RSC Advances

PAPER

View Article Online View Journal | View Issue

Cite this: RSC Adv., 2014, 4, 62140

Received 25th October 2014 Accepted 12th November 2014

DOI: 10.1039/c4ra13143f

www.rsc.org/advances

Direct C-H amination and C-H chloroamination of 7-deazapurines†

Nazarii Sabat, ab Martin Klečka, ab Lenka Slavětínská, b Blanka Klepetářová b and Michal Hocek*ab

Protocols for selective Pd-Cu-catalyzed direct C-H amination or C-H chloroamination of 7-deazapurines with N-chloro-N-alkyl-arylsulfonamides have been developed leading either to 8-(arylsulfonyl)methylamino-7-deazapurines or to 7-chloro-8-(arylsulfonyl)methylamino-7deazapurines. The scope and limitations of the methods, as well as synthesis of a small series of 6,8,9-tri- and 6,7,8,9-tetrasubstituted 7-deazapurines and deprotection of the sulfonamide are presented

Introduction

Modified pyrrolo[2,3-d]pyrimidine (7-deazapurine)¹ bases and nucleosides display a variety of biological effects. Substituted 7-deazapurine bases induct neurogenesis² or exert antitumor3 or antiinflammatory4 activity, whereas 6- or 7-aryl-7-deazapurine nucleosides are potent cytostatics.^{5,6} Therefore, development of regioselective synthesis of 7-deazapurines bearing multiple substituents is a worthwhile goal. Some regioselective cross-couplings of di- or trihalogenated pyrrolo[2,3-d]pyrimidines were recently reported for the synthesis of di- or triaryl derivatives.7,8 We have developed regioselective C-H borylation9 and C-H sulfenylation10 leading to 8-B- or 8-S-substituted 7-deazapurines. Here we report on complementary C-H aminations.

Metal-catalyzed direct C-H aminations are increasingly popular reactions for modifications of arenes and heterocycles.11-14 One of the most efficient reagents are N-chlorosulfonamides under Pd/Cu catalysis.13 Inspired by related C-H aminations of indoles,13 we decided to study the C-H aminations of pyrrolo[2,3-d]pyrimidines (7-deazapurines). The only previously reported C-H amination of 7-deazapurine was performed through hypervalent iodanes and proceeded at position 7.14

Results and discussion

For our initial study, we selected easily accessible 6-phenyl-9benzyl-7-deazapurine 1a.9 We started testing its reaction with N-chloro-N-methyl-tosylamide 2 under literature¹³ conditions in presence of Pd(OAc)₂, Cu(acac)₂, 2,2'-bipyridine (bpy), Na₂CO₃ in dioxane (Scheme 1 and Table 1). The reaction with 2 equiv. of 2 in presence of 2 equiv. of Na₂CO₃ gave the desired 8-tosylamino product 5a in 13% only (entry 1). The use of a larger excesses of the base (5-7 equiv.) and of reagent 2 (3 equiv.) led to only low increase of yields (18-29%). Only the use of large excess (5 equiv.) of 2 gave product 5a in acceptable preparative yields of 68%.

In order to have a choice of some more easily cleavable N-protecting groups,15 we also tested 4-nitrophenylsulfonyl-(p-nosyl, pNs) and 2-nitrophenylsulfonyl (o-nosyl, oNs) chloroamides 3 and 4. The reaction of 1a with pNs reagent 3 (3 equiv.) gave the 8-p-nosylamino product 6a in acceptable 48% yield (entry 6). The reactions of 1a with oNs chloroamide 4 (2-3 equiv.) gave very low conversions (see Table S1 in ESI†), whereas the reaction with 5 equiv. of 4 gave a mixture of the desired product of 8-amination 7a (28%) accompanied by 7-chloro-

Scheme 1 C-H aminations of 1a

^aDepartment of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic

^bInstitute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic. E-mail: hocek@uochb.cas.cz

[†] Electronic supplementary information (ESI) available: Complete experimental part and characterization of all compounds, additional figures of X-ray structures, copies of NMR spectra. CCDC 1014817-1014820. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ra13143f

