Spectroscopic determination of crystal field splittings in lanthanide double deckers†
Abstract
We have investigated the crystal field splitting in the archetypal lanthanide-based single-ion magnets and related complexes (NBu4)+[LnPc2]−·2dmf (Ln = Dy, Ho, Er; dmf = N,N-dimethylformamide) by means of far infrared and inelastic neutron scattering spectroscopies. In each case, we have found several features corresponding to direct crystal field transitions within the ground multiplet. The observation of three independent peaks in the holmium derivative enabled us to derive crystal field splitting parameters. In addition, we have carried out CASSCF calculations. We show that exploiting the interplay of CASSCF calculation (for the composition of the states) and advanced spectroscopic measurements (for accurate determination of the energies) is a very powerful approach to gain insight into the electronic structure of lanthanide-based single-molecule magnets.