but for fixed kc and different 3.

This journal is © The Royal Society of Chemistry 2014
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which, due to self-avoiding 2D-congurations of an adsorbed
chain, equals Rx

2 z b2n2n (where n ¼ 3/4). Therefore, in fact we
assume that a concrete realization of adsorbed chain confor-
mation is at best represented by the most probable one.

The specic geometry of the AFM experiment in the case of
strong polymer–substrate friction (shown in Fig. 1) brings about
changes only in the cantilever partition function, i.e., instead of
eqn (5), one has

XcanðD;RÞ ¼ exp

�
� kc

2kBT
ðD� RzÞ2

�

¼ exp

�
� kc

2kBT

�
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2n2n

p 
2
�

(12)

As a result, the total partition function in this case is given by

XtotðDÞ ¼
XN
n¼0

exp½3ðN � nÞ�

�
ðbn
bnn

dR exp
	
nG

�
~f
�

exp

�
� kc

2kBT

�
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2n2n

p 
2
�

� q
�
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2n2n

p 

(13)

where again the variable ~f should be excluded in favor of R/bn by
means of the relationship ~f ¼ L �1(R/bn). In eqn (13) the
following constraints

bnn\R\bn;
Rz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2n2n

p
\D;

(14)

have been taken into account.
The corresponding free energy functional in terms of

dynamical variables n and R has the following form

F ðn;RÞ ¼ �kBT3ðN � nÞ � kBTnG
�
~f
�þ kc

2

�
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2n2n

p 
2

:

(15)

The average force, which is measured in AFM experiments, is
given by

h fzi ¼ kc

XtotðDÞ
XN
n¼0

ðbn
bnn

dR
�
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2n2n

p 


� exp

�
3ðN � nÞ þ nG

�
~f
�� kc

2kBT

�
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2n2n

p 
2
�

� q
�
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2n2n

p 

:

(16)

3 Dynamics of desorption

In our recent paper33 we have studied a single polymer force-
induced desorption kinetics by making use of the notion of
tensile blobs as well as by means of Monte Carlo and molec-
ular dynamics simulations. It was clearly demonstrated that
the total desorption time hsdi scales with polymer length N as
hsdi f N2.

In order to treat a realistic AFM experiment in which the
cantilever–substrate distance changes with constant velocity
vc, i.e., D(t) ¼ D0 + vct, one has to consider the AFM tip
This journal is © The Royal Society of Chemistry 2014
dynamics. With this in mind, we will develop a coarse-
grained stochastic model based on the free-energy functional
eqn (8). Before proceeding any further, we need to dene the
adsorption–desorption potential prole Fads(n). This plays
the role of the potential of mean force (PMF) which depends
on n.

3.1 Stochastic model

In the Helmholtz free-energy functionalF (n, R), given by eqn (8)
and (15), the free energy of the adsorbed portion is given by a
simple contact potential, Fads ¼ �kBT3(N � n), where n is an
integer number in the range 0# n# N. Considering desorption
dynamics (see below), we will treat n as a continuous variable
with a corresponding adsorption–desorption energy prole
satisfying the following conditions:

1. For integer n-values the energy prole has minima
whereby we use the contact potential Fads(n) ¼ �kBT3(N � n).

2. For half-integer values of n the adsorption potential goes
over maxima.

3. The activation barrier for monomer desorption, DE+ ¼
Fads(n + 1/2) � Fads(n), and the corresponding adsorption
activation barrier, DE� ¼ Fads(n + 1/2) � Fads(n + 1), are
proportional to the adsorption strength 3 of the substrate
whereby DE+ > DE�.

4. The adsorption–desorption energy prole satises the
boundary conditions: Fads(0) ¼ �kBT3N (a fully adsorbed chain)
and Fads(N) ¼ 0 (an entirely detached chain).

One can show (see Appendix B for more details) that the
following energy prole, given as (cf. Fig. 4)
Fads(n) ¼ T3{1 + cos[(2n + 1)p] + n} � kBT3N, (17)

meets the conditions (1)–(4).
The total Helmholtz free energy for the frictionless substrate

model is given by
F ðn;RÞ ¼ kBT3f1þ cos½ð2nþ 1Þp� þ ng

� kBT3N � kBTnG
�
~f
�þ kc

2
ðD� RÞ2; (18)

whereas for the strong polymer–substrate friction model we
have

F ðn;RÞ ¼ kBT3f1þ cos½ð2nþ 1Þp� þ ng � kBT3N � kBTnG
�
~f
�

þ kc

2

�
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2n2n

p 
2

:

(19)

These Helmholtz free energy functions govern the dissipa-
tive process, which is described by the stochastic (Langevin)
differential equations

vn

vt
¼ �ln

v

vn
F ðn;RÞ þ xnðtÞ

vR

vt
¼ �lR

v

vR
F ðn;RÞ þ xRðtÞ

(20)

where ln and lR are the Onsager coefficients. The random forces
xn(t) and xR(t) describe Gaussian noise with means and corre-
lators given by
Soft Matter, 2014, 10, 2785–2799 | 2789
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hxnðtÞi ¼ hxRðtÞi ¼ 0

hxnðtÞxnð0Þi ¼ 2lnkBTdðtÞ
hxRðtÞxRð0Þi ¼ 2lRkBTdðtÞ

(21)