6

Entry	Ar	2-4 (equiv.)	Na ₂ CO ₃ (equiv.)	Product(s) (yield)	
1	4-MePh	2 (2)	2	5a (13%)	
2	4-MePh	2 (2)	5	5a (18%)	
3	4-MePh	2 (3)	5	5a (25%)	
4	4-MePh	2(3)	7	5a (29%)	
5^b	4-MeDh	2 (5)	7	59 (68%)	

7

5

Table 1 Optimization of C-H aminations of 7-deazapurine 1a with N-chloro-N-methyl-arylsulfoneamides $(2-4)^a$

3(3)

4(5)

4(3)

8-amino- 8a and 7-chloro-7-deazapurine 9a as side-products. Apparently, the chloroamide 4 in larger excess can act as an electrophilic chlorination reagent which halogenates the deazapurine at position 7 (similarly as it was shown in indoles¹³). Therefore, we performed a detailed optimization of this reaction using different ratios of reagents, catalysts and additives and different conditions (see Table S1 in ESI†). The optimum protocol for aminations used 3 equiv. of 4 in presence of large excess of Na₂CO₃ (7 equiv.) to give the desired product 7a in 60% yield (Table 1, entry 8).

4-NO₂Ph

2-NO₂Ph

2-NO₂Ph

The detailed optimization also revealed some ratios of reagents and conditions under which the chloroamination proceeds. Also inspired by the related work on indoles, 13 we employed CuCl as copper source, Ag₂CO₃ as base and LiCl as additive (Table S1 in ESI†) to find an optimum protocol leading exclusively to chloroamination, 13,16 employing 4 (3 equiv.) in presence of Pd(OAc)2, CuCl (10 mol%), LiCl (2 equiv.) and Ag_2CO_3 (2 equiv.).

The next step was the study of the scope and limitation of the methods. A series of five 9-benzyl-7-deazapurine derivatives 1a-1e bearing phenyl, methoxy, methyl, chloro or amino group at position 6 was tested in the amination and chloroamination

C-H Amination Bn Bn 7a-7c C-H Chloroamination C-H Amination i) 8a-8b Bn i) 4, Pd(OAc)₂, Cu(acac)₂, bpy, Na₂CO₃ (7 equiv.), dioxane, rt ii) 4, Pd(OAc)2, CuCl, LiCl, Ag2CO3 (2 equiv.), dioxane, rt

Scheme 2 C-H aminations and chloroaminations of 7-deazapurines.

protocols (Scheme 2 and Table 2). The preparative aminations were performed with choroamide 4 (3 equiv.) in presence of Pd(OAc)₂, Cu(acac)₃, bpy and 7 equiv. of Na₂CO₃. The reactions of 6-phenyl, -methoxy and -methyl deazapurines proceeded give desired 8-(o-nosyl)methylamino-7smoothly deazapurines 7a-7c in acceptable yields of 41-62%. Conversely, analogous reaction of 6-chloro- and 6-aminoderivatives 1d,e led to very complex inseparable mixtures.

6a (47%)

7a (28%) + 8a (33%) + 9a (25%)

Then we tested the chloroamination protocol on the same series of deazapurines 1a-1e. The reactions with 4 (3 equiv.) were performed in presence of Pd(OAc)2, CuCl, LiCl and Ag₂CO₃. The reactions of 6-phenyl and 6-methoxy derivatives 1a,b proceeded well to get desired 7-chloro-8-(oNs)MeNH-7deazapurines 8a,b in acceptable yields of 51 and 42%, whereas the reaction of 6-methyl derivative 1c gave low conversion to inseparable mixture containing products of chlorination and chloroamination. Similarly, the reactions of 6chloro- and 6-aminodeazapurines 1d,e gave complex inseparable mixtures. Finally, 6-phenyl-7-chloro-7-deazapurine 9a was also converted to 7-chloro-8-aminated derivative 8a in 41% yield showing that the chlorine at position 7 is better tolerated (as it is less reactive toward nucleophiles) than the chlorine at position 6.

