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Length-scale dependent transport properties of
colloidal and protein solutions for prediction of
crystal nucleation ratesy
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Ewelina Kalwarczyk,? Katarzyna Kryszczuk,® Sen Hou®® and Robert Holyst*?

We propose a scaling equation describing transport properties (diffusion and viscosity) in the solutions of
colloidal particles. We apply the equation to 23 different systems including colloids and proteins differing
in size (range of diameters: 4 nm to 1 um), and volume fractions (10~°~0.56). In solutions under study
colloids/proteins interact via steric, hydrodynamic, van der Waals and/or electrostatic interactions. We
implement contribution of those interactions into the scaling law. Finally we use our scaling law together
with the literature values of the barrier for nucleation to predict crystal nucleation rates of hard-sphere

www.rsc.org/nanoscale

1 Introduction

Crystallization is ubiquitous in nature and is a standard way to
purify chemical substances or determine the structure of
proteins. Surprisingly description of this phenomenon provides
an example of one of the largest discrepancies between theory
and experiment in science. The dimensionless nucleation rate
of colloidal hard-spheres at volume fraction ¢ = 0.52 isI=10""°
in experiment™? and 107%° in theory** giving 10 orders of
magnitude of difference. The nucleation rate I = «P where P =
exp(—AG.i/ksT) is the probability of formation of the critical
nucleus and AG,;; is the height of a barrier for the nucleus
formation. « is the kinetic pre-factor defined as>** a = 6/m¢*°D/a®
(cf ref. 5, page 285), where ¢ is the volume fraction, D is the
diffusion coefficient of colloidal particles, and ¢ is the particle
diameter. The probability P is usually calculated from the
classical nucleation theory (CNT), and the precision of compu-
tation depends only on the proper choice of the equation of
state and the crystal-liquid surface tension. AG.;; can also be
calculated using the umbrella sampling method.**”* Determi-
nation of the diffusion rate at volume fractions 0.52-0.56 where
nucleation takes place is difficult because in this narrow range
of volume fractions the viscosity of colloidal solutions increases
drastically, reaching a value of 2400 times the viscosity of
solvent.’
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like colloids. The resulting crystal nucleation rates agree with existing experimental data.

Here we analyse the viscosity of colloidal solutions, and
mobility in those solutions in a wide range of concentrations
taking into account the length-scale dependent viscosity
concept.’™* We analyse the viscosity for the broad range of
volume fractions (10 °-0.56) and on that basis we calculate the
mobility of colloidal particles for the most concentrated systems
(¢ > 0.52). Next, using these data in combination with the
literature values of the nucleation barrier,*” we determine the
crystal nucleation rate for hard-sphere colloids which appear in
agreement with experimental data.”

Recently we have shown that the transport properties of
entangled complex fluids (e.g. polymer and micellar solutions)
are, at the nanoscale, strongly influenced by the length-scale
dependent viscosity.>"* The long-time self-diffusion coefficient
D = Dy/f(rp) is inversely proportional to the effective viscosity
experienced by the probe n = 1of(r,), where 7, denotes the
hydrodynamic radius of the probe. D, is the diffusion coeffi-
cient of the probe in a pure solvent of viscosity 5, (at infinite
dilution limit), and f{r;,) is an exponential function of the length-
scale of flow that corresponds to r;,. Note that both expressions
D = Dy/f(rp,) and n = nof(rp) extend the validity of the Stokes-
Sutherland-Einstein****  formula D = kT/6éwnr, for
complex media."*"* For entangled polymer solutions'®* f{r,) is

given by:
R\ “
7o) =ew|o( %) |, o
where
_e(e)’ L 11
=k (¢*) "Ra” 1y’ Ry )
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R, is the radius of gyration of the polymer coil and g is a
. 4 . .
constant close to unity. ¢ = Eng3n is the volume fraction

