NPR **REVIEW** View Article Online View Journal | View Issue # Marine natural products Cite this: Nat. Prod. Rep., 2014, 31, 160 John W. Blunt,*a Brent R. Copp,b Robert A. Keyzers,c Murray H. G. Munroa and Michèle R. Prinsepd Covering: 2012. Previous review: Nat. Prod. Rep., 2013, 30, 237-323. This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included. Received 7th November 2013 DOI: 10.1039/c3np70117d www.rsc.org/npr - 1 Introduction - 2 Reviews - 3 Marine microorganisms and phytoplankton - 3.1 Marine-sourced bacteria (excluding from mangroves) - 3.2 Bacteria from mangroves - 3.3 Marine-sourced fungi (excluding from mangroves) - 3.4 Fungi from mangroves - 3.5 Cyanobacteria - 3.6 Dinoflagellates - 3.7 Ciliates - 3.8 Synthetic aspects - 3.9 Assorted bioactivities - 3.10 Biosynthesis - 4 Green algae - 5 Brown algae - 6 Red algae - 7 Sponges - 8 Cnidarians - 9 Bryozoans - 10 Molluscs - 11 Tunicates (ascidians) - 12 Echinoderms - 13 Mangroves - 14 Miscellaneous - 15 Conclusion - 16 References ## 1 Introduction This review is of the marine natural product (MNP) literature for 2012 and describes 1241 new MNPs from 382 articles, an 8% increase in the number of compounds reported for 2011. As in previous reviews, the structures are shown only for new compounds, or for previously reported compounds where there has been a structural revision or a newly established stereochemistry. Previously reported compounds for which first syntheses or new bioactivities are described are referenced, but separate structures are generally not shown. Where the absolute configuration has been determined for all stereocentres in a compound, the identifying diagram number is distinguished by addition of the † symbol. ## 2 Reviews A selection of the many reviews on various aspects of MNP studies is listed here. A comprehensive review of MNPs reported in 2010 has appeared,² as well as the highlights of compounds reported in 2011.³ The two volume '*Handbook of Marine Natural Products*' has been published.⁴ The continuing series on '*Marine Pharmaceuticals: The Preclinical Pipeline*' is now accessible from a web site.^{5,6} A survey of new drugs derived from all natural products over the past 30 years has been presented.⁷ Many classes or specific examples of marine-sourced compounds have been reviewed to varying extents, including conopeptides,^{8,9} didemnins,¹⁰ largazole,¹¹ peptides,¹²⁻¹⁴ prenylated quinones and hydroquinones,¹⁵ arsenolipids,¹⁶ bryostatins,¹⁷ multisulfide-containing metabolites,¹⁸ fascaplysin,¹⁹ tunichromes,²⁰ glycosides from sponges,²¹ sea anemone toxins,²² mycalamides and related compounds,^{23,24} and polyhydroxysterols.²⁵ There were three ^{*}Department of Chemistry, University of Canterbury, Christchurch, New Zealand. E-mail: john.blunt@canterbury.ac.nz ^bSchool of Chemical Sciences, University of Auckland, Auckland, New Zealand Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand ^dDepartment of Chemistry, University of Waikato, Hamilton, New Zealand reviews of general classes of compounds that included reference to marine compounds - sesquiterpenoids, 26 cembrane diterpenes,27 and diketopiperazines.28 Reviews of natural products various marine sources include those John Blunt obtained his BSc (Hons) and PhD degrees from the University of Canterbury, followed by postdoctoral appointments in Biochemistry at the University of Wisconsin-Madison, and with Sir Ewart Jones at Oxford University. He took up a lectureship at the University of Canterbury in 1970, from where he retired as an Emeritus Professor in 2008. His research interests are with natural prod- ucts, the application of NMR techniques to structural problems, and the construction of databases to facilitate natural product investigations. Brent Copp received his BSc (Hons) and PhD degrees from the University of Canterbury, where he studied the isolation, structure elucidation and structureactivity relationships of biologically active marine natural products under the guidance of Professors Blunt and Munro. He undertook postdoctoral research with Jon Clardy at Cornell and Chris Ireland at the University of Utah. 1992-93 was spent working in industry as an isolation chemist with Xenova Plc, before returning to New Zealand to take a lectureship at the University of Auckland, where he is currently an Associate Professor. Rob Keyzers carried out his BSc(Hons) and PhD studies at Victoria University of Wellington. His thesis research, carried out under the guidance of Assoc. Prof. Northcote, a former contributor to this review, focused on spectroscopy-guided isolation of sponge metabolites. He then carried out post-doctoral research with Mike Davies-Coleman (Rhodes University, South Africa) and Raymond Andersen (University of British Columbia, Canada) before a short role as a flavour and aroma chemist at CSIRO in Adelaide, Australia. He was appointed to the faculty at his alma mater in 2009 where he is currently a Senior Lecturer. cyanobacteria,29,30 microalgae,31,32 actinomycetes,33 gorgonians,34 ascidians, 35,36 sea cucumbers, 37 sponges, 38-40 seaweeds 41 and their endophytic fungi,42 the marine flora and fauna of Fiji,43 the sponges Aplysina aerophoba44 and