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Ruthenium-catalysed Z-selective cross metathesis
of allylic-substituted olefins†

Brendan L. Quigley and Robert H. Grubbs*

The Z-selective cross metathesis of allylic-substituted olefins is explored with recently developed

ruthenium-based metathesis catalysts. The reaction proceeds with excellent stereoselectivity for the Z-

isomer (typically >95%) and yields of up to 88% for a variety of allylic substituents. This includes the first

synthesis of Z-a,b-unsaturated acetals by cross metathesis and their elaboration to Z-a,b-unsaturated

aldehydes. In addition, the reaction is tolerant of a variety of cross partners, varying in functionality and

steric profile.
Introduction

Transition metal-catalysed olen metathesis is a powerful tool
for the synthesis of carbon–carbon double bonds in a wide
variety of applications.1 However, a major limitation of
metathesis has been the lack of a method to selectively generate
the Z-olen product.2 The recent advent of metathesis catalysts
that have a preference for the Z-isomer has, for the rst time,
allowed Z-alkenes to be produced in a general manner.3,4

Though high Z-selectivity has been achieved, the broad reac-
tivity prole characteristic of previous generations of metath-
esis catalysts is still under development.

Ruthenium-based catalysts that contain a chelating NHC
ligand, such as 1 and 2 (Fig. 1), are one class of the recently
developed Z-selective metathesis catalysts.4,5 In these catalysts,
the chelating N-adamantyl substituent6 and bidentate nitrato
ligand7 were found to be key to achieving high Z-selectivity
across a broad range of reactions, including ethenolysis,8

macrocyclic ring-closing metathesis,9 ring-opening metathesis
polymerization,10 asymmetric ring-opening cross metathesis,11

as well as in the more broadly applicable cross metathesis (CM)
of two terminal olens.4,5,12,13 In particular, catalyst 2 has
demonstrated Z-selectivities of >95% while achieving turnover
numbers of �7000 in cross metathesis of unhindered terminal
olens.5 In contrast, allylic-substituted olens represent a more
challenging class of substrates for Z-selective cross metathesis.
Allylic substitution introduces increased steric bulk, which can
further destabilize the cis-conformation over the trans-confor-
mation of the carbon–carbon double bond.14 Notably, this
results in highly selective formation of the E-product (oen
>90%) with previous generations of Ru metathesis catalysts
hemical Synthesis, Division of Chemistry

tute of Technology, Pasadena, California
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such as 3 and 4.15,16 While cross metathesis of some allylic-
substituted olens has been very recently achieved with
Z-selective Mo-based catalysts (e.g. 5 and 6),17,18 this has not
been explored with Z-selective Ru-based catalysts. Previous
results have demonstrated that substrates with allylic substi-
tution undergo negligible conversion in homodimerization
reactions due to the high strain of the products;4,13 however,
their reactivity in hetero-cross metathesis has not been
explored.19 Ru-basedmetathesis catalysts in general show broad
functional group tolerance and are comparatively air and water
stable, lending them to many applications.16,20 Achieving cross
metathesis of allylic-substituted olens represents an impor-
tant and essential advance in expanding the reactivity prole of
Z-selective Ru-based metathesis catalysts.

Vinyl acetals were identied as important allylic-substituted
olens which had not been explored in Z-selective metathesis
with either Ru- or Mo/W-based catalysts. The products afforded,
namely Z-a,b-unsaturated acetals, also serve as precursors to the
corresponding Z-a,b-unsaturated aldehydes. E-a,b-Unsaturated
aldehydes are available utilizing earlier generations of
Fig. 1 Ruthenium- and molybdenum-based metathesis catalysts.
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Table 1 Optimization of CM reaction between vinyl dioxolane (7) and
1-dodecene (8)

Entry
2
(mol%)

7
Equiv.

Conc.
(M)

Yielda

(%)
Z-Selectivitya

(%)

1 5 6 0.5 84 93
2 5 4 0.5 87 94
3 5 2 0.5 80 95
4 2 4 0.5 83 95
5 2 4 0.3 92 94
6 2 2 0.5 80 95
7 2 2 1.0 66 95
8 2 2 0.3 82 [87]b 95 [94]b

9 1 2 0.5 74 95

a Yield and Z-selectivity determined by GC using tridecane as an
internal standard; average of two experiments. b Value at 7 hours.