where n denotes the number of polymer coils per unit volume.
¢* is the polymer volume fraction for the overlap concentration
- the concentration at which the polymer coils start to penetrate
each other. ¢* = 0.52 and corresponds to the maximum packing
fraction for a simple cubic lattice. a is a constant of the order of
1. Ry, is the hydrodynamic radius of the polymer coils forming
the solution. b is inversely proportional to the temperature (b =
v/RT, where R is the gas constant, T'is the absolute temperature,
and v is a parameter expressed in kJ mol ').** Eqn (1), apart
from the transport in polymer and micellar solution, surpris-
ingly well describes the transport properties in the cytoplasm of
mammalian™* or bacterial*®"” cells. Since the cytoplasm of
living cells consists of both entangled, elongated structures and
non-entangled colloids (proteins), a question arises: Do the
transport properties of non-entangled colloidal fluids depend on the
length-scale of flow and do they consistently apply across the nano-
and macroscopic scale as given by eqn (1)?

The transport properties of fluids are influenced by the van
der Waals, steric, hydrodynamic, and electrostatic interactions.
For example electrostatic repulsion between colloidal particles
increases the shear viscosity of their solutions.*®* Additionally
the rates of diffusion-limited reactions in bio-complex systems
(i.e. cell cytoplasm) depend on the ionic strength of the cellular
interior.’> Here we ask: How do the intermolecular interactions

influence f{rp)?

2 Scaling law for transport properties
of colloidal solutions

To answer the above stated questions we analysed the viscosity
of the following colloidal systems: hard-sphere solutions con-
sisting of monodisperse (standard deviation ¢ = 0.05) poly-
(methyl methacrylate) - PMMA particles with hydrodynamic
radii Ry, ranging from 240 to 500 nm,**** SiO, particles (R}, = 244
nm),’ charged polystyrene latex (PSL) particles (R, varying from
25 to 35 nm),* and polydisperse (standard deviation o = 0.12)
SiO, particles (Ry, varying from 28 to 110 nm).>> We also analysed
the data on self-diffusion coefficients of probe particles in
colloidal and in protein solutions including bovine serum
albumin (BSA, r, = 4 nm) and myoglobin (MGB, r, = 2.4
nm).2*>* Additionally, we performed measurements of viscosity
of BSA and of lysozyme (LYS, r, = 1.9 nm) solutions as well as
self-diffusion of lysozyme. For the experimental details see ESL.{

Relative viscosity n, = 1/, of an ideal, infinitely-diluted non-
interacting hard-sphere solution is given by the Einstein's
formula®**® 9, = 1 + k¢ where k = 2.5. The Einstein's formula is
derived under assumption that the volume of particles forming
the solution is much lower than the volume of the whole system,
and the hydrodynamic interactions (HIs) between particles are
negligible. In the real hard-sphere systems, however, HIs are not
negligible as the screening length of HI is an order of magni-
tude longer than R}, of spheres forming the solution.*® The
formula describing viscosity of the hard-sphere solution
and including long-ranged, multi-body HI is derived by Sait6:*”

This journal is © The Royal Society of Chemistry 2014
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N = 1+ ky, where ¢ = ¢(1 — ¢) ' and can be expressed as the
ratio of the total volume of spheres suspended in the solution,
Vi, to the volume of the solvent, V, (¢ = Vi/(Vic + V); ¥ = Vil V).

Following Sait6’s work we adopted eqn (1) in order to
describe the viscosity and diffusion in hard-sphere solution and
we introduced the dependence on y into eqn (1). In the litera-
ture one can find many examples of more or less complicated
equations describing the viscosity of concentrated suspensions
of hard-sphere particles.”®?*® In our approach we use the
simplest form that includes the long-range, multi-body hydro-
dynamic interactions that can not be neglected in real systems.
From the experience gained in the description of viscosity of
rigid and elongated micelles,'* we learned that for rigid systems
B8 =1 (¢f eqn (1)). For non-entangled hard-sphere systems we
defined ¢ in the following form:

=R, (f) ()

where

¢ _ b
- ¢7 d/rcp B 1 - ¢rcp.