Stylissa massa,45 and from the soft coral Nephthea.46,47 Particular types of bioactivity have been reviewed in papers on marine anticancer drugs,48 indoleamine 2,3-dioxygenase inhibitors,49 kinase inhibitors,50 protein tyrosine phosphatase inhibitors,⁵¹ compounds with reversal effects on cancer multidrug resistance,52 steroid nuclear receptor ligands from sponges,53 mammalian DNA polymerisation inhibitors from microorganisms⁵⁴ and marine bioactives against inflammatory diseases.55 Topics in chemical ecology of cyanobacteria56 and sponges⁵⁷ have been covered, while marine bioprospecting has been reviewed.41,58,59 The eighth in a companion series providing an overview of synthetic aspects of MNPs has appeared with coverage of publications from 2010.60 There have been a number of papers which, while not necessarily being reviews, are useful to include here as they describe advances in techniques or approaches to discovery that are relevant to MNP studies. These include papers on configurational assignments, 61,62 marine proteomics,63 guiding principles for natural product drug **Emeritus** Munro, Murray Professor in Chemistry at the University of Canterbury, has worked on natural products right through his career. This started with diterpenoids (PhD; Peter Grant, University of Otago), followed by alkaloids during a postdoctoral spell with Alan Battersby at Liverpool. A sabbatical with Ken Rinehart at the University of Illinois in 1973 led to an interest in marine natural prod- ucts with a particular focus on bioactive compounds which has continued to this day. In recent years his research interests have widened to include terrestrial/marine fungi and actinomycetes. Michèle Prinsep received her BSc (Hons) and PhD degrees from the University of Canterbury, where she studied the isolation and structural elucidation of biologically active secondary metabolites from sponges and bryozoans under the supervision of Professors Blunt and Munro. She undertook postdoctoral research on cyanobacteria with Richard Moore at the University of Hawaii before returning to New Zealand to take up a lectureship at the University of Waikato, where she is currently a Senior Lecturer. discovery,⁶⁴ mass spectometry-based metabolomics,⁶⁵ techniques for bioactives discovery from marine fungi⁶⁶ and a commentary on past and future aspects of MNP drug discovery.⁶⁷ # 3 Marine microorganisms and phytoplankton As a rich source of novel and bioactive marine microorganisms continue to be a major focus of many natural products research efforts, with a 10% increase in the number of compounds reported from the previous year following a 30% increase from 2010 to 2011. Unless otherwise stated, compounds described in this section were obtained from cultures of the named microorganisms. #### 3.1 Marine-sourced bacteria (excluding from mangroves) Actinoalloteichus sp. (sediment, Usa Bay, Kochi Prefecture, Japan) was the source of neomaclafungins A–I 1–9, 26-membered macrolides of the oligomycin subfamily, which all displayed significant activity against *Trichophyton mentagrophytes* (*T. mentagrophytes*).⁶⁸ Glycolipopeptides eodoglucomide A 10 and B 11 were obtained from *Bacillus licheniformis* (sediment, Ieodo Reef, S. Korea) and are broad spectrum, moderately active antimicrobial agents, with ieodoglucomide B also cytotoxic to lung and stomach cancer cells.⁶⁹ $$\begin{array}{c} \text{The interval of the proof pr$$ Bacillus mojavensis (pearl oyster Pinctada martensii, Weizhou Is., South China Sea) provided the antifungal iturinic lipopeptide mojavensin A 12,⁷⁰ while the amicoumacin analogues lipoamicoumacin A–D 13–16 and a bacilosarcin analogue, bacisarcin C 17, were isolated from Bacillus subtilis (B. subtilis) (sediment, Red Sea) together with several known amicoumacins. Bacilosarcin B⁷¹ and amicoumacin A⁷² were cytotoxic to HeLa cells and are strongly antibacterial.⁷³ †11 R = H $$H_2NOC$$ H_2NOC H The known synthetic toluhydroquinone derivatives, 5-bromotoluhydroquinone⁷⁴ and 4-*O*-methyltoluhydroquinone⁷⁵ were obtained for the first time from a natural source from *Dothideomycete* sp.
(red alga *Chondria crassicualis*, Yokiji Is., S. Korea). Both compounds were moderate 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavengers.⁷⁶ Of the erythrolic acids A–E **18–22**, meroterpenoids with a modified terpene sidechain isolated from *Erythrobacter* sp. (sediment, Trinity Bay, Galveston, Texas), only erythrolic acid D exhibited modest activity towards non-small cell lung cancer cells.