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Huisgen-based conjugation of water-soluble
porphyrins to deprotected sugars: towards mild
strategies for the labelling of glycans†
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Fully deprotected alkynyl-functionalised mono- and oligosacchar-

ides undergo CuAAC-based conjugation with water-soluble por-

phyrin azides in aqueous environments. The mild reaction

conditions are fully compatible with the presence of labile glycosi-

dic bonds. This approach provides an ideal strategy to conjugate

tetrapyrroles to complex carbohydrates.

Introduction

Advances in the field of functional glycomics shed light on the
structural and functional diversity of carbohydrates exposed
on the cell membrane, and their fundamental role in a variety
of biological processes, including protein folding, self-recog-
nition, cell migration, modulation of signalling pathways, and
trafficking.1,2 The weak but highly specific binding of surface-
exposed glycans with carbohydrate-binding proteins (e.g.
lectins) underpins diverse phenomena such as immune
system modulation, pathogen invasion, cell migration and pro-
liferation. Variations in the structure, expression, or binding
affinity of glycans and glycoproteins have been associated with
the state and invasiveness of neoplastic lesions3,4 and non-
malignant diseases,5 and with bacterial virulence and invasion
of host tissues,6,7 as a consequence, the biochemistry of
glycan–lectin interactions has been object of investigation as a
potential route for the identification of new therapeutic
targets, and the development of expeditious diagnostic
methods.8–11

Recently, the possibility of exploiting glycan–lectin inter-
actions for analytical and sensing purposes has also received a
great deal of attention, with a consistent body of data

demonstrating how viruses, bacterial strains, and bacterial
spores can be detected by exploiting the specificity of glycan–
lectin interactions. Many high-throughput strategies to probe
glycan–lectin interactions have been devised, the majority of
which are based on fluorescence-assisted arrays, renewing the
interest in the synthesis of fluorescently labelled glycans and
lectins.12–17 While labelling of proteins is readily achievable,
the derivatisation of glycans remains less explored. The
complex structure of glycans and the recurring presence of
labile moieties (e.g. sialic acid)18 pose a challenge to their
chemical modification, and although various labelling strat-
egies have been reported, a versatile and reliable approach
remains to be devised.13,19,20

Following our current interest in mild bio-orthogonal
approaches for the conjugation of tetrapyrrolic photosensiti-
sers to macromolecules,21–24 we undertook a study aimed at
identifying a suitable method for the conjugation of porphyr-
ins to glycans. A straightforward ligation strategy to label
glycans with porphyrins would not merely afford new lumines-
cent lectin markers for in vitro assays, but could lead to photo-
therapeutic agents targeted to cells over-expressing lectins, to
viruses, and to bacteria organised in biofilms. Mannose con-
taining glycopeptides labelled with fluorescein have previously
been used in cellular immunology screens for the development
of carbohydrate vaccines.25 Endowed with high absorption
coefficients and high luminescence and singlet oxygen
quantum yields, porphyrins have found a variety of appli-
cations in the biomedical field.26 Their versatility towards
chemical modification, which allows the tuning of the mole-
cule’s physico-chemical properties, contributed to make these
species excellent candidates as photodynamic therapy drugs,
reporters for fluorescent diagnosis, and investigative tools.

The association of porphyrins with carbohydrates has been
widely explored with the purpose of obtaining water-soluble or
targeted species.27 The synthesis of porphyrin–carbohydrate
conjugates is however hampered by their conflicting solubility,
which often imposes the use of solvent mixtures, high temp-
eratures, or alternatively requires the use of protected
carbohydrates.28–34
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While these approaches prove efficient for the synthesis of
porphyrin–monosaccharides conjugates, mild methods that
preserve the integrity of labile polysaccharides remain substan-
tially unavailable.

In a previous study23 we showed that water-soluble por-
phyrin-azides can be conjugated to polyacrylamide nanoparti-
cles in aqueous environment and in mild conditions, by
copper-catalysed azide–alkyne cycloaddition (CuAAC).35,36 We
reasoned that, in a similar way, CuAAC could provide the
optimal ligation chemistry for conjugation of porphyrins to
glycans. CuAAC has proved to be an efficient tool for the conju-
gation of porphyrins to peptides,37 polymers, and carbo-
hydrates;30,32,34,38 furthermore, as a result of intense
investigations recently carried out in the field, the feasibility of
this approach is facilitated by the improved synthetic accessi-
bility of azide-containing porphyrins22,23,39 and alkynyl-
carbohydrates.40