Table 2 CMof vinyl dioxolane (7) and 1-dodecene (8), varying the ratio
of 7 to 8

Entry 7 Equiv. 8 Equiv. Yielda (%) Z-Selectivitya (%)

1 2 1 63 [84]b 93 [92]b

2 4 1 65 [94]b 91 [91]b

3 1 2 82 95
4 1 4 92 94

a Yield and Z-selectivity determined by GC using tridecane as an
internal standard; average of two experiments. b Value at 7 hours.
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metathesis catalysts.15 Both classes of compounds are of
signicant interest for a variety of applications. A number of
naturally occurring Z-a,b-unsaturated aldehydes contribute to
the scents of various plants and are therefore of interest to the
fragrance industry.21 These functionalities also occur in phero-
mones of several insect species and are potentially of use for
mating-disruption as an environmentally friendly alternative to
pesticides.22 In both plants and animals, Z-a,b-unsaturated
aldehydes are produced during metabolism and their relative
abundance is regulated by a number of external and internal
stimuli. As a result, some cancer detection and food quality
assays rely on these compounds as key indicators.23 Z-a,b-
Unsaturated acetals and aldehydes also have signicant
synthetic utility, resulting in their appearance as key interme-
diates in the synthesis of a number of natural products.24

Furthermore, a,b-unsaturated acetals have been extensively
explored as substrates for a number of base- and metal-
promoted rearrangements.25 However, while Z-a,b-unsaturated
acetals and aldehydes are much sought aer, general, broad
methods for their synthesis are rare.

Reagents have been developed for the two-carbon homolo-
gation of aldehydes to the corresponding a,b-unsaturated
compounds, but achieving high Z-stereoselectivity is oen
challenging and unpredictable.26 This results in the employ-
ment of less efficient, multi-step methods.27 For example, the
Still–Gennari modication of the Horner–Wadsworth–Emmons
reaction28 affords the Z-a,b-unsaturated ester, which can then
be reduced to the allylic alcohol and oxidized to afford the
aldehyde. In an alternative strategy, alkynyl acetals can be
generated by cross-coupling or alkylation, subsequent semi-
hydrogenation (typically with Lindlar’s catalyst) and depro-
tection to yield the desired product. Z-Selective metathesis
represents an attractive route to a,b-unsaturated acetals and
aldehydes that overcomes several shortcomings of the above-
mentioned methods. Previous methods necessitate the use of
strong bases, sensitive organometallic complexes or redox
reagents resulting in extensive functional group protections of
complex molecules.24,26–28 In contrast, Z-selective metathesis is a
more direct method with broad functional group tolerance,
reducing the need for protecting groups. In addition, both
starting materials are readily available/accessible: vinyl acetals
can be efficiently prepared from acrolein29 and cross partners
can be sourced from the vast olen chemical feedstock.

Results and discussion

We selected vinyl acetal 7 to explore the optimization of the
reaction conditions (Table 1). Acetal 7 is commercially available
and the 1,3-dioxolane derivative has enhanced stability to silica
gel over acyclic acetals, making it one of the most commonly
employed carbonyl protecting groups.30 1-Dodecene (8) was
chosen as a cross partner due to its low volatility and known
homodimerization by 1 and 2.5,13 Initial conditions utilised 6
equivalents of 8 and 5 mol% of catalyst 2 (entry 1). Under these
conditions, product 9 was generated in good yield and high Z-
selectivity, with maximum conversion reached at 3 hours. A
reduction in the equivalents of 8 and a decrease in catalyst
502 | Chem. Sci., 2014, 5, 501–506
loading were then examined (entries 2–4). Four equivalents of
terminal olen and 2 mol% of catalyst were found to be
optimal, giving a similar yield and slightly improved Z-selec-
tivity to initial conditions. Lowering the concentration (entry 5)
led to a signicant increase in yield, generating product 9 in
92% yield and with 94% Z-selectivity. It is worth noting that
across the variety of reaction conditions explored, the Z-selec-
tivity remained consistently high. Further reductions in the
excess of terminal olen and lowering of catalyst loading were
both viable but led to longer reaction times and a slight
reduction in yield (entries 6–9). In order to demonstrate the
versatility of this method, we also explored conditions in which
8 was used as the limiting reagent (Table 2, entries 1–2).
Although longer reaction times were required, using 4 equiva-
lents of 7 was found to give comparable yield of product with
high Z-selectivity. As in the case of excess 8 (entries 3–4), using 2
equivalents resulted in a lower yield.