⁷⁷ The cholic acid derivatives 23 and 24 were obtained from endophytic Hasllibacter halocynthiae (ascidian Halocynthia roretzi, Kyung-Po Beach, S. Korea)78 and Marinactinospora thermotolerans (deep sea sediment, South China Sea) was the source of the sequential tristhiazole-thiazoline-containing cyclic peptide marthiapeptide A 25, active against a panel of Gram-positive bacteria and strongly cytotoxic towards a panel of human tumour cell lines (HTCLs),79 while from M. rosaria (sediment, South China Sea) three additional fluostatins I-K 26-28 were isolated. The antibiotic A201A, previously isolated from terrestrial Streptomyces capreolus,80 was obtained from the marine environment for the first time from M. thermotolerans (deep sea sediment, South China Sea), and the gene cluster responsible for biosynthesis identified.81 The known metabolites of terrestrial Streptomyces species, fluostatins C-F, 82,83 and phenanthroviridone,84 were also obtained (first time from the marine environment).85 The anthracyclinones 29-32 were obtained from a Micromonospora sp. (tunicate Eudistoma vannamei, Taíba Beach, Ceará, Brazil) - 29 and 32 were moderately cytotoxic to HCT-8 cells.86 Peptidolipins B-F 33-37 are lipopeptides obtained from Nocardia sp. (ascidian Trididemnum orbiculatum, Florida Kevs). but the location of the cyclopropyl group in the sidechain of peptidolipin F was not determined. Peptidolipins B and E exhibited moderate activity against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA).87 Upon assignment of the structure of the new lucentamycin analogue lucentamycin E 38 (Nocardiopsis lucentensis, sediment, Little San Salvador, Bahamas), the olefin geometries of the 3methyl-4-ethylideneproline residues of lucentamycins A-D 39-42, other tripeptides isolated from the same organism,88 were reinvestigated and revised to (2S,3R,E)-3-methyl-4-ethylideneproline.89 Total synthesis of lucentamycin A was accomplished via a novel strategy from Garner's aldehyde and corroborated the revised configurations. 90 Synthesis of the (E)-isomer of the proposed structure of lucentamycin A, via a stereoselective rhodium-catalysed reductive cyclisation process, and comparison of NMR data of synthetic with natural lucentamycin A indicated the need for the configurational revision.91 Phaeobacter sp. (pulp mill effluent, coastal Southern USA) produces the known bacterial blue pigment indigoidine92 which inhibited growth of Vibrio fischeri and was isolated from the "marine" environment for the first time.93 Pseudoalteromones A 43 and B 44 were obtained from Pseudoalteromonas sp. (cultured-type octocoral Lobophytum crassum, Taiwan).^{94,95} The ubiquinone derivative pseudoalteromone A possessed a 9C nor-monoterpenoid moiety, was cytotoxic to MOLT-4 (human acute lymphoblastic leukaemia) cells and inhibited release of elastase by human neutrophils. 2-Methyl-3-butyl-prodiginine has previously been identified as a metabolite of the marine bacteria *Hahella chejuensis*⁹⁶ and *Pseudoalteromonas rubra*⁹⁷ (by mass spectrometry) and now has been fully characterised as a metabolite of *Pseudoalteromonas* sp. (seawater, Cape Muroto, Japan).⁹⁸ Investigation of *Salinispora pacifica* (USDA Agricultural Research Service) resulted in the isolation of the complex metabolites (–)-lomaiviticin C-E 45–47 as growth inhibitors of several cancer cell lines. Lomaiviticin C was directly converted to the known (–)-lomaiviticin A, ⁹⁹ allowing the absolute configuration of (–)-lomaiviticin A to be established as 48.¹⁰⁰ † 46 R₁ = Me, R₂ = H and R₁ = H, R₂ = Me † 47 R₁ = R₂ = Me The peptide **49** was obtained from *Streptomyces bacillaris* (sediment, Galveston Bay, Texas). ¹⁰¹ The polycyclic citreamicins A **50** and B **51**, citreaglycon A **52** and dehydrocitreaglycon A **53** were isolated from *S. caelestis* (seawater, Red Sea, Jeddah, Saudi Arabia). All displayed broad spectrum antibacterial activity. Citreamicins A and B and citreaglycon A also inhibited MRSA while citreamicins A and B were also significantly cytotoxic to HeLa cells. ¹⁰² *S. fradiae* (sediment, source unspecified) yielded several capoamycin-type antibiotics, fradimycin A **54** and B **55** and fradic acid A **56** and B **57**, of which fradimycins A and B inhibited *Staphylococcus aureus* (*S. aureus*) growth and both, as well as the known anthraquinone MK844-mF10,¹⁰³ significantly inhibited growth of several cancer cell lines.¹⁰⁴ Fradcarbazoles A-C **58–60**, indolocarbazoles isolated from *Streptomyces fradiae* (sediment, Jiaozhou Bay, Shandong, China), possessed significant cytotoxicity against several HTCLs, in addition to inhibition of the kinase PKC- α . ¹⁰⁵ MeÑ. †59 R = CSNH₂ †60 R = CN [†]58 Culture of S. hygroscopicus (fish Halichoeres bleekeri¹⁰⁶) led to the isolation of macrolides halichoblelide B 61 and C 62,107 both significantly cytotoxic to a panel of HTCLs.¹⁰⁸ The C-glycoside angucyclines grincamycin B-F 63-67 were obtained from Streptomyces lusitanus (deep sea sediment, South China Sea). Of these, grincamycins B-E were moderately cytotoxic to several HTCLs and to B16 cells.109 S. spinoverrucosus (sediment, Trinity Bay, Galveston, Texas) produced the anthraquinones galvaquinone A-C 68-70. Galvaquinone B possessed epigenetic modulatory activity and moderate cytotoxicity against non-small-cell lung cancer (NSCLC) cells Calu-3 and H2887.110 S-Methyl-2,4-dihydroxy-6-isopropyl-3,5dimethylbenzothioate 71 was isolated from Streptomyces sp. (unidentified tunicate, Lyttelton Harbour, New Zealand) through use of an HPLC bioactivity profiling/microtitre plate technique in conjunction with microprobe NMR spectroscopy and was cytotoxic to P388 cells.111 JBIR-109–111 72–74 are trichostatin analogues isolated from a Streptomyces strain (unidentified sponge, Takara Is., Kagoshima, Japan). ¹¹² The phenazine derivatives 75 and 76 and lavanducyanin¹¹³ were isolated from a marine-derived *Streptomyces* sp. (source unspecified). All three compounds inhibited TNF- α -induced NF κ B activity and LPS-induced nitric oxide (NO) production.