Eqn (20) are usually referred to as the Onsager equations.26

The set of stochastic differential equations, eqn (20), can be
treated by a time integration scheme. Each realization (l) of the
solution provides a time evolution of n(l)(t) and R(l)(t). In order to
obtain mean values of the observables, these trajectories should
be averaged over many independent runs l ¼ 1, 2, ,ߪ N . For
example, in order to obtain the average force, eqn (16), one
should average over the runs

h fzðtÞi ¼ kc

N

XN
l¼1

�
DðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½RðlÞðtÞ�2 � b2½nðlÞðtÞ�2n

q �
(22)

3.2 Thermodynamic forces

The thermodynamic forces which arise in eqn (20), i.e.,

fn ¼def �vF ðn;RÞ
vn

and fR ¼def �vF ðn;RÞ
vR

, could be calculated

explicitly for both frictionless and strong friction substrate
models (see Appendix C). In the rst case the force fn reads

fn ¼ �kBT3f1� 2p sin½ð2nþ 1Þp�g þ kBT
R~f

bn
þ kBTG

�
~f
�
: (23)

For the strong friction case, eqn (19) leads to a more
complicated expression for the thermodynamic force:

fn ¼ �kBT3f1� 2p sin½ð2nþ 1Þp�g þ kBT
R~f

bn
þ kBTG

�
~f
�

þ nb2kc

�
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � b2n2n
p � 1

�
: (24)

The force fR for the frictionless substrate model is given by
(see Appendix C for more details):

fR ¼ �kBT ~f

b
þ kcðD� RÞ: (25)

For the model, given by eqn (19), the corresponding force
reads

fR ¼ �kBT ~f

b
þ kcR

�
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � b2n2n
p � 1

�
: (26)

Finally, the variable ~f should be expressed in terms of R/bn
by making use of the relationship ~f ¼ L �1(R/bn), where L �1(x)
is the inverse Langevin function. A very good approximation for
the inverse Langevin function, published in ref. 34, is given by

~f ¼ L �1ðR=bnÞzR

bn

3�
�
R

bn

�2

1� R

bn

� �2

2
66664

3
77775 (27)

3.3 Quasistationary approximation

It could be shown that for a strongly stretched desorbed portion
of the polymer chain, the R variable rapidly relaxes to its quasi-
2790 | Soft Matter, 2014, 10, 2785–2799
stationary value (see Appendix D). In other words, R can quickly
adjust to the slow evolution of n (governed by the Kramers
process). In this quasi-stationary approximation fR ¼ 0, and
from eqn (25) one has kc(D � R) ¼ kBT~f /b, so that the following
nonlinear equation for R emerges

kc½DðtÞ � R� ¼ kBT

b
L �1

�
R

nb

�
(28)

This could be represented as

Gðn;R; tÞ ¼def R

bn
� L

�
kcb½DðtÞ � R�

kBT

�
¼ 0; (29)

i.e., the height R is instantaneously coupled to the number of
desorbed beads, n. Inserting eqn (27) into eqn (28), one obtains

Pðn;R; tÞ ¼def kcb½DðtÞ � R�
kBT

�
�
R

bn

� 3�
�
R

bn

�2

1�
�
R

bn

�2

2
66664

3
77775 ¼ 0: (30)

The Onsager equation for the slow variable n is given as

vn

vt
¼ lnfnðn;RÞ þ xnðtÞ

¼ ln

�
� kBT3f1� 2p sin½ð2nþ 1Þp�g þ kBT

R~f

bn
þ kBTG

�
~f
��

þ xnðtÞ
(31)

where ~f is determined by eqn (27).
Eventually, we get a system of so-called semi-explicit differ-

ential-algebraic equations (DAE)35

vn

vt
¼ lnfnðn;RÞ þ xnðtÞ

0 ¼ Gðn;R; tÞ
(32)

In this particular form of DAE one can distinguish between
the differential variable n(t) and the algebraic variable R(t). Eqn
(32) can be solved numerically by making use of an appropriate
Runge–Kutta (RK) algorithm, as shown in Appendix E.
3.4 Results

We have solved numerically our stochastic model, given by eqn
(31) and (29), for the case of the frictionless substrate. To this
end we used the second order Runge–Kutta (RK) algorithm for
stochastic differential-algebraic equations (see Appendix E for
more details). The advantage of the stochastic differential
equation approach as compared to the master equation
method23 is that the former one gives a more detailed (not
averaged) dynamic information corresponding to each indi-
vidual force–displacement trajectory (as is oen in an experi-
ment). The result of averaging over 300 runs is shown in Fig. 5
(le).