Under the optimized conditions, we explored reactivity of a
number of commercially available Ru-based metathesis cata-
lysts including Z-selective catalyst 1, as well as the commonly
This journal is © The Royal Society of Chemistry 2014
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Table 4 CM of allylic-substituted olefins with 1-dodecene (8)a

a Isolated yields. Z-Selectivity determined by 1H NMR (see ESI for
details). b Reaction conducted at 20 �C. c Methyl-10-undecenoate was
used in place of 8.
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employed bis-phosphine catalyst 3 and NHC-substituted cata-
lyst 4. Notably, catalyst 2 generated product 9 in 94% Z-selec-
tivity (Table 3, entry 2). This is in strong contrast to catalyst 1,
the previously best Z-selective Ru catalyst, which only achieved
76% selectivity for the Z-isomer (entry 1), clearly highlighting
the improved selectivity of catalyst 2 over 1. Both Z-selective
catalysts complement previous generations of Ru-complexes (3
and 4), which yield the more thermodynamically stable E-olen
as the major product in comparable yield (entries 3 and 4). It is
worth noting that both isomers of product 9 can be generated
in high yield and selectivity with Ru-based metathesis
catalysts.

The reaction substrate scope was investigated on a
preparative scale (0.8–1.0 mmol) with catalyst 2 and we were
pleased to nd these conditions were applicable to a variety
of vinyl acetals (Table 4).31 Vinyl dioxolane cross product (9)
was afforded in 82% isolated yield and with >95% Z-selec-
tivity. Other ve and six-membered acetal substrates (10–12)
performed consistently well, yielding the desired product in
79–85% yield and >95% Z-selectivity. In the case of dimeric
acetal 13, the Z,Z-product is afforded as the major isomer
(89%) and the Z,E-isomer is the only other observed product
(11%). This is consistent with the statistical outcome of two
independent steps of �94% Z-selectivity.32 The acyclic diethyl
acetal afforded cross product 14 in high Z-selectivity, albeit at
a slightly reduced yield. Attempts to extend this methodology
to related olens with quaternary allylic substitution (vinyl
ketals and orthoesters) have so far been met with limited
success.

In order to provide further insight into reactivity, we decided
to probe a variety of other substrates with related allylic func-
tionalities. Vinyl pinacol boronate has previously been shown to
afford highly trans cross products with catalyst 3 (typically,
>95% E).15,33 Such products are of use for subsequent Suzuki
cross-coupling reactions, where olen geometry can be effi-
ciently transferred.34 Here, Z-cross product 15 could be gener-
ated in good yield (81%) and high Z-selectivity (92%). This result
compares favourably with a report by Schrock, Hoveyda and co-
workers, except here the typically less expensive terminal olen
can be used in excess.17 Additionally, we investigated 2-vinyl-
oxirane as a substrate for this reaction. Though cross product 16
Table 3 CM of vinyl dioxolane (7) and 1-dodecene (8) using various
Ru-metathesis catalysts

Entry Catalyst Yielda (%) Z-Selectivitya (%)

1 1 87 76
2 2 92 94
3 3 96 10
4 4 92 5

a Yield and Z-selectivity determined by GC using tridecane as an
internal standard; average of two experiments.

This journal is © The Royal Society of Chemistry 2014
could be formed in excellent Z-selectivity, the reaction pro-
ceeded in only moderate yield.35

The reactivity of vinyl cyclopentane, the all-carbon
analogue of substrate 7, was then examined. In this case,
methyl-10-undecenoate was used in order to facilitate sepa-
ration of the cross product from the homodimer of the
terminal olen. While Z-selectivity of product 17 was good
(94%), the yield was signicantly lower than that for 9 (44% vs.
82%). Increased catalyst loading or gradual addition of vinyl
cyclopentane were unsuccessful in restoring the high yields
observed in the case of the acetal. Furthermore, vinyl cyclo-
hexane, which is more sterically demanding, demonstrated
vastly diminished reactivity, with only minimal conversion
aer 5 hours.

