Pre-inverse-crowns: synthetic, structural and reactivity studies of alkali metal magnesiates primed for inverse crown formation†

Two new alkali metal monoalkyl-bisamido magnesiates, the potassium compound [KMg(TMP)₂]₂Bu and its sodium congener [NaMg(TMP)₂]₂Bu have been synthesised in crystalline form (TMP = 2,2,6,6-tetramethylpiperidine). Devoid of solvating ligands and possessing excellent solubility in hydrocarbon solvents, these compounds open up a new gateway for the synthesis of inverse crowns. X-ray crystallography established that [KMg(TMP)₂]₂Bu exists in three polymorphic forms, namely a helical polymer with an infinite KNMgN chain, a hexamer with a 24-atom (KNMgN)₆ ring having endo-disposed alkyl substituents, and a tetramer with a 16-atom (KNMgN)₄ ring also having endo-disposed alkyl substituents. Proving their validity as pre-inverse-crowns, both magnesiates react with benzene and toluene to generate known inverse crowns in syntheses much improved from the original, supporting the idea that the metallations take place via a template effect. [KMg(TMP)₂]₂Bu reacts with naphthalene to generate the new inverse crown [KMg(TMP)₂(2-C₆H₄)]₆, the molecular structure of which shows a 24-atom (KNMgN)₆ host ring with six naphthalene guest anions regioselectively magnesiated at the 2-position. An alternative unprecedented 1,4-dimagnesiation of naphthalene was accomplished via [NaMg(TMP)₂]₂Bu and its NaTMP co-complex [NaMg(TMP)₂]₂Bu-NaTMP, manifested in [Na₄Mg₂(TMP)₄(2,2,6,6-tetramethyl-1,2,3,4-tetrahydropyridide)₂]₁,₄-C₆H₄]. Adding to its novelty, this 12-atom (Na₄NaMgN₄)₂ inverse crown structure contains two demethylated TMP ligands as well as four intact ones. Reactivity studies show that the naphthalene-ide and -di-ide inverse crowns can be regioselectively iodinated to 2-ido and 1,4-diodonaphthalene respectively.

Introduction

Alkali metal magnesiates have recently seen increasing utilisation in key organic transformations such as metal–hydrogen exchange, metal–halogen exchange and nuclophilic addition reactions.¹–²⁰ Compared to the organolithium reagents commonly employed in these reactions, magnesiates (as well as other types of ate, most importantly zinicates²¹–⁴⁴) can show advantages of superior functional group tolerance and application at ambient temperature and in ethereal solvents. Highlighting the synergistic reactivity inherent to these bimetallclics, conspicuously homometallic magnesium compounds [dialkyls, R₂Mg; Grignard (RMgX) or Hauser (R₂NMgX) reagents] are often inert in these same reactions, especially in aromatic functionalisations. Through an inspiring series of papers Knochel has shown that adding stoichiometric lithium chloride creates

synergistic-operative “turbo-charged” organomagnesium reagents (RMgX·LiCl or R₂MgX·LiCl) that can exhibit excellent reactivity and regio-control across a range of deprotonation and addition applications.⁴⁵–⁶⁴ Though deprotonation reactions of magnesiates can be viewed superficially as simple C–H to C–Mg(R) exchanges, the structural manoeuvrings to arrive there can be extraordinarily complex. A good early exemplar of this complexity was our report that an in situ 1 : 1 : 3 mixture of n-butyloiodsonium, n,₅-dibutylmagnesium and 2,2,6,6-tetramethylpiperididine [TMP[H]] in n-hexane deprotonates benzene or toluene, but that the C–H to C-metal exchanges are manifested in 12-atom macrocyclic ring complexes [Na₄Mg₂(TMP)₄(arenedide)] (1a or 1b, Scheme 1). This structural novelty was accompanied by novel reactivity as in each example the arene has been

Scheme 1 Synthesis of inverse crown complexes 1a/b and 2a/b (for a R = H; for b R = Me).
Results and discussion

Synthesis and characterisation of potassium pre-inverse-crowns

Focusing initially on potassium systems, we decided to study the equimolar reaction between freshly prepared KTMP and "BuMgTMP in a variety of hydrocarbon solvents (Scheme 2).