The last goal in this study was to test a deprotection of the sulfonamides and the stability of the corresponding 8-amino-7deazapurines (2-aminoindoles are prone to tautomerization17 and oxidation18). Any attempt to cleave the Ts- or pNs-groups in

2 Preparative C-H aminations chloroaminations 7-deazapurines

Entry	Starting compd	R	Product (yield)
1	1a	Ph	7a (62%)
2	1b	OMe	7b (60%)
3	1c	Me	7c (41%)
4	1d	Cl	Complex mixture
5	1e	NH_2	Complex mixture
6	1a	Ph	8a (51%)
7	1b	OMe	8b (42%)
8	1c	Me	Low conversion, complex mixture
9	1d	Cl	Complex mixture
10	1e	NH_2	Complex mixture
11	9a	Ph	8a (41%)

^a Reagents and conditions: Pd(OAc)₂ (5%), Cu(acac)₂ (10%), bpy (10%), Na₂CO₃, 1,4-dioxane, Ar, rt, 24 h. ^b Reaction time 72 h.

Ph Ph protocols nicely com

Scheme 3 Deprotection of 7a

Fig. 1 An ORTEP view of compounds **7a** (CCDC 1014820) and **8a** (1014817) shown with 50% probability displacement ellipsoids. Structures **5a** (1014819) and **7b** (1014818) are shown in ESI.†

compounds **5a** or **6a** according to literature¹⁵ either did not work or led to decomposition of the heterocycles. Therefore, major part of this study was performed with *o*Ns-group which is more easily cleavable.¹⁵ The deprotection of compound **7a** was successfully performed using thiophenol and cesium carbonate^{15d} to afford 8-methylamino-7-deazapurine **10a** in 75% yield (Scheme 3). We performed also one-pot C–H amination deprotection sequence to furnish the desired compound **10a** directly in 35% for two steps. The 8-(methylamino)-7-deazapurine **10a** was reasonably stable under neutral conditions but quickly decomposed when exposed to even traces of acid (*e.g.* in chlorinated solvents).

All new compounds were fully characterized by NMR spectroscopy including assignment of all signals. In addition, to confirm the regioselectivity of the reactions, single-crystal X-ray diffraction was performed with compounds **5a**, **7a**, **7b** and **8a**. Fig. 1 shows the crystal structures of compounds **7a** and **8a** (for structures of **5a** and **7b**, see ESI†).

Conclusions

In conclusion, we have developed selective protocols for palladium/copper-catalyzed direct C-H amination and C-H chloroamination of 7-deazapurines with *N*-chloro-*N*-alkylarylsulfoneamides. Reactions proceed under mild conditions regioselectively at position 8 of 7-deazapurines (in analogy to aminations at position 2 of indoles¹³) and are applicable to 6-aryl, -alkyl and -alkoxy 7-deazapurine derivatives. On the other hand, they are not compatible with 6-amino- and 6-chloro derivatives. Apart from the potential for the synthesis of series of 8-(arylsulfonyl)methylamino-7-deazapurines (and their 7-chloro-derivatives), when using *o*Ns sulfonamides, the deprotection is possible to 8-methylamino-7-deazapurines. These

protocols nicely complement the current toolbox of reactions for modifications of these privileged heterocycles and will be used for generation of libraries of compounds for biological activity screening.

Experimental

General procedure for C-H amination of 7-deazapurines

7-Deazapurine **1a–1e** (0.5 mmol), $Pd(OAc)_2$ (0.025 mmol), $Cu(acac)_2$ (0.05 mmol), bpy (0.05 mmol), Na_2CO_3 (3.5 mmol) and chlorosulfonamide (1–1.75 mmol) were placed in a vial which was purged with argon. Then 1,4-dioxane (2 mL) was added and the reaction mixture was then stirred for 24 h at rt, then quenched with H_2O (2 mL), extracted with ethyl acetate (3 × 20 mL) and washed with brine (2 mL). The organic phases were combined and dried over sodium sulphate, filtered, and evaporated under vacuum. The crude product was purified by column chromatography on silica gel, eluting with hexanes/ EtOAc (5 : 1 to 1 : 2) to afford the corresponding product.