¹¹⁴ A *Streptomyces* strain (sponge *Dysidea tupha*, Rovinj, Croatia) produced the lipopeptides cyclodysidin A–D 77–80¹¹⁵ while another *Streptomyces* sp. (sediment, Heron Is., Queensland, Australia) yielded heronamycin A 81, a benzothiazine ansamycin.¹¹⁶ Noteworthy in the totopotensamide A **82** and the aglycone totopotensamide B **83** structures [*Streptomyces* sp. (gastropod mollusk *Lienardia totopotens*, Mactan Is., Cebu, Philippines)] are the previously undescribed 2,3-diaminobutyric acid-containing macrolactam and 4-chloro-5,7-dihydroxy-6-methylphenylglycine components. ¹¹⁷ Bahamaolide A **84**, a strong inhibitor of *Candida albicans* isocitrate lyase, and bahamaolide B **85** are macrocyclic lactones from a *Streptomyces* sp. (sediment, North Cat Cay, Bahamas). ¹¹⁸ Spiroindimicins A–D **86–89** are *spiro*-bisindole alkaloids from a *Streptomyces* sp. (sediment, Bay of Bengal) obtained *via* a PCR-based screening approach. Spiroindimicins B–D displayed moderate cytotoxicity to a number of cancer cell lines.¹¹⁹ The phenazine geranylphenazinediol **90** isolated from a *Streptomyces* sp. (sediment, Kiel Fjord, Baltic Sea) was an inhibitor of acetylcholinesterase, ¹²⁰ while an angucyclinone derivative kiamycin **91** originating from a *Streptomyces* sp. (sediment, Qingdao, China) was an inhibitor of several HTCLs.¹²¹ MeOOC $$R_1$$ COOMe MeOOC R_2 R_3 R_4 R_5 R_6 R_7 R_8 R_1 R_2 R_8 R_1 R_2 R_4 R_5 R_7 R_8 R_1 R_2 R_5 R_7 R_8 R_1 R_2 R_3 R_4 R_5 R_5 R_7 R_8 R_8 R_8 R_9 A *Streptomyces* sp. (sediment, Oceanside, California) was the source of the mixed polyketide-terpenoids merochlorin A–D **92–95**. Merochlorins A¹²² and B¹²³ were both potent inhibitors of MRSA. *In vivo* studies determined the genetic basis for biosynthesis of the merochlorins and implicated the involvement of rare bacterial vanadium-dependent haloperoxidase genes.^{122,123} The antibacterial indolosesquiterpenes dixiamycin A **96** and B **97**, oxiamycin **98** and chloroxiamycin **99** were isolated from a *Streptomyces* sp. (sediment, South China Sea) along with the previously isolated xiamycin A.¹²⁴ Dixiamycins A and B are the first examples of naturally occurring *N-N*-coupled *atropo*-diastereomers.¹²⁵ The putative biosynthetic gene cluster for xiamycin A and oxiamycin was identified by a partial genome sequencing approach. Eighteen genes were proposed to be involved in the biosynthesis and indosespene was identified as a common precursor for the biosynthesis, which included an unusual oxidative cyclisation strategy.¹²⁶ A histone deacetylase (HDAC)-based yeast assay employing a URA3 reporter gene was utilised in the isolation of streptosetin A **100** from a *Streptomyces* sp. (sediment, San Francisco Bay). ¹²⁷ The C-glycosylated benz[α]anthraquinone derivatives, urdamycinone E,¹²⁸ urdamycinone G **101** and dehydroxyaquayamycin¹²⁹ were obtained from a *Streptomyces* sp. (sponge *Xestospongia* sp., Sichang Is., Chonburi, Thailand) and along with urdamycin E¹²⁸ were potent inhibitors of the *P. falciparum* K1 strain and inhibitors of *Mycobacterium tuberculosis*.¹³⁰ Urdamycinone E¹²⁸ and dehydroxyaquayamycin¹²⁹ were obtained for the first time as natural products.¹³⁰ Streptomyces variabilis (sediment, Sweetings Cay, Bahamas) was the source of ammosamide D 102 (modest cytotoxicity to the MIA PaCa-2 pancreatic cancer cell line).131 The cytotoxic
linear polyketide pterocidin was originally obtained from endophytic S. hygroscopicus associated with the bracken Pteridium aquilinum but due to a lack of material the absolute configuration could not be determined.132 The same authors have now isolated pterocidin from a marine Streptomyces strain (sediment, Otsuchi Bay, Japan) in sufficient quantities to determine the absolute configuration as 103.133 The absolute configuration of a threonine derivative obtained from Streptomyces xiamenensis (mangrove sediment, Fujian, China) as an inhibitor of the proliferation of WI26 (human lung fibroblast) cells was determined as 104.134 This threonine derivative had previously been reported in a Japanese patent as an inhibitor of asthma and rheumatoid arthritis.135 The hydroxyethylamine chromene derivatives ammonificin C **105** and D **106** were obtained from *Thermovibrio ammonificans* (hydrothermal vent, East Pacific Rise) and induced apoptosis in a cell-based screen.¹³⁶ NPR Review Vibrio nigripulchritudo (global marine Galathea 3 expedition)¹³⁷ produced the siderophore nigribactin **107**, a modulator of *S. aureus* virulence gene expression,¹³⁸ while another *Vibrio* species (Gulf of Mexico) was the source of the amphiphilic siderophores ochrobactin-OH A–C, but only ochrobactin-OH B **108** was fully characterised.¹³⁹ A third *Vibrio* sp. (source unspecified, Okinawa, Japan) provided the cyclic acyldepsipeptide kailuin F **109**, as well as the known analogues kailuins B¹⁴⁰ and E¹⁴¹ of which kailuin B displayed strong activity against the dinoflagellate *Prorocentrum micans*.