Pleasingly these reactions resulted in the isolation of several different oligomeric compounds. NMR spectroscopic studies of "BuMgTMP in deutero-toluene, cyc-C6D12, show a set of resonances that were not consistent with either starting material on their own (or potential monometallic metathesis products), indicating that co-complexation had occurred [see ESI†]. From a solid-state perspective, our first attempt to isolate a latent potassium-based pre-inverse-crown involved trying to grow crystals from a cyc-C6D12 solution of an equimolar mixture of KTMP and "BuMgTMP at room temperature. Crystallization occurred and the isolated product was a solvate of the polymer [KMg(TMP)]n."Bu]x. 3 (Fig. 1). Structural determination by X-ray crystallography revealed an unusual helical potassium magnesiumate. The backbone of the structure (Fig. 1b) can be considered to be the repeating KnMgN unit. The one dimensional helical polymers so formed lie parallel to the crystallographic a direction and have approximate (i.e. non-crystallographic) 3, screw symmetry. Each [KnMgN]x chain is supported by K–C–C–K cross-links (where C is from "Bu) that thus form a series of four-atom, four-element (K–N–Mg–C) rings, fused together along the Mg–C edge to another ring of identical composition. Each potassium atom occupies a shared vertex that links neighbouring pairs of doubly-fused tetranuclear ring systems (Fig. 1). A total of twelve atoms within a K–N–Mg–C chain define both a single turn of the helix and the crystallographically unique segment of the polymer. The Mg centre forms short, strong bonds to the N atoms of both bridging TMP units [e.g., Mg2–N21, 2.102(4); Mg2–N31, 2.045(4) Å], and the C atom of the n-butyl anion [Mg2–C2A, 2.169(5) Å], thus placing Mg in a distorted trigonal planar environment [N21–Mg2–N31, 134.4(17); N21–Mg2–C2A, 111.97(17); and N31–Mg2–C2A, 113.45(18)°]. Each K atom’s coordination environment formally consists of a N2C3 ligand set. The K–N distances are approximately equal [K2–N31, 2.968(4); K2–N41, 2.943(4) Å], short in comparison to the more distended K–C contacts [K2–C2A 3.287(5) Å; K2–C3A 3.145(5) Å], which are primarily weak electrostatic interactions rather than formal covalent bonds. Interestingly, looking directly down the centre of the helix, the TMP ligands are arranged exo-whilst the n-butyl groups are arranged endo—with respect to the helical framework (Fig. 1c). Disordered solvent molecules occupy the gaps between polymeric chains—and thus the material is a channel solvate. This arrangement of a poly-amido outer scaffold with an inner alkyl unit follows the orientational pattern seen in the hexameric arene-encapsulated inverse crown species 2a/b. 85

When the same reaction mixture is allowed to crystallise from methylcyclohexane at ambient temperature, the tetrameric oligomer [KMg(TMP)]n."Bu]4, 4 is produced. High quality single crystals could not be formed—with all datasets examined showing multiple diffraction patterns. However, the X-ray crystallographic study does allow the atomic connectivity of 4 to be established (Fig. 2). The structure consists of a 16-atom polymeric ring, of composition [K–N–Mg–N]4. Similarly to 3 above, the repeating KNNN unit is supported by K···C–K cross links involving the n-butyl anion. Each K centre is thus four coordinate and the Mg atoms are three coordinate. As in the case of 3, the n-butyl groups all orientate towards the centre of the molecule. They have an anti arrangement as they alternately point above and below the plane of the [K–N–Mg–N]4 ring. Complex 4 exhibits similar structural features to the aforementioned inverse crowns 1 and 2 though its metal-nitrogen ring size (16-atom) differs (versus 12- and 24-atom, respectively85,86); but the salient feature is that instead of having
a deprotonated aromatic solvent derived entity e.g., (C₄H₉)²⁺ or (C₆H₁₄CH₂)⁻] as its third ligand component, 4 has strongly Bronsted basic n-butyl anions seemingly primed for executing deprotonation reactions. It is this latter feature that drew our attention to 4 as a potential pre-inverse-crown.