Fig. 5 (right panel) shows the resulting force–displacement
diagram for 3 ¼ 5 and different detachment velocities. It is
worth noting that the “sawtooth” pattern can be seen for all
investigated detachment velocities ranging between vc ¼
This journal is © The Royal Society of Chemistry 2014
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Fig. 5 (left panel) The effect of averaging over many desorption events. The blue line shows a single run, whereas the red line demonstrates the
result of averaging over 300 runs. The detachment velocity vc ¼ 100, the cantilever spring kc ¼ 100, adsorption energy 3 ¼ 5, and the Onsager
coefficient l ¼ 0.1. (right panel) The dynamic force–displacement diagram for 3 ¼ 5 and different detachment velocities vc (see legend).
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5 � 10�4 and vc ¼ 10�2. For larger velocities the plateau height
of the force increases substantially. In other words, the mean
detachment force increases as the AFM-tip velocity increases
and the bond stretching between successive monomers
becomes stronger.

We have also studied the detachment force behavior as well
as the cantilever tip distance from the substrate at the moment
of a full detachment (i.e. when n ¼ N), by repeating the
detachment procedure 104 times and plotting the probability
distribution functions (PDF) for different adsorption energies 3
and detachment velocities vc – Fig. 6. As one can see from Fig. 6a
and b, both the average and the dispersion of detachment force
Fig. 6 The normalized PDF for detachment forces at 3 ¼ 5 (a), and 3 ¼
legends). The PDFs for the detachment distance R of the cantilever tip a

This journal is © The Royal Society of Chemistry 2014
grow with vc which agrees with ndings for reversible (i.e., when
a broken bond can rebind) bond-breaking dynamics.36 In
contrast, the mean cantilever tip distance R variance decreases
and its average value increases with growing vc (cf. Fig. 6c
and d).

The average detachment force dependence on cantilever
velocity vc is a widely covered subject in the literature in the
context of biopolymer unfolding37–39 or forced separation of two
adhesive surfaces.36,40,41 Fig. 7a, which shows the results of our
calculations, shows the characteristic features discussed also in
ref. 40. One observes a well expressed crossover from a shallow-
slope for relatively small detachment rates to a steep-slope
8 (b), as well as for different detachment velocities vc (shown in the
t 3 ¼ 5 (c) and 3 ¼ 8 (d).

Soft Matter, 2014, 10, 2785–2799 | 2791
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Fig. 7 The average detachment force (a), and cantilever tip distance (b), vs. detachment velocity vc for two different adsorption energies 3 ¼ 5
and 3¼ 8. In addition, the distance R is plotted in (b) for two different temperatures, T¼ 1.0 and T¼ 0.1, both at the same adsorption strength 3¼
5.0. Evidently, with growing T the elasticity of the coil decreases, the coil itself becomes stiffer and therefore detaches from the substrate at lower
height R. This entropic effect is well expressed at sufficiently low pulling velocity only.
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region as the detachment speed increases. One remarkable
feature is that this crossover practically does not depend on the
adsorption energy 3: the curve is merely shied upwards upon
increasing 3. Therefore, the crossover is not related to a
competition between the Kramers rate and the cantilever
velocity but rather accounts for the highly nonlinear chain
stretching as the velocity vc increases. The corresponding
detachment distance of the cantilever tip R (detachment
height), Fig. 7b, reveals a specic sigmoidal shape in agreement
with the results based on the master equation.23 At low veloci-
ties of pulling, vc, when the chain still largely succeeds in
relaxing back to equilibrium during detachment, an interesting
entropy effect is manifested in Fig. 7b: the (effectively) stiffer
coil at T ¼ 1.0 leaves the substrate at lower values of R than
in the case of the colder system, T ¼ 0.1. As the pulling
velocity increases, however, this entropic effect vanishes and
the departure from the substrate is largely governed by the
stretching of the bonds rather than of the coil itself whereby the
difference in behavior between T ¼ 1.0 and T ¼ 0.1 disappears.
Fig. 8 The average detachment (peeling) time sdet versus detachment
velocity vc for two different adsorption energies 3 ¼ 10 and 3 ¼ 16. The
inversely proportional dependence, sdet � 1/vc, agrees well with
previous theoretical findings.41

2792 | Soft Matter, 2014, 10, 2785–2799
Eventually, as can be seen from Fig. 8, the total detachment
(peel) time sdet vs. velocity vc relationship has a well-dened
power-law behavior, sdet � 1/vc

a, with the power a z 1, in line
with previous theoretical ndings.41
4 MD simulations
4.1 The model

In our MD simulations we use a coarse-grained model of a
polymer chain of N beads connected by nitely extendable
elastic bonds. The bonded interactions in the chain are
described by the frequently used Kremer–Grest potential, VKG(r)
¼ VFENE(r) + VWCA(r). The FENE (nitely extensible nonlinear
elastic) potential is given by

VFENE ¼ � 1

2
kr0

2 ln

"
1�

�
r

r0

�2
#

(33)

with k ¼ 303/s2 and r0 ¼ 1.5s.
In order to allow properly for excluded volume interactions

between bonded monomers, the repulsion term is taken as the
Weeks–Chandler–Anderson (WCA) potential (i.e., the shied
and truncated repulsive branch of the Lennard-Jones potential)
given by

VWCA(r) ¼ 43LJ[(s/r)
12 � (s/r)6 + 1/4]q(21/6s � r) (34)

with q(x) ¼ 0 or 1 for x < 0, or x $ 0, and 3LJ ¼ 1, s ¼ 1. The
overall potential VKG(r) has a minimum at bond length rbond z
0.96. The nonbonded interaction between monomers are taken
into account by means of the WCA potential, eqn (34). Thus, the
interactions in our model correspond to good solvent
conditions.