¹⁴² #### 3.2 Bacteria from mangroves Of the two antimycins, B1 **110** and B2 **111** from *Streptomyces lusitanus* (mangrove sediment, *Avicennia mariana*, Fujian, China), only antimycin B2 had moderate activity against *S. aureus* and *Laribacter hongkongensis*. The indolocarbazoles streptocarbazole A **112** and B **113** were obtained from *Streptomyces* sp. (mangrove soil, species unspecified, Sanya, Hainan, China), but only streptocarbazole A was cytotoxic to HTCLs and arrested the cell cycle of HeLa cells at the G2/M phase. 144 The eudesmene-type sesquiterpenes kandenol A–E **114–118** were isolated from an endophytic *Streptomyces* sp. (mangrove stem *Kandelia candel*, Xiamen, Fujian, China) as weak to moderate inhibitors of *B. subtilis* and *Mycobacterium vaccae* growth. ¹⁴⁵ OH $$\overline{R}_2$$ OH The state of #### 3.3 Marine-sourced fungi (excluding from mangroves) Cordyheptapeptides C-E **119-121** were isolated from *Acremonium persicinum* (sediment, South China Sea) with cytotoxicity against HTCLs noted for cordyheptapeptides C and E.¹⁴⁶ Acremolin was isolated from *Acremonium strictum* (unidentified Choristida sponge, S. Korea) with the original structure incorporating a 1*H*-aziridine moiety.¹⁴⁷ It was subsequently shown that the reported NMR spectroscopic data were incompatible with the proposed antiaromatic heterocycle, which would have been an extremely unstable compound. A plausible alternative structure, an isomeric substituted N^2 ,3-ethenoguanine 122 has been suggested, which is consistent with all spectroscopic data.148 Indole diketopiperazines luteoalbusin A 123 and B 124, isolated from Acrostalagmus luteoalbus (deep sea sediment, South China Sea), were potent cytotoxins against several HTCLs. 149 Porric acid D 125, a dibenzofuran derivative from Alternaria sp. (Bohai Sea, Tianjin, China), was weakly inhibitory to S. aureus.150 The hydroanthraquinone-derived tetrahydroaltersolanols C-F 126-129 and dihydroaltersolanol A 130, in addition to the alterporriol-type anthranoid dimers alterporriols N-R 131-135, were obtained from Alternaria sp. (soft coral Sarcophyton sp., Weizhou coral reef, South China Sea). Tetrahydroaltersolanol C and alterporriol Q were active against the porcine reproductive and respiratory syndrome virus while alterporriol P was cytotoxic to HTCLs.151 Aspergillus carneus (brown alga Laminaria sachalinensis, Kunachir Is., Russia) was the source of the prenylated indole alkaloids carneamide A-C 136-138, the quinazolinone derivatives carnequinazoline B 139 and C 140, the aryl C-glycoside carnemycin A 141 and a drimane sesquiterpenoid 142. New to the marine area was a synthetic compound¹⁵² (isolated as carnequinazoline A) and derivative of stromemycin^{153,154} known (isolated as carnemycin B).155 Two costaclavine alkaloids **143** and **144** were obtained from *Aspergillus fumigatus* (zoanthid *Zoanthus* sp., Amami Is., Kagoshima, Japan), ¹⁵⁶ while *A. fumigatus* (soft coral *Sinularia* sp., Kunashir Is., Kuril Islands) produced the spirocyclic diketopiperazine alkaloid spirotryprostatin F **145** which had stimulatory phytoregulatory activity. ¹⁵⁷ The same fungal strain was the source of the alkaloid fumiquinazoline K **146** and a nordammarane triterpenoid **147**. ¹⁵⁸ From *A. fumigatus* (intertidal mud, Yingkou, China) several diketopiperazines were isolated: prenylcyclotryprostatin B **148**, 20-hydroxycyclotryprostatin B **149**, 9-hydroxyfumitremorgin C **150**, 6-hydroxytryprostatin B **151** and spirogliotoxin **152**. Prenylcyclotryprostatin B and 9-hydroxyfumitremorgin C were moderate inhibitors of human leukaemic monocyte lymphoma (U937) cells. 159 20-Hydroxycyclotryprostatin B was also reported from two other sources in 2012, firstly from *Aspergillus sydowii* (gorgonian coral *Verrucella umbraculum*, Sanya, Hainan province, China) as cyclotryprostatin E^{160} and secondly, from a terrestrial *A. fumigatus* as 12β -hydroxy- 13α -methoxyverruculogen TR-2. 161 The indole alkaloid **153** is also noted as a natural product in the first report but no other references to it are given or can be found in extensive literature searches. 160 The sesquiterpene pileotin A **154** was isolated from *A. fumigatus* (sea urchin *Toxopneustes pileolus*, source unspecified) along with oxalicine B **155**, previously reported as a metabolite of *Penicillium oxalicum* in a PhD thesis¹⁶² but now reported in the literature. Oxalicine B displayed moderate cytotoxicity to P388 cells.¹⁶³ Aspergillus insulicola (sediment, Hawaii) produced the tripeptide pre-sclerotiotide F **156**¹⁶⁴ and *Aspergillus* sp. (sponge *Xestospongia testudinaria*, Weizhou coral reef, South China Sea) the four bisabolane-type sesquiterpenoids, aspergiterpenoid A **157**, (–)-sydonol **158**, (–)-sydonic acid **159** and **160**.