Facile fabrication and electrochemical properties of high-quality reduced graphene oxide/cobalt sulfide composite as anode material for lithium-ion batteries†
Abstract
A reduced graphene oxide (rGO)/cobalt sulfide composite is synthesized with a simple and efficient ultrasound-assisted wet chemical method. The morphology and microstructure of the composite are examined with field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. The results confirm that cobalt sulfide nanoparticles are homogeneously and tightly attached on the surfaces of rGO. As an anode material for lithium-ion batteries, this composite delivers a high reversible capacity of 994 mA h g−1 after 150 cycles at a current density of 200 mA g−1. A synergistic effect combining the merits of rGO and cobalt sulfide nanoparticles endows the composite with superior electrochemical performances over those of pure cobalt sulfide.
Please wait while we load your content...