By altering the solvent of crystallization from methylcyclohexane to cyclohexane solution and by cooling the solution to 8 °C, a third oligomeric form, a hexameric variant of the magnesiate [KMg(TMP)₄]₄ Bu⁺₃, 5, was obtained (Fig. 3). Hexamer 5 features a 24-atom (KNMg₆N)₆ centrosymmetric ring, with two and three coordinate K and Mg centres respectively, although the K is positioned in relatively close proximity to one of the α-carbon atoms of the neighbouring n-butyl groups [K₁–C₂₀, 3.143(3); K₁–C₂₀°, 3.243(3) Å]. The K atoms bridge between two TMP units, forming strong K–N contacts [K₁–N₁, 3.052(2); K₁–N₂, 3.053(2) Å], with a bridging N₁–K₁–N₂ angle of 146.72(6)°. Mg occupies a distorted trigonal planar site [N₁–Mg₁–N₂°, 133.63(9); N₁–Mg₁–C₂₀, 115.57(14); N₂°–Mg₁–C₂₀, 110.28(14)], and the inner n-butyl appendages point alternately above and below the ring plane, in a similar fashion to that observed in the tetrameric polymorph 4. Interestingly, continuing the pre-inverse-crown notion (i.e., 5 contains basic, reactive n-butyl ligands which are capable of inducing arene deprotonation), hexameric 5 appears to represent the perfect template to produce the arene-ide inverse crowns 2a and 2b, as it is directly comparable in terms of aggregation state and conformation with all its n-butyl appendages still intact to deprotonate benzene or toluene. When isolated crystals of both oligomeric forms (4 and 5) or polymeric 3 were dissolved in cyc-C₆D₁₂, their ¹H NMR spectra were essentially identical to that obtained from a 1 : 1 mixture of KTMP and BuMgTMP. This perhaps indicates that the energy difference between the

Fig. 1 (a) Molecular structure of [KMg(TMP)₂Bu]₃, showing the contents of the asymmetric unit, which corresponds to a single turn of the helical chain. Hydrogen atoms are omitted for clarity. (b) Section of the extended framework structure showing atom connectivity between the metals, the n-butyl and hydrogen atom of the TMP ligands. (c) Packing diagram of [KMg(TMP)₂Bu]₃ viewed along a-axis. The dashed lines illustrate K⋯C contacts. Selected bond distances (Å) and angles (°): Mg₁–C₁A, 2.161(4); Mg₁–N₁₁, 2.033(4); Mg₁–N₆₁°, 2.069(4); K₁–N₁₁, 3.006(4); K₁–N₂₁, 2.939(4); K₁–C₁A, 3.321(5); K₁–C₂A, 3.142(5); Mg₂–C₂A, 2.169(5); Mg₂–N₂₁, 2.102(4); Mg₂–N₃₁, 2.045(4); Mg₂–N₄₁, 2.102(4); K₂–N₃₁, 2.968(4); K₂–N₄₁, 2.943(4); K₂–C₂A, 3.287(5); K₂–C₃A, 3.145(5); Mg₃–N₄₁, 2.098(4); Mg₃–N₅₁, 2.043(4); Mg₃–C₃A, 2.172(4); K₃–N₅₁, 2.956(4); K₃–C₃A°, 3.129(5); K₃–C₅A, 3.295(5); N₁₁–Mg₁–N₆₁°, 132.76(16); N₁₁–Mg₁–C₁A, 114.90(18); N₆₁°–Mg₁–C₁A, 112.17(17); N₂₁–K₁–N₁₁, 150.25(11); N₂₁–K₁–C₂A, 71.13(11); N₁₁–K₁–C₂A, 138.22(12); N₂₁–K₁–C₁A, 127.55(11); N₁₁–K₁–C₁A, 67.75(10); C₂A–K₁–C₁A, 90.58(11); N₃₁–Mg₂–N₂₁, 134.44(17); N₃₁–Mg₂–C₂A, 113.45(18); N₂₁–Mg₂–C₂A, 111.97(17); N₄₁–K₂–N₃₁, 149.85(10); N₄₁–K₂–C₃A, 71.13(10); N₃₁–K₂–C₃A, 138.46(11); N₄₁–K₂–C₂A, 127.06(11); N₃₁–K₂–C₂A, 68.36(10); C₃A–K₂–C₂A, 91.47(12); N₅₁–Mg₃–N₄₁, 133.88(17); N₅₁–Mg₃–C₃A, 13.74(17); N₄₁–Mg₃–C₃A, 112.23(17); N₆₁–K₃–N₅₁, 150.05(11); N₆₁–K₃–C₁A°, 70.41(10); N₅₁–K₃–C₁A°, 139.03(11); N₆₁–K₃–C₃A, 127.50(11); N₅₁–K₃–C₃A, 68.20(10); C₁A°–K₃–C₃A, 91.20(12). The symmetry operation used to generate the equivalent atoms labelled with ′ is x – 1, y, z; and ″ ′ is x + 1, y, z.

