Far infrared-assisted embossing and bonding of poly(methyl methacrylate) microfluidic chips†
Abstract
Far infrared (IR) radiation was employed in the embossing and bonding of poly(methyl methacrylate) (PMMA) microfluidic chips owing to its high penetration ability and heating efficiency. To emboss a channel plate, a piece of PMMA plate was sandwiched between a template and a glass plate. They were exposed to IR radiation for 5 min at 130 °C under pressure in a far IR-assisted embossing/bonding system. Subsequently, the embossed channel PMMA plate was bonded with a PMMA cover plate with the aid of far IR radiation and pressure. Satisfactory bonding could be achieved within 3 min at 100 °C. The fabricated microchips were successfully employed in the electrophoretic separation of four nitroaromatic compounds. Far IR-assisted embossing and bonding approaches indicate great promise for the mass production of PMMA microchips at low cost and should find a wide range of applications.