¹⁶⁵ Also isolated for the first time from a marine environment was the related (*Z*)-5-(hydroxymethyl)-2-(6'-methylhept-2'-en-2'-yl) phenol, a known metabolite of a fungal endophyte. ^{166,167} An endophytic *Aspergillus* sp. (sponge *Xestospongia testudinaria*, Weizho Is., South China Sea) produced the phenolic bisabolane sesquiterpenoid dimers disydonol A–C **161–163**. Only disydonols A and C were cytotoxic to HTCLs. ¹⁶⁸ Aflaquinolones C–G **164–168** were obtained from an *Aspergillus* sp. (Dadaepo Beach, Busan, S. Korea); the same report also detailed the isolation of the related aflaquinolones A and B from a terrestrial *Aspergillus* sp. ¹⁶⁹ Investigation of *Aspergillus* sp. (sediment, South China Sea) resulted in the isolation of seven chlorinated anthraquinones **169–175**. On addition of sodium bromide to the fermentation media, three additional metabolites were obtained: two brominated anthraquinones **176** and **177** and a nonhalogenated anthraquinone **178**. 6-O-Methyl-7-chloroaveratin **170** inhibited growth of several HTCLs.¹⁷⁰ *Aspergillus* sp. (soil, Xiamen Beach, China) yielded barceloneic lactone B **179**, barceloneic acid C **180** and 5'-hydroxychlorflavonin **181**,¹⁷¹ in addition to two *p*-terphenyl derivatives, terphyl acid **182** and terphyl diacid **183**.¹⁷² Three γ-butenolide derivatives spiculisporic acid B–D **184–186** were isolated from an endophytic *Aspergillus* sp. (sea urchin *Anthocidaris crassispina*, Qionghai, Hainan, China),¹⁷³ while the sesterterpenes ophiobolin O **187** and 6-*epi*-ophiobolin O **188** were obtained from endophytic *Aspergillus* sp. (zoanthid *Zoanthus* sp., Ayamaru Cape, Amami Is., Japan) as moderate cytotoxins to P388 cells, ¹⁷⁴ with ophiobolin O also inducing apoptosis and cell cycle arrest of MCF-7 cells through activation of MAPK signaling pathways. ¹⁷⁵ OME OCOOH †184 n = 7 †185 n = 7, $$\Delta$$ saturated †186 n = 8, Δ saturated †188 R = ••••• Decalin derivative decumbenone C 189 was isolated from Aspergillus sulphureus (sediment, location unspecified) as a potent cytotoxin against SK-MEL-5 human melanoma cells.176 Coincidentally, decumbenone C was also isolated from the terrestrial basidiomycete Craterellus odoratus and named craterellone C.177 Aspergillus unguis (unidentified sponge, Tub-La-Mu Bay, Pang-nga, Thailand) was the source of the depsidones aspergillusidone A-C 190-192, a diaryl ether 193 and yielded the known synthetic intermediate 4-hydroxy-3-methyl-6-(1methyl-1-propenyl)-2H-pyran-2-one¹⁷⁸ (first isolation from a natural source). The fungal metabolites, nidulin,179 nornidulin¹⁸⁰ and 2-chlorounguinol¹⁸¹ were also isolated, with nidulin and 2-chlorounguinol being first time MNP isolates. Aspergillusidones A-C, nidulin, nornidulin and 2-chlorounguinol all exhibited aromatase inhibition and aspergillusidones A and C showed radical scavenging activity in the xanthine/xanthine oxidase assav.182 Asperversin A **194** and 9ξ-*O*-2(2,3-dimethylbut-3-enyl)brevianamide Q **195** were isolated from endophytic *Aspergillus versicolor* (brown alga *Sargassum thunbergii*, Pingtan Is., China), along with the known fungal metabolites brevianamide M,¹⁸³ 6,8-di-*O*-methylaverufin¹⁸⁴ and 6-*O*-methylaverufin.¹⁸⁵ Both brevianamide M¹⁸³ and 6-*O*-methylaverufin¹⁸⁵ were first time marine isolates.¹⁸⁶ Endophytic *A. versicolor* (green alga *Codium fragile*, Dalian, China) produced the sesquiterpene albican-11,14-diol **196**, potently toxic to brine shrimp and a strong inhibitor of *E. coli* and *S. aureus*. ¹⁸⁷ From another
endophytic *A. versicolor* (brown alga *Sargassum thunbergii*, Qingdao, Shandong, China) the anthraquinone compound 6,8-di-*O*-methylaverantin **197** was obtained ¹⁸⁸ together with the known anthraquinones 6,8-di-*O*-methylversiconol ¹⁸⁹ and 6,8-di-*O*-methylnidurufin. ¹⁹⁰ A. versicolor (sediment, Bohai Sea, China) was the source of the dimeric diketopiperazine brevianamide S 198 and the monomeric brevianamides T-V 199-201. Brevianamide S showed selective activity against the Bacille Calmette-Guérin (BCG) strain of *Mycobacterium bovis* suggestive of a new mechanism of action with potential as an antitubercular drug lead.¹⁹¹ ÓН 200 199 The anthraquinone isorhodoptilometrin-1-methyl ether 202 was isolated from endophytic A. versicolor (green alga Halimeda opuntia, Rass Mohamed, south Sinai, Egypt) and displayed moderate activity against B. subtilis, B. cereus and S. aureus. 192 Examination of the endophytic A. wentii EN-48 (brown alga Sargassum sp., source unspecified) revealed three new tetranorlabdane diterpenoids asperolide A-C 203-205193 in addition to the terrestrial fungal metabolites, wentilactones A and B,194 LL-Z1271-β, 195 and a known tetranorditerpenoid derivative. 196 All of these known metabolites were first time marine isolates. 193 †201 Application of OSMAC (one strain-many compounds) methodology to Asteromyces cruciatus (unidentified decaying green alga, La Jolla, USA) identified the pentapeptide lajollamide A 206 (absolute configuration determined by total synthesis). 197 Beauveria bassiana (unidentified sponge, Iriomote Is., Okinawa) produced 1-hydroxy-10-methoxy-dibenz[b,e]oxepin-6,11-dione 207, 198 in addition to the known terrestrial metabolites chrysazin199 and globosuxanthone A,200 both first time marine Botryotinia sp. (unidentified marine alga, Seongsan, Cheju, S. Korea) was the source of two botcinin derivatives 208 and 209, which were assumed to be methanol reaction products rather than natural products.201 The compound 209 was named botcinin G but this name had already been utilised for a metabolite of Botrytis cinerea202 and again for a different metabolite of B. cinerea^{203,204} which has a structure comparable to 209 but lacking the C-2-C-3 double bond. There is confusion in the chemical literature as one CAS Registry number appears to have been used for multiple structures.201-204 A strain of Chaetomium globosum (fish Mugil cephalus, Katsuura Bay, Japan), which has already yielded many chaetomugilin metabolites, 205-208 was the source of three further analogues: chaetomugilins S 210, T 211 and U 212. Chaetomugilin S was a moderate growth inhibitor of HTCLs and P388 cells. 