Fig. 2 Atomic connectivity of [KMg(TMP)₂Bu]₄. The dashed lines illustrate K⋯C interactions.
different oligomers for this particular potassium magnesiase complex is small. DOSY (Diffusion-Ordered Spectroscopy) NMR studies of a 1:1 mixture of KTMP and BuMgTMP in cyc-C₆D₁₂ was attempted but due to the highly reactive nature of the solution towards the employed standards, it was impossible to quantify the spectra. However, by performing DOSY with external calibration (see, ESI† for full details) we could study the oligomeric make up of the solution. Rather surprisingly, only a single oligomer could be observed in solution under these conditions (400 MHz, 27 °C in cyc-C₆D₁₂). The data suggest that this oligomer has an approximate molecular weight (Mₗ) of 2478.7 g mol⁻¹, which is close to the predicted MW of hexameric 2461.0 g mol⁻¹; −3.0% difference in MW). Therefore, our data suggest that no deaggregation equilibria exist for this species.

Next we decided to employ Density Functional Theory (DFT) calculations to estimate the relative gas-phase energy differences between the hypothetical monomeric, and dimeric oligomers of “KMg(TMP)₂Bu” as well as the experimentally observed tetrameric and hexameric oligomers. By studying the association energies of each oligomer (Scheme 3) it was determined that the tetrameric and hexameric oligomers were equally as stable (ΔE = −13.83 kcal mol⁻¹ for each system, Fig. 4), thus mirroring the results of the solid-state data. As the oligomerisation state decreased from n = 3 to 1, the relative stabilities decreased (ΔE = −10.42, −4.57 and 0 kcal mol⁻¹ for trimmer, dimer and monomer respectively).

Application of potassium pre-inverse-crowns in the synthesis of inverse crowns

As already mentioned the original synthesis of the inverse crowns 1a/b and 2a/b relied on the employment of vast excesses of arene. In order to assess the reactivity of 3 as a potential pre-inverse-crown, we decided to investigate its reaction with equimolar quantities of benzene and toluene and to study both the solution and solid-state products. Could 3 (in the form of an in situ mixture of KTMP and BuMgTMP) replicate or even outperform the originally used in situ (⁰BuK, ⁰⁰⁰Bu₂Mg, 3 TMPH) mixtures? In answer, we found that at ambient temperature, the previously prepared inverse crown molecules could be isolated in good to excellent isolated yields (44% and 93% for 2a and 2b, respectively). The aforementioned DOSY NMR spectroscopy study appears to rule out equilibria allowing the deaggregation of the large cyclic oligomers to smaller dimers/trimers etc. (and hence creating different deprotonating species). There are also two other pieces of evidence which provide support that the larger oligomers are involved in the deprotonative chemistry: (i) the aforementioned gas phase experiments (Fig. 4) show that the tetramer and hexamer are considerably more stable than their

Fig. 3 Molecular structure of [KMg(TMP)₂Bu]₅. Hydrogen atoms, solvent molecules of crystallization and one disordered component of the n-buty! ligand have been omitted for clarity. The dashed lines illustrate K...C contacts. Selected bond distances (Å) and angles (°): K1–N1, 3.052(2); K1–N2, 3.053(2); K1–C20, 3.143(5); K1–C20', 3.243(5); Mg1–N1, 2.036(2); Mg1–N2', 2.043(2); Mg1–C20, 2.192(4); N1–K1–N2, 146.72(6); N1–K1–C20, 70.55(9); N2–K1–C20, 130.39(9); N1–K1–C20', 140.65(8); N2–K1–C20', 66.95(8); C20–K1–C20', 103.28(18); N1–Mg1–N2', 133.63(9); N1–Mg1–C20, 115.57(14); N2'–Mg1–C20, 110.28(14); Mg1–N1–K1, 89.43(7); Mg1–N2–K1, 92.03(7); Mg1–C20–K1, 84.37(14); Mg1–C20–K1', 84.41(14); K1–C20–K1', 163.21(18). The symmetry operation used to generate the equivalent atoms labelled with † is y + 1, −x + y + 1, −z; and †† is x − y, x − 1, −z.