The substrate in the present investigation is considered
simply as a structureless adsorbing plane, with a Lennard-Jones
potential acting with strength 3s in the perpendicular z-direc-
tion, VLJ(z)¼ 43s[(s/z)

12 � (s/z)6]. In our simulations we consider
as a rule the case of strong adsorption 3s/kBT ¼ 5–20, where kBT
is a temperature of the Langevin thermal bath described below.
This journal is © The Royal Society of Chemistry 2014
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Fig. 9 Snapshots of a polymer chain with N ¼ 50 monomers during
detachment from a substrate at 3s¼ 2.5 (left) and 3s¼ 20 (right). Here vc
¼ 0.0001. The interaction range of the adsorption potential is shaded
(transparent) green. The cantilever tip is shown schematically in blue.
One may clearly see that the polymer chain is more relaxed (less
stretched) at 3s ¼ 2.5, and the adsorbed monomers do not stick tightly
to the surface but partially exit the range of surface adsorption.
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The dynamics of the chain is obtained by solving the Lan-
gevin equations of motion for the position rn ¼ [xn, yn, zn] of
each bead in the chain,

m€rn ¼ Fn
j + Fn

WCA � g_rn + Rn(t) (1, ., N) (35)

which describes the Brownian motion of a set of bonded
particles.

The inuence of solvent is split into slowly evolving viscous
force and rapidly uctuating stochastic force. The random
Gaussian force Rn is related to friction coefficient g ¼ 0.25 s�1

by the uctuation–dissipation theorem. The integration step is
s ¼ 0.005 and time is measured in units of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2=3LJ

p
; where m

denotes the mass of the polymer beads, m ¼ 1. In all our
simulations the velocity-Verlet algorithm was used to integrate
equations of motion (35).

The molecule is pulled by a cantilever at constant velocity V
¼ [0, 0, vc]. The cantilever is imitated by two beads connected by
a harmonic spring and attached to one of the ends of the
chain.†

The mass of beads mc, forming the cantilever, was set either
to mc ¼ 1 or to 25. The equilibrium size of this harmonic spring
was set to 0 and the spring constant was varied in the range kc ¼
50–4003LJ/s

2. The hydrodynamic radius a of beads composing
the cantilever was varied by changing the friction coefficient gc

¼ 0.25–25 s�1, taking into account the Stokes' law, gc ¼ 6pha,
where h is the solvent viscosity.

Taking the value of the thermal energy kBT z 4.11 � 10�21 J
at kBT ¼ 300 K, the typical Kuhn length of s ¼ 1 nm and the
mass of the coarse-grained monomer as m z 10�25 kg sets the
unit of time in our simulations which is given in 10�12 s ¼ 1 ps.
The velocities used in simulations are in units of 10�4 O 10�1

nm ps�1z 10�1O 102 m s�1. Spring constants of our cantilever
in real units are: kc ¼ 50 O 400 kBT nm�2 ¼ 0.2 O 1.6 N m�1.

Two typical snapshots of a polymer chain during slow
detachment from an adsorbing substrate with different
strengths of adsorption, 3s ¼ 2.5 and 3s ¼ 20 are shown in Fig. 9.
Evidently, the chain is much more stretched for the strongly
attractive substrate where all adsorbed monomers stick rmly
to the surface.
4.2 MD results

As we have already seen in Section 3.4, the averaging of the force
prole over many runs reveals the inherent sawtooth-structure
of the force vs. distance dependence (see Fig. 5), which is
otherwise overshaded by thermal noise. Our MD simulation
results, depicted in Fig. 10, show the same tendency against the
noisy background of a single detachment event. Therefore, for
better clarity and physical insight, all our graphic results that
are given below result from such an averaging procedure.

Fig. 11a shows how adsorption energy 3s affects the force f vs.
distance D relationship. Apparently, with increasing 3s the mean
† This setup is different from the one used by S. Iliafar et al.19 In their study a
harmonic spring was connected to a “big” monomer (with large friction
coefficient) on one side, and to a mobile wall on the other side. In our case the
harmonic spring spans two beads.