¢rep = 0.638 is the volume fraction at random close packing.
We fit rlilrlo f(p,¥) to the data of the macroscopic viscosity
P

=1

(rp = ©; Regg — Rp) of mono->**** and polydisperse* hard-
sphere solutions, with a and b as free parameters. We found
that for hard-sphere-like particles the average value of the
exponent a = 1.29 £ 0.01 and we further used this value for all
studied systems.

For the analysis of the self-diffusion data*® for hard-sphere
solutions (r, = Ry) we used a and b obtained from the analysis of
macroscopic viscosity. We obtained overestimated values of the
Dy/D ratio with respect to the relative macroscopic viscosity 7, of
hard-sphere solutions (¢f: Fig. S1t). We ascribed the discrepancy
to the caging effect, similar to the depletion effect in polymer
solutions.*** In both cases (caging and depletion) the spherical
probe diffuses in the region confined by other spheres or
polymer chains. This confinement influences the short- and
long-time motion of the probe. The cage/depletion effect is
correlated with the concentration of the particles/macromole-
cules constituting the media. In order to obtain the same rela-
tion between the relative viscosity and the self-diffusion
coefficient, we introduced the concentration dependent term d
into Reg (¢f. eqn (4)). Fitting of f{rp, ¥) to the data for self-
diffusion of the hard-sphere with fixed a and b gave:

1 1
Ra? ~ Pr R?

(4)
where

d:l+g%,g:2.02i0.08

rcp

The parameter ¢ was fixed for all studied systems. We
assumed that for proteins (similar as for hard-sphere) R, =
Ry(3/5)"* and we fit f{r,, ¥) to the macroscopic viscosity and self-
diffusion data for protein solutions using as-obtained a and
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d and with b as a free parameter. We found that b differed
between systems and for monodisperse hard-sphere solutions
b = 6.2 £ 0.2 while for polydisperse hard-sphere solutions b =
4.771 £ 0.002. b differed also between the types of proteins and
was equal to 22.9 £ 0.4, 50 + 2, and 9.3 £ 0.1 for BSA, LYS, and
MGB, respectively. In Fig. 1 we showed scaling plots for all
analysed data of viscosity and of diffusion coefficients. Data for
the macroscopic viscosity of mono- and polydisperse hard-
sphere and protein solutions, as well as for self-diffusion in
those systems fell on the master curve defined by eqn (1)-(4)
with common parameters a and d and with the system depen-
dent parameter b.

We tested the quality of our scaling formula based on y-
dependence by comparing it with the analogical model based
on ¢-dependence. The quality of both models can be compared
in Fig. S2.7

The scaling law for non-entangled complex fluids (eqn (1)-
(4)) exhibited a compressed® exponential character (exponent
a > 1). Analysis of a obtained for hard-sphere systems and for

a) 45 F ' i - ' - '
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x PMMA (301 nm) & *
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Fig. 1 Scaling plot of the relative viscosity and the reciprocal of the
relative diffusion coefficient. (a) shows literature®?°=22 and experi-
mental data for macroscopic viscous flow. The graph shows the data
for monodisperse PMMA and SiO, (R, = 244 nm) particles,®2°2
polydisperse SiO, particles,?? and proteins. Data cover a range of
volume fractions from ¢ = 107> to ¢ = 0.52. The data follow one
master curve given by egn (1) to (4) with b = 6.2 £+ 0.2. (b) shows data
for the self-diffusion of PMMA particles (r, = 247 nm),*® and for
proteins: bovine serum albumin (BSA, r, = 4 nm),?* myoglobin (MGB, r,,
= 2.4 nm),® and lysozyme (LYS, r, = 1.9 nm).
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polymer systems** showed correlation of a with the Ry/R, ratio.
For hard-sphere a = 1.29 £ 0.01, while for polymer systems: a =
0.62 + 0.02 for polyethylene glycol, and a = 0.71 £ 0.1 for
polystyrene." To compare, the values of Ry,/R, ratios were equal
to: 1.29, 0.61, and 0.75 for: hard-sphere,* polyethylene glycol,"*
and polystyrene,"*® respectively. The compressed exponential
dependence of the macroscopic viscosity of hard-sphere solu-
tions on the concentration was also in agreement with previous
Phillies’ reports.*”