Scheme 3 Modelled energy of oligomerisation reactions for KMg(TMP)₂Bu.
provide access to functionalized naphthalene compounds.147,148

The more challenging metallation of non-substituted naphthalene has also been accomplished by the Lochmann–Schlosser superbase (7BuLi–KOtBu, LICKOR) which can di-deprotonate naphthalene at cryogenic temperatures, but not in a regioselective manner as twelve mono/di-substituted isomers are formed in a collectively poor yield.123 Synergically-operative metallators such as sodium zinicate (TMEDA)-Na(tTMP)/(tBu)Zn(tBu)149–155 or sodium manganate (TMEDA)-Na(tTMP)/(tCH\textsubscript{2}SiMe\textsubscript{3})\textsuperscript{Mn(TMP)119,156–159 offer an enhanced regioselectivity. Metallation (zincation149 or manganation149) at the 2-position of naphthalene occurs at room temperature \textit{via} these respective reagents. Also a 2,6-di-zincated naphthalene derivative can be isolated upon heating a 2 : 1 mixture of the sodium zinicate and naphthalene.120 However, although these last metallations have been carried out \textit{via} alkali-metal-mediated metallations, none of them have produced an inverse crown product.

On reacting naphthalene with our new metallating agent \textit{3} in methylecyclohexane/heptane solution we produced the first naphthalene-based inverse crown [KMg(TMP)\textsubscript{2}(2-C\textsubscript{10}H\textsubscript{7})\textsubscript{6}]\textsubscript{6} following recrystallization from toluene. The yield of the isolated crystalline solid was 41\%; but 1H NMR analysis of the crude reaction mixture showed that the reaction was essentially quantitative. The metallation of naphthalene was found to be highly regioselective at the 2-position, both in the isolated crystals and the crude reaction mixture. X-ray crystallographic analysis reveals that as with \textit{5}, \textit{6} crystallises as a hexamer with 3

Fig. 5 (a) Molecular structure of [KMg(TMP)\textsubscript{2}(2-C\textsubscript{10}H\textsubscript{7})\textsubscript{6}]\textsubscript{6} (naphthalenide moiety in black), with hydrogen atoms, solvent molecule of crystallization and one disordered component of the naphthalenide ligand omitted for clarity; (b) core view (TMP C atoms and K+ omitted for clarity).

(a) The dashed lines illustrate K–C contacts. Key bond distances (Å) and angles (°): K1–C30, 3.128(4); K1–C31, 3.568(4); K1–C35, 3.525(5); K1–N2, 3.072(5); K1–C300, 3.064(4); K1–N11, 3.174(3); K1–C311, 3.318(12); Mg1–N1, 2.028(3); Mg1–N2, 2.029(3); Mg1–C30, 2.248(2); N1–K11, 3.174(3); C30–K11, 3.064(4); C31–K11, 3.318(4); C35–K11, 3.282(4); C300–K1–N2, 141.24(7); C300–K1–C30, 117.75(11); N2–K1–C30, 70.50(7); C300–K1–N11, 68.49(7); N2–K1–N11, 140.92(8); C30–K1–N11, 125.30(7); N2–K1–C35, 138.89(18); N11–K1–C35, 79.53(18); N2–K1–C311, 117.52(17); N1–K1–C311, 84.4(2); N2–K1–C35, 84.54(7); N11–K1–C35, 124.33(7); N1–Mg1–N2, 136.08(12); N1–Mg1–C30, 110.30(14); N2–Mg1–C30, 113.46(14); N1–Mg1–K1, 163.39(9); N2–Mg1–K1, 56.44(8); C30–Mg1–K1, 57.68(11); N1–Mg1–K11, 57.09(8); N2–Mg1–K11, 166.22(9); C30–Mg1–K11, 54.13(11); K1–Mg1–K11, 111.79(5); Mg1–N1–K11, 90.48(10); Mg1–N2–K1, 90.17(9); Mg1–C30–K11, 89.38(12); Mg1–C30–K1, 84.91(10). The symmetry operation used to generate the equivalent atoms labelled with \textit{i} is \textit{x}, \textit{y}, \textit{z} + 1; and \textit{ii} is \textit{x} – \textit{x}, \textit{y}, \textit{z} + 1.
symmetry (Fig. 5). Its cationic ring is essentially isostructural to those of 2a/b,163 but its core contains six monodeprotonated naphthalene ligands. This macrocycle features a 24-atom (KNMgN)₆ ring, with significant interactions between K and the π-system of the naphthalene ring resulting in a series of smaller doubly fused four-atom ring appendages, mirroring the situation witnessed in the polymer 3 and hexamer 5. The faces of each naphthalene unit are orientated to maximize the number of contributing π interactions with the nearest K atom but the naphthalene ring inclines slightly to favour one face. As a consequence, the equivalent K atoms engage in two distinct π-interactions, firstly binding to a naphthalene anion in a classical η¹ mode via the 1, 2, and 3-positions. The second interaction is to a second naphthalene anion; however, this is considerably weaker and is tending towards η¹ hapticity [for η¹, K₁’’’–C₃₀, 3.064(4); K₁’’’–C₃₁, 3.318(4); K₁’’’–C₃₅, 3.282(4); for η¹, K₁–C₃₀, 3.128(4); K₁–C₃₁, 3.568(4); K₁–C₃₅, 3.525(5) Å]. These K–C (naphthalene) π-interactions also describe two elegant internal structures, a 12-atom hexagonal arrangement propagating through the 2-position of the naphthalene, and a complementary 12-atom, six-pointed star structure consisting exclusively of K π-interactions160–163 to C₃-position of the naphthalene group. The significant K-(naphthalene) π-interactions make these smaller secondary rings essentially planar, revealing a doubly sided “paddle wheel” motif. When viewed side on, the (KNMgN)₆ ring is extremely puckered, in an identical fashion found for hexamer 5 (Fig. 5b). The Mg centres are trigonal planar as in all previous inverse crown complexes, and are σ-bound to the 2-position of the naphthalene ring system and also to two bridging TMP N atoms [N₁–Mg₁–N₂, 136.08(12); N₁–Mg₁–C₃₀, 110.30(14); N₂–Mg₁–C₃₀, 113.46(14)]°. The short Mg–C [Mg₁–C₃₀, 2.248(2) Å], and Mg–N bonds [Mg₁–N₁, 2.028(3); Mg₁–N₂, 2.029(3) Å], reveal that the metal is strongly bound to the naphthalene and TMP ligands. Within the host metal-amido ring system, each metal points inwards towards the centre of the molecule, exhibiting obtuse exocyclic bridging angles [N₁–Mg₁–N₂, 136.08(12); N₂–K₁–N₁’, 140.92(8)]°, with concomitant projection of the N atoms outwards away from the centre, with these endocyclic bond angles being nearly acute (mean angle = 90.33°).