This journal is © The Royal Society of Chemistry 2014
force (plateau height) is found to increase in agreement with
our equilibrium theory results, given in Fig. 3. As suggested by
our recent theory,27,29 the plateau height goes up as fp f 3s

1/2, or
as fp f 3s, for relatively small or large 3s values, respectively. The
amplitude of spikes increases with growing 3s too, in line with
the equilibrium ndings (see Fig. 3). Moreover, as found by
Jagota et al.,17 the amplitude of spikes follows an exponential
law, famp f exp(3s/n), where n is the number of desorbed poly-
mer segments. On the other hand, the comparison of Fig. 11b
and 2 suggests that the stiffness of the cantilever spring
constant kc affects mainly the spike amplitude especially at
large 3s.

Eventually, we demonstrate the impact of the cantilever
velocity, vc, as well as of its mass,mc, and friction coefficient, gc,
on the force–distance prole. Apparently, these parameters
affect to different extents the observed force–distance relation-
ship. Similar to the results, obtained for our coarse-grained
Fig. 10 Comparison of averaged force measured at the cantilever vs.
single realization of the desorption experiment. Force f at the canti-
lever was calculated by monitoring extensions Dzc of a harmonic
spring, i.e. f ¼ kcDzc. Here N ¼ 20, kc ¼ 503LJ/s

2, vc ¼ 10�4 s/s and 3s/
kBT ¼ 20. mc ¼ 1 and gc ¼ 0.25.

Soft Matter, 2014, 10, 2785–2799 | 2793
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Fig. 11 Time-averaged force hfi at the cantilever as a function of a distance from the substrate D during chain detachment. Here N ¼ 20, vc ¼
10�4 s/s, mc ¼ 1 and gc ¼ 0.25. Presented results are for different adsorption strengths 3s, as indicated in the legend, and kc ¼ 503LJ/s

2 (a).
Figure (b) presents results for 3s ¼ 20 and different spring constants kc. Each curve originates from 103 independent simulations.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
Fe

br
ua

ry
 2

01
4.

 D
ow

nl
oa

de
d 

on
 8

/2
/2

02
5 

9:
46

:1
6 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
model in Section 2, in the MD simulation data the plateau
height increases less than twice upon the velocity increase of
three orders of magnitude (see Fig. 12). Only for a very massive
(mc ¼ 25) and strong friction (gc ¼ 25), cantilever, the plateau
height increases signicantly and gains a slight positive slope
(see Fig. 12d) whereby oscillations vanish. This occurs for the
fastest detachment vc¼ 0.1s/s. Evidently, this effect is related to
the combined role of the friction force in the case of rapid
detachment along with the much larger inertial force (mc ¼ 25)
Fig. 12 Profiles of averaged force hfi vs. distance above the substrateD di
3s/kBT ¼ 20 and (a) mc ¼ 1, gc ¼ 1, (b) mc ¼ 1, gc ¼ 25, (c) mc ¼ 25, gc ¼

2794 | Soft Matter, 2014, 10, 2785–2799
whereby the substrate-induced oscillations are overshadowed
by the increased effort of pulling. In contrast, neither Fig. 12b
nor Fig. 12c indicates any major qualitative changes in the f- vs.
D-behavior when medium-friction or mass cantilever alone is
drastically changed.

The PDF of the detachment force and its velocity vc depen-
dence are shown in Fig. 13. Similar to that in Section 2, the
average value and dispersion increase with increasing speed of
pulling and this is weakly sensitive with regard to the
splayed for different pulling velocities vc. HereN¼ 20, kc¼ 503LJ/s
2 and

0.25, and (d) mc ¼ 25, gc ¼ 25.

This journal is © The Royal Society of Chemistry 2014
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adsorption strength of the substrate 3s. Remarkably, the mean
detachment force hfdi shows a similar nonlinear dependence on
ln vc (cf. Fig. 7a). The crossover position does not change prac-
tically as the adhesion strength is varied, and the variation of
the other parameters (mc ¼ 1 / 25, gc ¼ 0.25 / 25) towards a
massive and strong-friction cantilever renders this crossover
considerably more pronounced.

The complementary PDF for the detachment height R is
given in Fig. 14a together with the corresponding average hRi vs.
vc relationship. As predicted by our analytical model, cf. Section
2, the height of the nal detachment of the chain from the
substrate becomes larger for faster peeling vc and stronger
adhesion 3, which is consistent with the MD data. One can see
again the typical sigmoidal-shape in the hRi vs. vc dependence.

The two panels for different temperatures, shown in Fig. 14b,
indicate a smaller increase in hRi at the higher temperature,
provided the pulling velocity vc is sufficiently small too. This can
be readily understood in terms of entropic (rubber) elasticity of
Fig. 13 (a) Probability distribution function of a force fd at the cantilever m
the substrate). Here N ¼ 20, kc ¼ 503LJ/s

2, 3s/kBT ¼ 20, mc ¼ 1 and gc ¼
semilogaritmic scale. The values of parameters are the same.