3 Influence of electrostatic repulsion
on the transport properties

Results of our previous work™ suggested that b depended on the
interactions between particles forming the fluid. We verified
this hypothesis and we analysed the data for viscosity of steri-
cally stabilized charged-sphere solutions differing in the ionic
strength and in the pH of the solutions.” We fitted the data with
lim f(r,,¥) and we found that for charged-sphere solutions b
rp— %

depended on the surface potential { of the colloidal particles as:

b:Aexp{i}, A=12+1, B=13+02, (5)
KRh

where « ' stands for Debye's screening length. All data together
with corresponding fitted functions are shown in Fig. 2.

For monodisperse systems (hard-sphere, charged-sphere,
and protein solutions) the lowest value of b = 6.2 + 0.2 and
corresponded to the hard-sphere solutions while the highest,
b = 81 + 2, corresponded to the solution of charged-sphere with
low ionic strength where k' = Ry,. The only type of intermolec-
ular interactions expected in the hard-sphere system were steric
repulsion and hydrodynamic interactions. In the case of charged-
sphere systems also attractive (van der Waals) and repulsive
electrostatic interactions were present leading to an increase in b
values with decreasing ionic strength of the solution.

Interactions between particles forming the solution
contribute to the excess activation energy for viscous flow'*
defined as:

R, ¥

E,=bRT(— —) .
(Rg \//rcp) (6)

Concentration independent activation energy is then given
by E, = E;? = Eys + Evqw + E. where Ey, stands for energy
contribution from the steric and hydrodynamic interactions
present in the hard-sphere system. Eyqw and E. denote contri-
butions to the energy from the van der Waals and electrostatic
interactions, respectively. At room temperature Eyg = 10.3 kJ
mol . For screened charged-sphere, when x* — 0, £, = 19.9
k] mol~", where approximately 50% of this value originates
from the van der Waals interactions, Eyqw = E, — Eys. For the
system of charged-spheres, where k' = Ry, E, = 73 k] mol !
and the contribution of around 53 k] mol~* comes from E, = E,
— (Eys + Evaw). For the solutions of proteins, an additional
contribution to the £, should be included due to the presence of
the so called hydrophobic interactions. It is clearly visible for

This journal is © The Royal Society of Chemistry 2014
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Fig. 2 The plot of the relative viscosity as a function of scaled
concentration /¥ cp. In plot (a) we fit lim f(r,, %) to the macroscopic
Fp— @

viscosity data of charged particles® for different ionic concentrations

ci. The inset shows exponential dependence of b on the Debye's

screening length k! to R, ratio. In the inset the solid line corresponds

to the function b = (12 + 1) expl(1.3 + 0.2)« */R] and the shaded area

corresponds to the standard deviation of the fitting parameters. In

panel (b) we fit rlim f(ro,¥) to the macroscopic viscosity data of
b

charged particles® for different pH. The inset shows that, at the ana-
lysed pH range, b increases with {-potential of the particles.

BSA solutions where b = 22.9 + 0.4. At pH = 4.7 BSA is slightly
charged (the surface potential { = 4 mV). In the solution with
ionic strength I, = 154 mM the screening length «* = 0.78 nm.
Using eqn (5), one can predict that for BSA b = 15 at the above
conditions.