The poly-naphthalene-ide inverse crown 6 exhibits low solubility in common non-polar deuterated hydrocarbon solvents; so NMR spectroscopic characterisation in the more polar (coordinating) d₅-THF has been used at the potential cost of changing the nature of the structure by deaggregating the hexamer. Consistent with the 2-magnesiation seen in the solid-state structure, the ¹H NMR spectrum for 6 shows seven spectroscopically unique and inequivalent aromatic resonances. The downfield singlet and doublet at 8.37 ppm and 8.20 ppm, respectively, are attributed to C₁₁–H and C₁₃–H, adjacent to the Mg–C bond. The doublet at 7.31 ppm is attributed to C₄–H and the non-deprotonated second ring of the naphthalene ligand gives rise to four distinct resonances between 7.01 and 7.57 ppm. The ¹³C NMR spectrum mirrors that observed above, with seven distinct resonances in the aromatic region representative of the seven unique C–H environments.

Previous examples of potassium-mediated magnesiations163 with dinuclear Lewis base stabilized potassium alkyl-amido-magnesiates reveal that they react kinetically with arenes via their TMP anion [to afford a new organometallic as well as TMP(H)]. Ultimately, in turn these two compounds react together to produce the thermodynamic organometallic amide product and alkane co-product. This two-step mechanism has only been demonstrated with relatively simple dinuclear Lewis base stabilized motifs such as (PMDETA).K(TMP)(CH₃SiMe₃)Mg(TMP) (PMDETA is N,N’,N”-,N”’-pentamethyldiethylenetriamine) which critically do not generate inverse crowns but retain their dinuclearity post metallation of the arene. In contrast the systems herein are Lewis base having high polynuclear structures that appear set up to be able to deprotonate arenes thermodynamically in a single step through alkyl basicity.