Fig. 14 (a) Probability distribution function of the detachment height R. T
panel contains data formc¼ 25 and gc¼ 25. Solid lines represent results fo
¼ 20, kc ¼ 503LJ/s

2. (b) Averaged detachment height hRi as a function o
adsorption strengths as indicated: (left panel) kBT ¼ 1.0, (right panel) kBT ¼
to the same ratio of 3s/kBT while the corresponding values of 3s and kBT

This journal is © The Royal Society of Chemistry 2014
polymers and represents a case of delicate interplay between
entropy and energy-dominated behavior. It is well known that a
polymer coil becomes less elastic (i.e., it contracts) upon a
temperature increase, cf. the lowest (grey) curve in Fig. 14b, (le
panel) at T ¼ 1.0, so that R is smaller than in the corresponding
lowest curve for T ¼ 0.1 in the right panel of Fig. 14b. This
occurs at low values of vc. On the other hand, the soer chain (at
T ¼ 0.1) stretches more easily and, therefore, R goes up to z90
for the highest speed vc ¼ 10�1 instead of Rz 85 for T ¼ 1.0, vc
¼ 10�1. This entropic effect is well expressed at weak attraction
to the surface, 3s/kBT ¼ 2.25, which does not induce strong
stretching of the bonds along the chain backbone. In contrast,
at high 3s/kBT ¼ 20, the bonds extend so strongly that the chain
turns almost into a string and entropy effects become negli-
gible. The energy cost of stretching then dominates and leads to
higher values of R at the higher temperature (cf. upper most
green symbols in Fig. 14b) since it is now the elasticity of the
bonds between neighboring segments which governs the
easured at themoment of detachment (when the last monomer leaves
0.25. (b) Averaged force hfdi plotted versus pulling velocity vc in the

he upper panel presents results formc¼ 1 and gc¼ 0.25 while the lower
r 3s/kBT¼ 20while dashed lines represent results for 3s/kBT¼ 5. HereN
f pulling velocity vc in the semi-logarithmic scale plotted for different
0.1. On both panels symbols plotted with the same color correspond

differ. Here N ¼ 100, kc ¼ 503LJ/s
2, mc ¼ 1 and gc ¼ 0.25.
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physics of detachment. In this case the elastic constant of the
bonds effectively decreases with an increase of T so that the
distance of detachment R in the le panel of Fig. 14b for T¼ 1.0
is higher than that for T ¼ 0.1 in the right panel.
5 Discussion

We have demonstrated in this paper that a simple theory, based
on the Onsager stochastic equations, yields an adequate
description of a typical AFM experiment within the displace-
ment-control mode. This approach makes it possible to relax
most of the restrictions inherent in the BE-model. For example,
this approach also holds for small desorption activation
barriers (i.e., for Eb(f) z kBT), and also for nonlinear barrier vs.
force dependence. It naturally takes into account the reversible
desorption–adsorption events36 which are neglected in the BE-
model. Moreover, it does not rest on the stationary approxi-
mation (which is customary in the standard Kramers rate
calculation24) and is, therefore, ideally suited for description of
driven force-(FC) or displacement-control (DC) regimes. One of
the principal results in this analytic treatment is the predicted
existence of characteristic spikes, the mean force vs. distance
prole, observed in the DC-regime. These spikes depend on the
adsorption energy 3s, cantilever spring constant kc as well as on
the cantilever velocity vc. In equilibrium, this has been found
earlier by Jagota and coworkers.17 The PDF of detachment forces
and detachment distances are been thoroughly investigated.
The relevant mean detachment force is found to be a strongly
nonlinear function of vc which is mainly governed by the
nonlinear chain stretching upon increasing vc. The average full
detachment (peeling) time scales f1/vc which is supported by
earlier theoretical ndings.41

Some of these predictions were checked by means of MD
simulations and found to be in qualitative agreement with the
results, gained by the analytic method. Most notably, this
applies to properties like the characteristic force oscillation
pattern and the mean force vs. cantilever velocity vc depen-
dence. On the other hand, our MD simulations reveal a very
strong increase in the magnitude of the force plateau for a
strong-friction (gc ¼ 25) and massive (mc ¼ 25) cantilever.
Interestingly, in this case the spike pattern is almost totally
smeared out. This might be the reason why the force spike
pattern is not seen in laboratory detachment experiments. We
recall that in recent Brownian dynamic simulations (which
totally ignore inertial forces),19 the friction coefficient of the
cantilever was 70 times larger than the friction coefficient of the
chain segments. It was shown that for this high-friction canti-
lever and large velocity of pulling, the force spike pattern was
signicantly attenuated19 so that information on the base
sequence was hardly assessable. Therefore, fabrication of a stiff
and super-light, nanometer-sized AFM probe would be a chal-
lenging task for future developments of biopolymer sequencing.

As an outlook, our coarse-grained Onsager stochastic model
could be generalized to encompass investigations of forced
unfolding of multi-domain, self-associating biopolymers.37 In
doing so one should go beyond the FJBV chain model and take
2796 | Soft Matter, 2014, 10, 2785–2799
into account the stiffness, which is typical for most of the
biopolymers.
APPENDIX
A Legendre transformation

The Gibbs free energy for the FJBV-model (i.e. the free energy in
the isotensional-ensemble) has the following form

Gpol

�
n; ~f

� ¼ �nkBT ln

�
sinh ~f

~f

�
; (36)

where ~f ¼def bf =kBT is the dimensionless force and R ¼ �vGpol(n,
~f )/v~f is the corresponding distance.