An important factor in achieving a synthetically useful Z-
selective CMmethodology is tolerance of functional groups that
are present in complex molecules. Reaction conditions were
found to be compatible with a variety of terminal olens, which
formed cross products with 7 in 72–88% yield and 89–>95% Z-
selectivity (Table 5). Notably, several moieties useful for further
functionalization could be incorporated, including unprotected
alcohols (20)36 and alkyl bromides (21). Though cross metath-
esis with N-allylaniline resulted in a reduced yield (18% yield,
94% Z), reactivity was restored on protection with a benzyl
group. The increased steric bulk, however, likely resulted in the
slightly reduced Z-selectivity noted for product 22 (72% yield,
89% Z). Allyl pinacol boronate, a moiety useful for subsequent
stereospecic allylation,17,37 was also found to be compatible
with the reaction conditions generating product 23 in >95% Z-
Chem. Sci., 2014, 5, 501–506 | 503
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Table 5 CM of vinyl dioxolane (7) with various terminal olefinsa

a Isolated yields. Z-Selectivity determined by 1H NMR (see ESI for
details). b Reaction stopped at 3 hours.

Scheme 1 CM of vinyl dioxolane (7) and allyl pinacol boronate and
one-pot conversion to allylic alcohol.

Table 6 Deprotectionof alkenyldioxolane9andalkenyldiethyl acetal11

Entry Subst. Reagents

Z-Selectivity (%)

Yield (%)Initial Final

1 9 SiO2, oxalic acid
a >95 >95 Quant.

2 11 SiO2, oxalic acid
a >95 >95 Quant.

3 9 LiBF4
b >95 >95 95

4 11 LiBF4
b >95 >95 92

a SiO2 2.5 g mmol�1 with 9/11; 5% aq. oxalic acid 10% w/w with SiO2;
DCM (0.05 M); r.t., 10 min. b 1.3 eq. LiBF4; 97 : 3 MeCN : H2O (0.1 M);
r.t. 10 min.
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selectivity (Scheme 1). In order to facilitate purication, 23 was
converted to Z-allylic alcohol 24, which was obtained in
good yield and high Z-selectivity over the two steps (63%
yield, >95% Z).

One of the most important uses of Z-a,b-unsaturated acetals
is as precursors to the corresponding Z-a,b-unsaturated alde-
hydes. However, achieving stereo-retentive deprotection is non-
trivial and there are only a handful of previous examples in the
literature.27b,38 Therefore, a number of conditions were evalu-
ated for deprotection of acetals without loss of Z-stereo-
selectivity (Table 6). Alkenyl acetals 9 and 11 were selected as
they contain two of the most commonly utilised acetal func-
tionalities.30 Deprotection could be effected with Brønsted acid
for both 9 and 11 using previously reported reagents (entries 1
and 2).39 Additionally, LiBF4,40 which had not been previously
utilised for deprotection of Z-a,b-unsaturated acetals, could
also effect the deprotection with excellent retention of alkene
stereochemistry (entries 3 and 4).41 This mild method of
cleaving the acetal has been demonstrated to be compatible
with a wide variety of functional groups.40,42 This would allow
incorporation of the more-stable Z-a,b-unsaturated acetal as a
504 | Chem. Sci., 2014, 5, 501–506
masked aldehyde that can be deprotected when needed,
lending this methodology to the synthesis of complex
molecules.
Conclusions

In summary, we have demonstrated that a single ruthenium-
based metathesis catalyst can effect the Z-selective cross
metathesis of a variety of allylic-substituted olens with ster-
eoselectivity for the Z-olen typically in excess of 95%. In doing
so, we have developed a mild method for the synthesis of Z-a,b-
unsaturated acetals and aldehydes that delivers excellent ster-
eoselectivity and is compatible with a variety of functional
groups. Further exploration of reactivity with sterically hindered
olens in tandem with continued development of new catalysts
offers the potential to afford Z-olens with the broad reactivity
prole exhibited by previous generations of ruthenium
metathesis catalysts.
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