N-(7-benzyl-4-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-6-yl)-*N*-methyl-2-nitrobenzenesulfonamide (7a)

1a (285 mg, 1 mmol) and N-chloro-N-methyl-2-nitrobenzenesulfonamide 4 (877 mg, 3.5 mmol) were used as starting compounds to give product 7a (310 mg, 62%) as colourless crystals after chromatography with hexanes/EtOAc 5:1 to 1:1 and crystallization from EtOAc/hexane. M.p. 102–103 °C. ¹H NMR (500.0 MHz, CDCl₃): 2.94 (s, 3H, CH₃N); 5.67 (bs, 2H, CH₂Ph); 6.45 (s, 1H, H-5); 7.22 (m, 2H, H-o-Bn); 7.27 (m, 1H, Hp-Bn); 7.30 (m, 2H, H-m-Bn); 7.50-7.53 (m, 3H, H-m,p-Ph); 7.61 (ddd, 1H, $J_{5,6} = 8.1$, $J_{5,4} = 7.5$, $J_{5,3} = 1.3$, H-5-C₆H₄NO₂); 7.67 (ddd, 1H, $J_{3,4} = 8.0$, $J_{3,5} = 1.3$, $J_{3,6} = 0.5$, H-3-C₆H₄NO₂); 7.76 (ddd, 1H, $J_{6,5} = 8.1$, $J_{6,4} = 1.4$, $J_{6,3} = 0.5$, H-6-C₆H₄NO₂); 7.77 (ddd, 1H, $J_{4,3} = 8.0$, $J_{4,5} = 7.5$, $J_{4,6} = 1.4$, H-4-C₆H₄NO₂); 7.97 (m, 2H, H-o-Ph); 9.10 (s, 1H, H-2). ¹³C NMR (125.7 MHz, CDCl₃): 40.53 (CH₃N); 45.29 (CH₂Ph); 96.40 (CH-5); 113.91 (C-4a); 124.12 (CH-3-C₆H₄NO₂); 127.65 (CH-o-Bn); 127.89 (CH-p-Bn); 128.85 (CH-m-Ph, CH-o-Bn); 128.94 (CH-m-Ph); 130.16 (C-1-C₆H₄NO₂); 130.64 (CH-p-Ph); 131.26 (CH-5-C₆H₄NO₂); 132.23 (CH-6-C₆H₄NO₂); 134.62 (CH-4-C₆H₄NO₂); 136.54 (C-i-Bn); 136.86 (C-i-Ph); 137.04 (C-6); 148.55 (C-2-C₆H₄NO₂); 150.56 (C-7a); 152.40 (CH-2); 157.48 (C-4). IR(KBr): 2821, 1545, 1376, 1368, 1360, 1343, 1318, 1309, 1180, 1163, 924. HRMS (ESI) calculated for C₂₆H₂₂N₅O₄S: 500.1387; found 500.1387.

General procedure for C–H chloroamination of 7-deazapurines

7-Deazapurine **1a–1e** (0.5 mmol), $Pd(OAc)_2$ (0.0125 mmol), CuCl (0.05 mmol), CuCl (0.05 mmol), CuCl (1.0 mmol) and chlorosulfonamide (1.5–1.75 mmol) were placed in a vial which was purged with argon. Then 1,4-dioxane (2 mL) was added and the reaction mixture was stirred for 24 h at room temperature, then quenched with CuCl (2 mL), extracted with ethyl acetate (3 × 20 mL) and washed with brine (2 mL). The organic phases were combined and dried over sodium sulphate, filtered, and evaporated under vacuum. The crude product was purified by

Paper

column chromatography on silica gel, eluting with hexanes/ EtOAc (5 : 1 to 1 : 2) to afford the corresponding product.

N-(7-benzyl-5-chloro-4-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-6-yl)-*N*-methyl-2-nitrobenzenesulfonamide (8a)