From all the systems the lowest value of b was obtained for
polydisperse hard-sphere solutions. In that case b was lower by
around 23% than for the monodisperse hard-sphere solutions.
This was consistent with previous reports where increasing
polydispersity of particles decreased the viscosity of the
solution.?®

4 Transport properties of highly
concentrated solutions

Calculation of the hard-sphere crystal nucleation rate requires
the probability of nucleation and the kinetic prefactor that

This journal is © The Royal Society of Chemistry 2014
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depends on the diffusion coefficient of hard-spheres in a given
suspension. In the liquid metastable region (¢ > 0.52), where
nucleation takes place, there is a sudden increase in the
viscosity, 7, of the suspension.® The analogical sudden change
of the diffusion coefficient of particles D occurs at (¢ > 0.55)*
implying that in the liquid metastable region D can not be
calculated directly from D(n~ ') dependence provided by the
Stokes-Sutherland-Einstein relation.

As we showed in preceding sections, eqn (1)-(4) provided a
unified description of both viscosity and self-diffusion in the
range of volume fractions not exceeding ¢ = 0.52. We also
extended the applicability of the Stokes-Sutherland-Einstein
relation for highly concentrated solutions as n/no = D/Dy = f(rp)-
We further used this equation to analyse the transport proper-
ties of hard-sphere solutions at ¢ > 0.52 obtaining a unified
phenomenological description of transport in a liquid and
metastable liquid phase (other approaches are shown in the
ESIY).

Data for viscosity of hard-sphere solutions at ¢ > 0.52, when
plotted against b (Rs/€)“, exhibit a sudden increase of the slope
(from 1 at ¢ <0.52 to 3.4 ¢ > 0.52); ¢f. Fig. 3. Fitting of those data
revealed that above ¢ = 0.52 the scaling formula was given by

eqn (7)

f(ry) =exp [b (Rg““)a + A} 7 (7)

with b = 3.4b,us = 21 + 1 where b5 is the value of parameter
b for a monodisperse hard-sphere equal to 6.2 + 0.2
(¢f discussion in section 2). 41 = —11.7 £ 0.6 was the y-intercept
resulting from the change in the b parameter (¢f. Fig. 3). The

PMMA (500 nm) ® BSA (4nm) VA
PMMA (301 nm) 4 LYS(1.9nm) |
PMMA (301 nm) - Eq. (7) i 7
SiO, (244 nm) i
PMMA (240 nm)
SiO, (28 nm)
Si0, (46 nm)
Si0, (76 nm)
SiO, (110 nm)
Egs. (1) and (4)

I 4 POO X<« X + 1

In(n/ng)
N w £ (6] ()] ~ (o] ©

$<0.527 $>0527 -

B(Re/2)°

Fig. 3 Scaling plot of the relative viscosity and the reciprocal of the
relative diffusion coefficient. The figure shows literature®?°=22 and
experimental data for macroscopic viscous flow. The graph shows the
data for monodisperse PMMA and SiO, (R, = 244 nm) particles,®2°2
polydisperse SiO, particles,?? and proteins. Data cover a range of
volume fractions from ¢ = 107> to ¢ = 0.56. The vertical dashed line
corresponds to the volume fraction ¢ = 0.527. For SiO, particles (R, =
244 nm) at ¢ < 0.52 (the liquid region) the data follow one master curve
given by eqn (1) to (4) with b = 6.2 £ 0.2. At ¢ > 0.52 (the metastable
region where crystallization occurs) data corresponding to SiO;
particles (R, = 244 nm)?® follow a master curve given by eqn (7) with b =
21 +1and A =-11.7 + 0.6.
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change in the slope in the viscosity plot occurred at a crossover
volume fraction ¢™ > 0.527 (¢f: Fig. 3). In Fig. S3at we plotted the
reciprocal of the relative viscosity and the relative diffusion
coefficient calculated from the scaling equation. The crossover
volume fraction at which the change of the slope occurred
corresponded to the point of intersection of the curve given by
eqn (1)-(4) with the curve given by eqn (7). For the diffusion
coefficient, change in the slope occurred at ¢™ = 0.548. This
value was in agreement with the value observed by Woodcock