R ¼ �vGpol

vf
¼ nbL

�
~f Þ; (37)

where the so-called Langevin function L (~f ) h coth(~f ) � 1/~f has
been used. In the isometric-ensemble, the appropriate ther-
modynamic potential is the Helmholtz free energy, Fpol(n, R),
which is related to Gpol(n, ~f ) by Legendre transformation,

Fpol(n, R) ¼ Gpol(n, ~f ) + fR, (38)

where f ¼ vFp(n, R)/vR. Taking the Gibbs free energy, eqn (36),
into account and the relationship eqn (37) for the Helmholtz
free energy, we have

Fpolðn;RÞ ¼ Gpol

�
n; ~f

�þ fR ¼ �nkBT ln
sinh ~f

~f

" #
þ ~f kBTnL

�
~f
�

¼�nkBT

�
ln

sinh ~f
~f

" #
þ1� ~f coth

�
~f
��

h� nkBTG
�
~f Þ;

(39)

where the function G(x) h ln[sinh(x)/x] + 1 � x coth(x). This
nally leads to eqn (6).
B Adsorption–desorption potential

Here we prove that the adsorption–desorption potential in eqn
(17) meets the conditions (1)–(4) given in Section 3.1. The
minima and maxima of eqn (17) are located in the points
dened by sin[(2s + 1)p] ¼ 1/2p with s denoting the continuous
index of a monomer. As a result,

s ¼

1

2p
arcsin

�
1

2p

�
þ k � 1

2
for k ¼ 1; 2;.

� 1

2p
arcsin

�
1

2p

�
þ n for n ¼ 0; 1; 2;.

8>>><
>>>:

(40)

In eqn (40) the rst term, (1/2p) arcsin (1/2p)z 0.025, is very
small and could be neglected. Thus, the minima and maxima
are located at the integer and half-integer points respectively
(see Fig. 4).

In order to calculate the activation barriers, we determine
rst Fads(s) at the half-integer points, i.e.,

Fads(n + 1/2) ¼ kBT3(n + 5/2) � kBT3N, (41)
This journal is © The Royal Society of Chemistry 2014
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as well as at the integer points

FadsðnÞ ¼ kBT3n� kBT3N

Fadsðnþ 1Þ ¼ kBT3ðnþ 1Þ � kBT3N:
(42)

Therefore, the activation barriers for the detachment, DE+,
and adsorption, DE�, are given by

DEþ ¼ Fadsðnþ 1=2Þ � FadsðnÞ ¼ 5

2
kBT3

DE� ¼ Fadsðnþ 1=2Þ � Fadsðnþ 1Þ ¼ 3

2
kBT3

(43)

i.e., DE+ > DE�. Finally, one may readily see that Fads(0) ¼
�kBT3N and Fads(N) ¼ 0 which is in line with condition (4) from
Section 3.1.
C Calculation of thermodynamic forces

Let us calculate fn ¼def�vF ðn;RÞ=vn for the frictionless substrate
model. By making use of the free energy function, eqn (18), one
has

fn ¼� kBT3f1� 2p sin½ð2nþ 1Þp�g þ kBTG
�
~f
�

þ kBTnG 0� ~f
��v~f

vn

�
R

¼ �kBT3f1� 2p sin½ð2nþ 1Þp�g

þ kBTG
�
~f
�� kBTR

bn

G 0� ~f
�

L 0� ~f � ; (44)

where we have used (recall that R/bn ¼ L (~f ))

�
v~f

vn

�
R

¼ �R=bn2

L 0� ~f � :

On the other hand, a direct calculation shows that

G 0ðxÞ ¼ x

½sinhðxÞ�2 �
1

x

L 0ðxÞ ¼ 1

x2
� 1

½sinhðxÞ�2
(45)

so that

G 0ðxÞ
L 0ðxÞ ¼ �x: (46)

and we arrive at the nal result eqn (23).For fR ¼def �vF ðn;RÞ=vR
one obtains

fR ¼ kBTnG 0� ~f ��v~f

vR

�
n

þ kcðD� RÞ ¼ kBT

b

G 0� ~f �
L 0� ~f �þ kcðD� RÞ

(47)

where we have used �
v~f

vR

�
n

¼ 1=bn

L 0� ~f � :

Taking into account eqn (46), one nally derives eqn (25).
This journal is © The Royal Society of Chemistry 2014
D The separation R as an instantaneously adjustable
variable

Due to strong adsorption, the desorbed portion of the polymer
chain is expected to be strongly stretched. One could simplify
the force, fR z (R/bn)[3 � (R/bn)2]/[1 � (R/bn)2] z 1/[1 � (R/bn)],
where eqn (27) has been used and the contribution of the
cantilever has been neglected. Therefore, the simplied equa-
tion which governs R reads

dR

dt
z� lRkBT

b½1� ðR=bnÞ� (48)