209 CI $$R_{1}$$ R_{2} R_{3} R_{4} R_{5} R_{6} R_{7} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R Chondrostereum sp. (soft coral Sarcophyton tortuosum, Hainan, South China Sea) yielded triquinane-type sesquiterpenoids chondrosterin A-E 213-217, of which chondrosterin A was cytotoxic to several cancer cell lines.210,211 Endophytic Coniothyrium cereale (green alga Enteromorpha sp., Fehmarn, Baltic Sea) produced the isoindole pseudoalkaloid conioimide 218 and the polyketide cereoanhydride 219. Conioimide exhibited selective inhibition of human leukocyte elastase. Biosynthetic feeding experiments with ¹³C-labelled acetate proved that the major and known *C. cereale* metabolite (–)-trypethelone²¹² was polyketide-derived and it is proposed as the precursor of cereoanhydride.²¹³ The lactone helicascolide C **220** was isolated from endophytic *Daldinia eschscholzii* (red alga *Gracilaria* sp., South Sulawesi coast, Indonesia) and was fungistatic against the phytopathogenic fungus *Cladosporium cucumerinum*.²¹⁴ Both helicascolide C and helicascolide A,²¹⁵ previously isolated from the fungus *Helicascus kanaloanus*, have been synthesised by acid catalysed acetonide deprotection, followed by a one-pot intramolecular lactonisation as the key step.²¹⁶ The endophyte *Emericellopsis minima* (sponge *Hyrtios erecta*, Similan Islands, Thailand) was the source of the sesquiterpene **221**,²¹⁷ while an *Epicoccum* sp. (sponge *Callyspongia* sp., Sanya, China) provided the pyronepolyene *C*-glucoside *iso*-D8646-2-6 **222** along with the known isomer D8646-2-6.²¹⁸ Both pyrones significantly inhibited growth of the H1N1 virus along with weak NF-κB inhibition.²¹⁹ Endophytic *Eurotium cristatum* (brown alga *Sargassum thunbergii*, location unspecified) was the source of the indole alkaloids cristatumin A-D **223–226**, of which cristatumin A and the co-isolated known fungal metabolite tardioxopiperazine A²²⁰ were active against *E. coli* and *S. aureus*, respectively, while cristatumin B and the co-isolated known fungal metabolite isoechinulin A²²¹ were moderately toxic to brine shrimp.²²² The diketopiperazine dimer eurocristatine 227 was isolated from endophytic *Eurotium cristatum* (sponge *Mycale* sp., Wonnapa Beach, Bangsaen, Thailand),^{223,224} while scopararanes C–G 228–232 are oxygenated pimarane diterpenes obtained from *Eutypella scoparia* (sediment, South China Sea). Scopararane C was moderately cytotoxic to MCF-7 cells, while scopararane D was moderately cytotoxic to both SF-268 and MCF-7 cells²²⁵ and was concurrently reported from another marine fungal species. This was *Epicoccum* sp. (sea cucumber *Apostichopus japonicus*, Yantai City, Shandong, China) and scopararane D was reported as a moderate cytotoxin, along with two further pimarane diterpenes, 233 and 234, of which 233 was strongly cytotoxic to KB and KBv200 cells.²²⁶ †**233** ΗÕ †234 A monocyclofarnesane sesquiterpene 235 and an acorane sesquiterpene 236 were obtained from *Eutypella scoparia* (sediment, South China Sea),²²⁷ while *Isaria felina* (sediment, South China Sea, Vietnam) was the source of the chromene derivatives oxirapentyn B–D 237–239, in addition to oxirapentyn A, previously obtained from the terrestrial fungus *Beauveria felina*.²²⁸ This is the first isolation from a marine source.²²⁹ Two hydroanthraquinone analogues 4a-*epi*-9α-methoxydihydrodeoxybostrycin 240 and 10-deoxybostrycin 241 were isolated from endophytic *Nigrospora* sp. (unidentified sea anemone, Weizhou, South China Sea). 10-Deoxybostrycin was strongly active against *B. cereus* and A549 cells.²³⁰ An OSMAC approach to cultivation of *Penicillium aurantiogriseum* (mud, Bohai Sea, China) resulted in production of the auranomides A–C 242–244.²³¹ *P. citrinum* (unidentified sponge, Ishigaki Is., Okinawa, Japan) was the source of JBIR-124 245, a DPPH radical scavenger, ²³² while *P. citrinum* (gorgonian sea fan *Annella* sp., Similan Islands, Thailand) yielded several polyketides including the benzopyranones coniochaetone C 246 and D 247, an isochroman 248 and the anthraquinone-citrinin derivatives penicillanthranin A 249 and B 250. Penicillanthranin A exhibited moderate activity against *S. aureus* and MRSA.²³³ *P. citrinum* (sediment, Lanqi Is., Fujian, China) provided the epimeric tumonoic acids K **251** and L **252** along with methyl 2-(2-acetyl-3,5-dihydroxy-4,6-dimethylphenyl)acetate **253**,²³⁴ while isophomenone **254** and 3-deacetylcitreohybridonol **255** were obtained from *P. commune* (sediment, South China Sea).