1a (285 mg, 1 mmol) and 4 (877 mg, 3.5 mmol) were used as starting compounds to give product 8a (273 mg, 51%) as white crystals after chromatography with hexanes/EtOAc 5:1 to 1:1 and crystallization from EtOAc/hexane. M.p. 215-216 °C. ¹H NMR (500 MHz, CDCl₃): 2.91 (s, 3H, CH₃N); 5.42 (d, 1H, J_{gem} = 15.3 Hz, CH_2a-Ph); 6.16 (d, 1H, $J_{gem} = 15.3$ Hz, CH_2b-Ph); 7.26– 7.31 (m, 3H, H-o,p-Bn); 7.33 (m, 2H, H-m-Bn); 7.42-7.50 (m, 3H, H-m,p-Ph); 7.58-7.63 (m, 2H, H-3,5-C₆H₄NO₂); 7.71 (m, 2H, H-o-Ph); 7.73 (ddd, 1H, $J_{4,3} = J_{4,5} = 7.7$ Hz, $J_{4,6} = 1.4$ Hz, H-4- $C_6H_4NO_2$; 7.84 (m, 1H, H-6- $C_6H_4NO_2$); 9.09 (s, 1H, H-2). ¹³C NMR (125.7 MHz, CDCl₃): 38.28 (CH₃-N); 45.68 (CH₂-Ph); 103.08 (C-5); 112.02 (C-4a); 124.00 (CH-3-C₆H₄NO₂); 127.84 (CHm-Ph); 128.09 (CH-p-Bn); 128.11 (CH-o-Bn); 128.95 (CH-m-Bn); 129.86 (CH-p-Ph); 130.20 (CH-o-Ph); 131.45 (CH-5-C₆H₄NO₂); 131.62 (C-1-C₆H₄NO₂); 131.65 (CH-6-C₆H₄NO₂); 131.89 (C-6); 134.49 (CH-4-C₆H₄NO₂); 136.48 (C-i-Bn); 136.62 (C-i-Ph); 148.56 (C-2-C₆H₄NO₂); 148.78 (C-7a); 153.18 (CH-2); 160.20 (C-4). IR(KBr): 3050, 1583, 1545, 1374, 1345, 1165, 826, 558. HRMS (ESI) calculated for C₂₆H₂₁N₅O₄SCl: 534.0998; found: 534.0997.

Acknowledgements

This work was supported by the institutional support of the Charles University and Academy of Sciences of the Czech Republic (RVO: 61388963), by the Czech Science Foundation (P207/12/0205) and by Gilead Sciences, Inc.

Notes and references

- 1 Review: S. Tumkevicius and J. Dodonova, *Chem. Heterocycl. Compd.*, 2012, **48**, 258–279.
- 2 S. Ding, T. Y. H. Wu, A. Brinker, E. C. Peters, W. Hur, N. S. Gray and P. G. Schultz, *Proc. Natl. Acad. Sci. U. S. A.*, 2003, **100**, 7632–7637.
- 3 X. Y. Jiao, J. D. Kopecky, J. S. Liu, J. Q. Liu, J. C. Jaen, M. G. Cardozo, R. Sharma, N. Walker, H. Wesche, S. Li, E. Farrelly, S. H. Xiao, Z. Wang and F. Kayser, *Bioorg. Med. Chem. Lett.*, 2012, 22, 6212–6217.
- 4 N. Chakka, H. Bregman, B. Du, H. N. Nguyen, J. L. Buchanan, E. Feric, J. Ligutti, D. Liu, J. S. McDermott, A. Zou, S. I. McDonough and E. F. Di Mauro, *Bioorg. Med. Chem. Lett.*, 2012, 22, 2052–2062.
- 5 P. Nauš, R. Pohl, I. Votruba, P. Džubák, M. Hajdúch, R. Ameral, G. Birkuš, T. Wang, A. S. Ray, R. Mackman, T. Cihlar and M. Hocek, *J. Med. Chem.*, 2010, 53, 460–470.
- 6 (a) A. Bourderioux, P. Nauš, P. Perlíková, R. Pohl, I. Pichová, I. Votruba, P. Džubák, P. Konečný, M. Hajdúch, K. M. Stray, T. Wang, A. S. Ray, J. Y. Feng, G. Birkus, T. Cihlar and M. Hocek, J. Med. Chem., 2011, 54, 5498–5507; (b) P. Nauš, O. Caletková, P. Konečný, P. Džubák, K. Bogdanová,