We first assessed the efficiency of the cycloaddition using
water-soluble porphyrin 1 and a simple deprotected monosac-
charide bearing a terminal alkyne. Porphyrin 1 was syn-
thesised from 5-(4-aminophenyl)-10,15,20-triphenylporphyrin,
which was converted into the corresponding azide by treat-
ment with sodium nitrite and sodium azide in water, accord-
ing to a modified literature procedure.39 The resulting
porphyrin-azide was treated with iodomethane, to afford the
water-soluble tricationic species. In order to avoid sequestra-
tion of copper ions by the tetrapyrrole during the cyclo-
addition, the porphyrin free base were converted into the
corresponding zinc complex.23

Treatment of an aqueous solution of porphyrin 1 with
1-α-propargyloxy mannose 439 in the presence of CuSO4·5H2O
and sodium ascorbate at room temperature, led to the com-
plete conversion of 1 into cycloadduct 11 within 15 minutes.
(Scheme 1, Table 1).

Isolation of the desired product from the reaction mixture
was achieved by treating the reaction mixture with NH4PF6,
which allowed the recovery of the water-insoluble hexafluoro-
phosphate salt of the porphyrin by filtration, and subsequent
conversion of the hexachlorophosphate salt into the corres-
ponding trichloride by treatment of with tetra-n-butyl-
ammonium chloride in acetone.23

Encouraged by this positive result, we investigated the appli-
cability of the conjugation to different deprotected carbohydrate
and porphyrin substrates (Fig. 1). Gratifyingly, 1-β-propargyloxy-
monosaccharides 5 and 6 and 1-β-propargyloxy-N-acetyl-
lactosamine 7 underwent CuAAC with 1 to afford, respectively,
adducts 10, 12 and 17 in excellent yields, and negatively
charged porphyrin 4 reacted with 1-α-propargyloxy mannose 4
under the conditions described above, to afford the desired
conjugates in equally good yield (Table 1). Similarly, the pres-
ence of a PEG chain as a spacer between the porphyrin and
the azide group did not affect the conjugation efficiency, as
shown by the formation of cycloadducts 14–16 in high yields
from the reaction of porphyrin 3 with 1-α-propargyloxy-hexoses
4–6.39 The excellent yields indicate that our approach has the
potential of becoming a reliable bioconjugation tool of general
applicability.

We next proceeded to verify the compatibility of the ligation
conditions with the presence of labile glycosidic bonds: we
chose propargyloxy-bearing α-Fuc-(1–6)-GlcNAc 8 and Lewisx

trisaccharide 941 as models for a glycan substrate, as the link
α-(1–6) is known to be unstable to acidic and basic conditions,
and high temperatures. When porphyrin 1 was treated with 8
or 9 under the conditions reported above, the desired cycload-
ducts were isolated (Table 2), and the spectroscopic data

Scheme 1 CuAAC conjugation of porphyrin-azide 1 to 1-α-propargyl-
mannose. Reaction conditions: 1 (1 equiv.), 4 (1.5 equiv.), CuSO4·5H2O
(0.2 equiv.), Na ascorbate (0.5 equiv.), room temperature, 15 min.

Table 1 Synthetic scope of the CuAAC-based cycloaddition: reaction
of porphyrin-azides with 1-propargyloxy-monosaccharides

Entry R Ar Yield (%)

10 91

11 93

12 91

13 63

14 96

15 93

16 97
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confirmed that the oligosaccharide moieties were intact in
both 18 and 19. To the best of our knowledge, this is the first
report of the conjugation of a porphyrin to a totally depro-
tected α-Fuc-(1–6)-GlcNAc and Lewisx trisaccharide; the integ-
rity of the labile link α-(1–6) in the conjugates further confirms
the suitability this of ligation method for glycan labelling.

Conclusions

In conclusions, we devised a CuAAC-based method for the lig-
ation of water-soluble azide-bearing porphyrins to alkyne-
bearing fully deprotected carbohydrates. The reaction takes
place in aqueous solution and affords the desired conjugates
in good-to-excellent yields, and involves minimal manipulation

for the isolation of the cycloaddition product. Variations of the
structure of the carbohydrate and of the porphyrin are well
tolerated and do not impair the efficiency of the reaction. Lig-
ation of porphyrins to totally deprotected carbohydrates con-
taining the labile α-(1–6) glycosidic bond, a recurrent feature
in the structure of glycans, are achievable with this method. It
is envisaged that this approach will complement the recent
chemo-enzymatic strategies for glycan modification.42

Although it did not represent an issue in the present work, the
presence of the copper ion is certainly a caveat for any CuAAC-
based labelling strategy to be carried out in biological environ-
ment: we anticipate that the new porphyrins reported here will
be equally reactive under copper-free conditions,43 which has
already been successfully applied to cyclooctyne-functionalised
carbohydrate substrates.44 The application of this approach to
more complex carbohydrates is the object of current studies in
our laboratories.
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