Extension to sodium

Next it was decided to investigate a sodium base system with naphthalene. Following the precedent set by the potassium pre-inverse-crown system, by treating equimolar quantities of freshly prepared NaTMP, and ¹⁵BuMgTMP in hydrocarbon solvents it was envisaged that these reagents could co-complex resulting in a potential precursor to 1a/b.49 This strategy was successfully employed in methylecyclohexane solution to generate “NaMg(TMP)₂”Bu” 7 (Scheme 4). Sodium magnesiate 7 could be crystallised and isolated in a 61% yield from a methylecyclohexane solution at 8 °C. Unfortunately, attempts to obtain high quality crystallographic data for crystalline 7 were unsuccessful due to the high disorder found in both TNP and n-butyl ligands present within the structure. However, ¹H NMR spectroscopic data (obtained from a cyc-C₆D₁₂ solution) are consistent with the 2 : 1 TNP:²Bu composition expected for 7. When an equimolar mixture of NaTMP and ²BuMgTMP is dissolved in cyc-C₆D₁₂, its ¹H NMR spectrum is identical to that obtained from a solution of isolated crystals of 7 in the same solvent.

It is immediately apparent that the composition of the sodium magnesiate 7 (Na:Mg ratio, 1 : 1) is different from the polyamide ring required to form inverse crowns 1a/b (Na:Mg ratio, 2 : 1). Therefore it was decided to assess whether a hydrocarbon solution of 7 could be a precursor to 1a/b or whether a different species was active in the preparation of the known inverse crown complexes.49 Thus it was discovered that on treating 7 with an equimolar quantity of benzene or toluene, the respective inverse crowns 1a/b could be isolated from the reaction solutions albeit in moderate yields (63% and 48%, for C₆H₆ and C₆H₅CH₃, respectively). Significantly, however, when 7 is pre-treated with an additional equivalent of NaTMP (to match the observed 2 : 1
NaMg stoichiometry within the metal-amido rings in 1a/b⁴ even the isolated yields of the inverse crowns were improved (to 73% and 88%, for C₆H₄ and C₆H₄CH₃ respectively). It is well known that NaTMP is insoluble in hydrocarbon solvents at ambient temperature, however, on adding NaTMP to a hydrocarbon solution of 7 at ambient temperature, homogeneity was achieved, most likely indicating that the amide has co-complexed with the pre-existing sodium magnesate species 7. Thus far we have been unable to isolate crystalline/solid material from 7-NaTPM, but ¹H NMR spectroscopic studies of the reaction mixture in cyc-C₆D₁₂ reveal that the equilibrium shown in Scheme 4 could be involved as a new species appears to form (broad singlet at ~0.43 ppm attributed to a x-CH₃ from a new n-butyl from Na₂MgTMP₃(But)) and a reduced quantity of free NaTMP is observed (see, ESI†).

In order to probe the deprotonative capability of the bimetallic complexes, 7 and 7-NaTMP, each was reacted with an equimolar amount of naphthalene in methylcyclohexane solution. To the best of our knowledge (vide supra), using conventional alkyl lithium or existing organo-bimetallic bases, naphthalene has only been regioselectively mono-metallated at the 2-position or di-metallated at 2,6-positions. On utilising 7, we have established a new unprecedented metallation pattern for naphthalene, namely selective 1,4-di-metallation. Along with this novel regioselectivity, the reaction produces a novel new inverse crown in [Na₄Mg₆(TMP)₄(TTHP)₂(1,4-C₁₀H₈)] 8 (Fig. 6) (where TTHP is 2,2,6-trimethyl-1,2,3,4-tetrahydroprpyridine). The 12-atom Na₄Mg₆N₈ ring is slightly bent and the naphthalene di-ide group lies in an orthogonal manner to the mean plane of the poly-amido-metallic ring. The di-cationic ring forms a six-pointed star with those corresponding outer N atoms and inner Mg and Na atoms. In 8, the C–H missing bonds from the naphthalene are replaced by strong C–Mg σ-bonds (mean distance, 2.220 Å) and are comparable to those in 1a/b (2.196 Å). The Mg atoms adopt distorted trigonal-planar geometries and the N–Na–N units are coplanar with the magnesium carbons to maximize the C–Na π-interactions. The sodium atoms in 8 lie above and below the metallated aromatic ring faces, and engage π-interactions with the C atoms in 1, 2- and 3, 4-positions (Na–C, 2.674–3.265 Å). The Na–N TMP bonds within the inverse crown structure (mean distance, 2.534 Å) are 0.493 Å longer than those strong N–Mg TMP (mean 2.041 Å) bonds.