- M. Kolář, J. Vrbková, L. Slavětínská, E. Tloušťová, P. Perlíková, M. Hajdúch and M. Hocek, *J. Med. Chem.*, 2014, 57, 1097–1110.
- 7 (a) S. Tumkevicius, J. Dodonova, K. Kazlauskas,
 V. Masevisius, L. Skardziute and S. Jursenas, *Tetrahedron Lett.*, 2010, 51, 3902–3906; (b) R. V. Urbonas, V. Poskus,
 J. Bucevicius, J. Dodonova and S. Tumkevicius, *Synlett*, 2013, 24, 1383–1386.
- 8 V. Prieur, J. Rubio-Martinez, M. Font-Bardia, G. Guillaumet and M. D. Pujol, *Eur. J. Org. Chem.*, 2014, 1514–1524.
- 9 M. Klečka, R. Pohl, B. Klepetářová and M. Hocek, *Org. Biomol. Chem.*, 2009, 7, 866–868.
- 10 M. Klečka, R. Pohl, J. Čejka and M. Hocek, Org. Biomol. Chem., 2013, 11, 5189-5193.
- 11 Reviews: (a) M. Zhang, Synthesis, 2011, 21, 3408-3417; (b) M.-L. Louillat and F. W. Patureau, Chem. Soc. Rev., 2014, 43, 901-910.
- 12 Examples of C-H Amination of azoles and indoles: (a) D. Monguchi, T. Fujiwara, H. Furukawa and A. Mori, Org. Lett., 2009, 11, 1607-1610; (b) Q. Wang and S. L. Schreiber, Org. Lett., 2009, 11, 5178-5180; (c) S. H. Cho, J. Y. Kim, S. Y. Lee and S. Chang, Angew. Chem., Int. Ed., 2009, 48, 9127-9130; (d) T. Kawano, K. Hirano, T. Satoh and M. Miura, J. Am. Chem. Soc., 2010, 132, 6900-6901; (e) M. Miyasaka, K. Hirano, T. Satoh, R. Kowalczyk, C. Bolm and M. Miura, Org. Lett., 2011, 13, 359-361; (f) N. Matsuda, K. Hirano, T. Satoh and M. Miura, Org. Lett., 2011, 13, 2860-2863; (g) T. Froehr, C. P. Sindlinger, U. Kloeckner, P. Finkbeiner and B. J. Nachtscheim, Org. Lett., 2011, 13, 3754-3757; (h) Y. Li, H. Wang, S. Ali, X. Xia and Y. Liang, Chem. Commun., 2012, 48, 2343-2345; (i) W.-B. Wu and J.-M. Huang, Org. Lett., 2012, 14, 5832-5835; (j) J. Xu, J. Li, Z. Wei, Q. Zhang and D. Shi, RSC Adv., 2013, 3, 9622–9624; (k) K. Foo, E. Sella, I. Thome, M. D. Eastgate and P. S. Baran, J. Am. Chem. Soc., 2014, 136, 5279-5282; (1) S. L. McDonald, C. E. Hendrick and Q. Wang, Angew. Chem., Int. Ed., 2014, 53, 4667-4670.
- 13 X.-Y. Liu, P. Gao, Y.-W. Shen and Y.-M. Liang, *Org. Lett.*, 2011, 13, 4196–4199.
- 14 I. Sokolovs, D. Lubriks and E. Suna, *J. Am. Chem. Soc.*, 2014, **136**, 6920–6928.
- 15 (a) G. Sabitha, B. V. S. Reddy, S. Abraham and J. S. Yadav, Tetrahedron Lett., 1999, 40, 1569–1570; (b) R. C. Roemmele and H. Rapoport, J. Org. Chem., 1988, 53, 2367–2371; (c) D. A. Alonso and P. G. Andersson, J. Org. Chem., 1998, 63, 9455–9461; (d) T. Fukuyama, C.-K. Jow and M. Cheung, Tetrahedron Lett., 1995, 36, 6373–6374.
- 16 Apart from ref. 13, the only example of C–H haloamination of indoles: (*a*) A. John and K. Nicolas, *Organometallics*, 2012, **31**, 7914–7920. Most haloaminations proceed as additions to multiple bonds, *e.g.*; (*b*) X.-Y. Liu, P. Gao, Y.-W. Shen and Y.-M. Liang, *Adv. Synth. Catal.*, 2011, **17**, 3157–3160.
- 17 P. Diana, P. Barraja, A. Lauria, A. M. Almerico, G. Dattolo and G. Cirrincione, *Tetrahedron*, 2000, **56**, 5177–5183.
- 18 T. Hino, M. Nakagawa, T. Hashizume, N. Yamaji and Y. Miwa, *Tetrahedron Lett.*, 1970, 11, 2205–2208.