(¢f fig. S3b1).*°

5 Influence of the transport
properties on the crystal nucleation
rate

Arp) obtained for hard-sphere solutions in previous sections was
used to predict the rates of nucleation I of hard-sphere crystals.
In experimental studies the nucleation rate is usually expressed
in its reduced, dimensionless form defined as:

* [(75 D [ AGcril:|

="~  — 3=
6/ 7 D P kT

(8)

To calculate I* we used values of AG,;/kT calculated in ref. 7
and 4, via the umbrella sampling method, at the volume frac-
tions ¢ = 0.5207, 0.5277, and 0.5342 (ref. 7) and ¢ = 0.526,
0.535, and 0.538 (ref. 4). Those volume fractions were below ¢ =
0.548 (cf- Fig. S3at), so to calculate the diffusion constants we
used eqn (1)-(4) with parameters obtained from fitting of
rlim f(rp,¥) to the data of macroscopic viscosity and diffusion
= o

at ¢ < 0.527. Note that for systems where ¢ > 0.548 eqn (7)
instead of eqn (1)-(4) should be used to calculate D/D, and I*.
We compared as-predicted I* with corresponding simulation
results,”” and with experimental data>* (Fig. 4). We also
compared the data with the nucleation rates obtained from
molecular dynamic simulations performed by Filion et al.® All
simulation data presented in Fig. 4 are expressed in the units of
the free diffusion as defined by eqn (8). Namely the simulation
data of Filion et al.,* originally expressed in the units of the
short-time diffusion coefficient Dg (Io°/Ds), were divided by 6/,
and next multiplied by eqn (S2)t describing the relative short-
time diffusion in hard-sphere solution. The same procedure
was performed for the data obtained via molecular dynamics by
Filion et al.®* who expressed all their results for I in terms of the
long-time diffusion coefficient Dy (Ic°/Dy). The data taken from
Filion's work,® then, were multiplied by the ratio D;/D, repre-
sented by eqn (S3)1 which was originally used by the authors to
calculate D;.* Simulation data*”?® and our predicted values of I*
followed the experimental data of Harland and van Megen.
Although the simulation data got uncertainty of up to 2 orders
of magnitude making them in agreement with experiments, the
values were systematically higher than the experimental results
having uncertainty lower than 0.5 of the order of magnitude.
Note that the predicted values of I* obtained with the method
used in this work reproduced the experimental data very well as
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Fig. 4 Comparison of the nucleation rates /* = ¢>3D/DoP. P = exp
[=AGcit/kT) where AGg,;; is the free energy barrier for the formation of
the critical nucleus, taken from literature.*” /.4 — values predicted in
this work; /ey, values obtained experimentally®#°; /g, — values obtained
from simulations.*”® To calculate /preq Marked as @ we used AGc, the
same as in simulation results, /5, marked as O. Analogically to
calculate /peq (A) we used AG from simulation results of Igm
marked as A.

presented in Fig. 4. The presented method required the values
of the nucleation barrier for which the accuracy of calculation
was of the order of 1 kT (¢f. corresponding figures in ref. 4 and
7), leading to a 100% of error for P. This value was higher than
the uncertainty for the calculated relative diffusion coefficient
(up to 81% for the highest volume fractions). Even so the
maximum error for the prediction of log;o(I*) was at the level of
Alog;o(I*) = 0.56. Additionally the uncertainty of volume frac-
tion* (A¢ = 0.005) was included in the calculation of Alog, (I*).
The change was at the fourth meaning place and therefore was
neglected.