This compound was isolated in a 51% yield. Matching previous results, 8 was isolated in higher yield (76%) by reacting equimolar quantities of 7-NaTMP and naphthalene. At first glance, the X-ray determined structure of 8 displays a 12-atom Na₄Mg₆N₈ cationic metal-amido ring which appears identical to that in 1a/b however, two of the six amide ligands appear to have formally lost methane to produce TTHP anions. It should be stressed that this reaction leading to 8 is completely reproducible and that an inverse crown with all six intact TMP ligands has not been isolated when naphthalene has been utilized as the arene substrate. This perhaps suggests that the arene’s increased steric bulk (with respect to benzene or toluene in 1a and b, respectively) has forced a sterically-driven demethylation of the amide. To the best of our knowledge this is the first time that a complex which contains a demethylated TMP ligand has been characterized; however, Shiner and coworkers have previously shown some indirect evidence for a demethylation process involving LiTMP.⁵¹⁶ Returning to 8, its ¹H NMR spectrum obtained from a cyc-C₆D₁₂ solution appears...
to show that the complex remains intact in solution. Most indicative of this fact is that a sharp resonance for the two Me groups present on the π-C(sp³) of the 2,2,6-trimethyl-1,2,3,4-tetrahydropryridine ligand are situated over the π-face of the arene rendering them highly shielded causing an upfield shift to 0.06 ppm (see ESI). As expected, the spectrum also shows a singlet and two multiplets (7.92, 7.95 and 7.29 ppm, respectively) in the aromatic region in a 1 : 1 : 1 ratio assignable to a 1,4-dideprotonated naphthalene consistent with the 1,4-dimagnesiation of the arene observed in the crystal structure. The 13C NMR spectrum replicates the situation indicated by the appearance of the 1H NMR spectrum. An intriguing question to ask is “why does the sodium magnesium induce a two-fold deprotonation whilst the assumed more reactive potassium magnesium solution only mono-metallates naphthalene?” One plausible explanation is that the larger rings formed in the potassium case allow the heavier, softer alkali metal to maximise its stabilisation via π-arene interactions, especially as the reaction medium is free of donor atoms. Fig. 5a implies that each K centre receives a double helping of π-interactions, a situation that would not be possible if Na was simply replaced by K in 8 (Fig. 6). Moreover in comparing 6 with 8 and speculating on the nature of their pre-inverse-crowns (presumably for K it must be stressed that we are not comparing like with like as the K case has a 1 : 1, K:Mg stoichiometry; whereas in the Na case, the corresponding ratio is 2 : 1.

Reactivity studies of the new inverse crowns

Turning to the utility of the potassium system 6 in synthesis (Scheme 5), when an in situ methylcyclohexane suspension of 6 is reacted with iodine in THF solution, 2-iodonaphthalene11,12,16,169 9 was isolated in 67% yield. When the reaction was repeated using isolated 6 suspended in methylcyclohexane, 9 was obtained in a significantly higher yield (84%).

To assess the potential synthetic utility of the sodium system 7, an in situ solution mixture of 7-NaTMP in methylcyclohexane and naphthalene were reacted and subsequently treated with iodine in THF. After work-up, the formation of 1,4-diodonaphthalene 10 in an 86% yield was accomplished.170 When isolated 8 suspended in methylcyclohexane was reacted with iodine in THF solution, a marginally improved conversion to 10 was observed (to 89% yield).

Conclusions

In summary, by synthesising and managing to isolate crystalline alkali metal magnesiates containing a combination of two TMP ligands and one n-butyl ligand but no donor solvent ligands, we have gained access to valuable precursors to inverse crown macrocyclic complexes. The idea that these unsolvated bimetallic compounds could function as pre-inverse-crowns came from the remarkable structural chemistry of [K(OMe)(TMP)]−[CH2CH2Bu]+, with three oligomeric states revealed (tetrameric, hexameric and polymeric), with architectural features closely akin to existing inverse crowns but with the deprotonated entity substituted by an active alkyl base ligand. Confirmation of their pre-inverse-crown status was established through reactions with naphthalene that in executing regioselective mono- and di-deprotonation of the arene produced novel new types of inverse crown. With these new pre-inverse-crowns in hand, and others likely to follow, the floodgates for broadening the scope of inverse crown chemistry have been opened wide.†

Acknowledgements

This research was supported by the UK Engineering and Physical Science Research Council (EP/J001872/1 and EP/L001497/1); (Career Acceleration Fellowship to CTOH), the Royal Society (Wolfson research merit award to REM) and the Royal Society of Edinburgh/BP Trust, (Fellowship to SDR). We also thank Prof. E. Hevia for many helpful insightful comments.

References

Chemical Science

113 The standards used for DOSY were: tetramethyldisilane, 1-phenylpenanthrene and 1,2,3,4-tetraphenylnaphthalene.