This equation can be easily solved and the corresponding
solution has the form

1� RðtÞ=bn
1� R0=bn

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t=sR

p
(49)

where the relaxation time sR ¼ (b2/2kBTlR)(1 � R0/bn)
2. This

result suggests that for a strongly stretched chain, i.e., for R0 #

bn, the relaxation time sR is very small.42 For example, in the
case that R0 ¼ b(n � 1) we have

sR ¼ b2

2kBTlRn2
(50)

This relaxation time should be compared to the character-
istic time, skram, of the slow variable n(t) which is governed by
the Kramers process. According to the semi-phenomenological
Bell model,12 the characteristic time of unbonding (that is,
desorption in our case) is given by sKram ¼ s0 exp[(DE � r0fp)/
kBT] where s0 ¼ x0b

2/kBT is the segmental time, DE ¼ F1 � F2 is
the activation energy for single monomer desorption, r0 stands
for the width of adsorption potential, and fp is the plateau
height. The free energies in the desorbed, F1, and in the
adsorbed, F2, states are given by F1 ¼�kBT ln m2 and F2 ¼�kBT3
� kBT ln m3 where m2 and m3 are the so-called connective
constants in two- and three dimensions respectively.43

As mentioned in Section 4.2, for large adsorption energies 3

the dimensionless plateau height ~f p ¼def bfp=kBTf3. Taking this

into account, one could represent skram in the following form:

sKram ¼ s0m2

m3

exp½ð1� aÞ3�; (51)

where a ¼ r0/b < 1. Therefore, in the case when sR � skram, the
distance R could be treated as the fast variable. With eqn (50)
and (51) and taking into account that the Onsager coefficient lR
¼ 1/x0n, this condition means that

nm2

m3

exp½ð1� aÞ3�[1: (52)

This condition holds for all typical values of the relevant
parameters.
E Runge–Kutta algorithm for stochastic differential-
algebraic equations

In order to solve the DAE (32) numerically, one may employ the
second order Runge–Kutta (RK) algorithm. To this end the rst
equation in eqn (32) may be rewritten as an integral equation
Soft Matter, 2014, 10, 2785–2799 | 2797
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which relates the ith and i + 1 grid points (using discrete time
points ti ¼ ih)

niþ1 ¼ ni þ ln

ðtiþ1

ti

fnðnðsÞ;RðsÞÞdsþ wnðhÞ (53)

where h is the time step and ni ¼ n(ih). Moreover,
wnðhÞ ¼

Ð tiþ1

ti
xnðsÞds describes a Wiener process with zero mean

and with variance:

hwnðhÞwnðhÞi ¼
ðtiþ1

ti

ds1

ðtiþ1

ti

ds2hxnðs1Þxnðs2Þi

¼ 2lnkBT

ðtiþ1

ti

ds1

ðtiþ1

ti

ds2dðs1 � s2Þ ¼ 2lnkBTh

(54)

The integral over the deterministic force in eqn (53) within
this 2nd order approximation readsðtiþ1

ti

fnðnðsÞ;RðsÞÞdsz h

2
½ fnðniþ1;Riþ1Þ þ fnðni;RiÞ� þ O

�
h3
�

(55)

This is so-called trapezoidal rule for approximation of the
integral. In order to calculate fn(ni, Ri), one should rst take
the initial value ni, and nd Ri through the solution of
the nonlinear equation G(ni, Ri, ti) ¼ 0. For the calculation of
fn(ni+1, Ri+1), one can use the forward Euler method of order 1,
i.e., nEi+1 ¼ ni + hlnfn(ni, Ri) + h1/2(2lnkBT)

1/2Zn and RE
i+1 are

obtained as solution of the equation G(nEi+1, R
E
i+1, ti+1) ¼ 0. Here

the random variable Zn is Gaussian with the zero mean value
and with variance

hZn
2i ¼ 1 (56)

As a result, the recursive procedure which relates the i-th and
(i + 1)-th grid points can be dened as:

1. For a given initial value of ni, go to eqn (29) or eqn (30) and
solve this nonlinear equation (e.g. G(ni, Ri, ti) ¼ 0) with respect
to Ri.

2. Compute g1 ¼ fn(ni, Ri).
3. Compute ni+1 and Ri+1 within the Euler approximation, i.e.,

calculate rst nEi+1 ¼ ni + hlnfn(ni, Ri) + h1/2(2lnkBT)
1/2Zn and then

solve G(nEi+1, R
E
i+1, ti+1) ¼ 0 with respect to RE

i+1.
4. Compute g2 ¼ fn(n

E
i+1, R

E
i+1).

5. Compute the corrected ni+1, i.e.

niþ1 ¼ ni þ h

2
ðg1 þ g2Þ þ h1=2ð2lnkBTÞ1=2Zn

6. Finally, with the value of ni+1, go to item 1 and solve the
nonlinear equation G(ni+1, Ri+1, ti+1) ¼ 0 with respect to Ri+1.
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