Our predictions were consistent (to the error bars) with
simulation data while both were in disagreement with the
experimental data of Sinn et al.*® or of Schatzel et al.* The reason
for this was convincingly described by Russo and co-workers*
and was dedicated to the influence of gravity on the experi-
ments. Shortly, in the gravity unaffected experiments, the time
15, needed for a particle of radius R, to sediment over the
distance ¢ = 2Ry, was approximately 140 times longer than the
time 7, needed for the particle to diffuse over the same distance
(for details see also (ref. 41)). In the gravity affected systems
(usually where the densities of the hard-sphere particles and of
the solvent are not matched) the 7/t ratios equal to 4.1 (ref. 40)
and 2.9." Therefore the nucleation rate of the hard-sphere
crystal can be significantly increased by the gravitational force
acting on the suspended particles leading to the density gradi-
ents. This implies a slower transport of particles towards the
nuclei in a denser region of the sample. The density gradients at
the level of 4% of volume fraction (from 0.52 to 0.56) along the
distance of 20 diameters of the particle reduce the diffusion
coefficient of the particles by a factor of 36, but also significantly
decrease AG and change P.

The method of the prediction of the nucleation rates, pre-
sented in this work, required the data of the nucleation barrier

This journal is © The Royal Society of Chemistry 2014
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AG,i; obtained via the umbrella sampling method as described
in the literature.>*”® We also calculated the nucleation rates
using the classical nucleation theory (CNT; details of calcula-
tions and results are shown in the ESI{). It appeared that above
¢ = 0.535 I* calculated from eqn (8) with —AG.;/kT given by
eqn (S4)1 gave overestimated values. We supposed that for ¢ >
0.535 CNT does not predict AG correctly which was also notified
by Auer and Frenkel.?

6 Conclusions

The transport properties (long-time self-diffusion and the
macroscopic viscosity) of colloids and of protein solutions are
described by a phenomenological formula given by eqn (1)—(4).
The formula depends on well defined and measurable variables
like hydrodynamic radius of the particles or the volume frac-
tion. Validity of the scaling formula in non-entangled complex
fluids like colloidal suspensions (primarily used for entangled
complex fluids, e.g. polymer solutions) extends its applicability
and suggests a universal character.

In the scaling formula there is only one free parameter b
which is related to the interactions between particles forming
the complex fluid. Parameters a and g are the same, for all non-
entangled systems, and can be treated as fixed constants. We
note, however, that a « Ry/R; which, in turn, can be easily
measured® or calculated''** for any (not only hard sphere-
like) system. To the best of our knowledge this is the first time
that the stretching (or compressing) exponent a, when used
with respect to the description of transport properties, can be
strictly defined by means of parameters with a well defined
physical meaning.

From the macroscopic viscosity of the hard-sphere solution
we calculated the diffusion coefficient of spheres (eqn (1-4, 7))
and we used it to predict the nucleation rate of hard-sphere
crystal formation. The predictions were made on the basis of
both: the calculated diffusion coefficients and the probability of
critical nuclei formation taken from simulation studies (ref. 7
and 4). For the volume fractions where experimental data on
nucleation rates were available (¢ > 0.53), our predictions
agreed very well with experimental data and with the statistical
error with simulation results.*”® Interestingly reasonable
results were obtained only when the scaling equation was
combined with the simulation results for the nucleation
barrier.*” When the scaling formula was combined with the
calculations of the barrier as described by Sinn et al.,*® the
obtained nucleation rates were overestimated for volume frac-
tions exceeding 0.535.

There is a debate in the community about factors influencing
the crystal nucleation rate.>*** One of the suggested reasons is
gravity that increases the nucleation rates by at least two orders
of magnitude.** The other factor proposed by Radu and Schil-
ling is the viscosity of the solvent.*

In our work we offer a relatively simple tool and a handful of
tips on how to predict the crystal nucleation rates for hard-
sphere and other colloidal solutions. Predictions of the crystal
nucleation rates for charged systems (charged colloids or
proteins) would require similar analysis of the transport

This journal is © The Royal Society of Chemistry 2014
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properties in the liquid-solid coexistence region (eqn (7)) as we
performed for the hard-sphere system (c¢f. Fig. 1(a)). We believe
that such studies would be beneficial for better understanding
of the protein crystallization phenomenon.
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