²³⁵ Communols A–G **256–262** are aromatic polyketides isolated from *P. commune* (gorgonian *Muricella abnormalis*, Danzhou, Hainan, China), of which communols A, F and G were moderately active against *E. coli* and *Enterobacter aerogenes* (*E. aerogenes*). ^{236,237} NPR Penilactones A 263 and B 264 are highly oxygenated polyketides from *P. crustosum* (deep sea sediment, Prydz Bay, Antarctica). The dihydrothiophene-condensed chromones oxalicumone A 265 and B 266 and the chromone, oxalicumone C, and were isolated from *P. oxalicum* (gorgonian *Dichotella gemmacea*, Sanya, South China Sea, China). Oxalicumone C 267 has previously been reported as a reaction product of chloromonilicum, a metabolite of the cherry rot fungus *Monilinia fructicola*, but this is the first notification as a natural product. Pinophilins A **268** and B **269**, hydrogenated azaphilones from *P. pinophilum* (seaweed *Ulva fasciata*, Kasai, Tokyo, Japan), along with the co-isolated metabolite Sch 725680, ²⁴¹ selectively inhibited the activities of mammalian DNA polymerases (pols), A (pol γ), B (pols α , δ , and ϵ), and Y (pols η , ι , and κ) families and the growth and proliferation of several HTCLs. ²⁴² Pinophilin A was simultaneously isolated as berkazophilone B from an extremophile *P. rubrum* (from an abandoned acidic, metal-sulfate contaminated open-pit copper mine) as a selective inhibitor of leukaemia cell lines. ²⁴³ The absolute configuration was determined by total synthesis. Random diethyl sulfate mutagenesis of *P. purpurogenum* (sediment, Bohai Bay, Tianjin, China) gave a mutant producing the drimenyl cyclohexenone derivatives purpurogemutantin **270** and purpurogemutantidin **271**.²⁴⁵ From another *Penicillium* strain (deep sea sediment, northern South China Sea) penicilliumin A was isolated and determined to have the same structure as purpurogemutantidin but no assignment of configuration at C-6′ was made. Differences in optical rotations between the two compounds suggest they may be diastereoisomers.²⁴⁶ Peneciraistins A–D 272–275 were isolated from *P. raistrickii* (saline soil, Bohai Bay, Shandong, China). Peneciraistin C was moderately cytotoxic to A549 and MCF-7 cells whilst peneciraistins A, B and D exhibited radical scavenging activities against DPPH.²⁴⁷ Two further compounds were isolated and named peneciraistins E and F, with structures assigned as 3-indoleformic acid derivatives, however, these structures have subsequently been corrected to contain sixmembered N-containing rings²⁴⁸ both of which are known compounds.^{249,250} 1-Hydroxy-3-methoxy-6-sulfo-8-methylxanthone **276** was isolated from *P. sacculum* (saltbush *Atriplex* sp., Dongying city, Shandong, China),²⁵¹ whilst
Penicillium sp. (deep sea sediment, East Pacific Ocean) provided the polyoxygenated sterol, sterolic acid **277** and the spiroditerpenoids brevione I–K **278–280**. Brevione J and the known terrestrial fungal allelochemical brevione A²⁵² (obtained here for the first time from a marine source) were cytotoxic (MCF-7 cells).²⁵³ Review NPR Penicillium sp. (deep sea sediment, Suruga Bay, Japan) vielded several gliotoxin-related compounds including 281 and 282. Of the other known compounds, bisdethiobis(methylthio) gliotoxin,254 5a,6-didehydrogliotoxin,255 gliotoxin256 and gliotoxin G²⁵⁷ inhibited histone methyltransferase (HMT), while 282 and gliotoxin G were cytotoxic to P388 cells.258 Penicillone A 283 and penicillactam 284 were isolated from a marine Penicillium sp. (source not given).259 A further compound, ethyl 2-(2,6-dihydroxybenzoyl)-3-hydroxy-5-(hydroxymethyl)benzoate,260 was isolated and although commercially available this was the first reported isolation as a natural product.259 The depsipeptides JBIR-113, JBIR-114 and JBIR-115 285-287 were obtained from Penicillium sp. (unidentified marine sponge, Takarajima Is., Kagoshima, Japan)261 and another Penicillium sp. (sediment, South China Sea) was the source of the mycophenolic acid derivatives penicacid A-C 288-290 and the known terrestrial fungal metabolite 4'-hydroxy-mycophenolic acid,262 obtained for the first time from a marine source. All of the isolated metabolites inhibited inosine-monophosphate dehydrogenase (IMPDH) to varying degrees and penicacid A and 4'-hydroxy-mycophenolic acid also displayed immunosuppressive activity.263 A halotolerant *Penicillium* sp. (source unspecified) yielded an alkaloid with a unique spiro-imidazolidinyl skeleton, penispirolloid A 291, that exhibited antifouling activity toward Bugula neritina larvae²⁶⁴ and Penicillium sp. (sediment, Jiaozhou Bay, China) was the source of the pyrrolyl 4-quinolinone alkaloid penicinoline E 292.265 A sorbicillinoid derivative sorbiterrin A 293 with moderate acetylcholinesterase (AChE) inhibition, was obtained from P. terrestre (sediment, Jiaozhou Bay, China)²⁶⁶ and arthropsadiol C 294 and massarilactone H 295 are polyketides obtained from Phoma herbarum (sediment, Yellow Sea, China). Massarilactone H and the co-isolated known fungal metabolites massarilactone G,267 massarigenin C268 and enalin A269 displayed moderate neuraminidase inhibition. This was the first reported marine isolation of massarigenin C.270 An endophytic *Phoma* sp. (giant jellyfish *Nemopilema nomurai*, southern coast, S. Korea) provided a cyclic tetrapeptide **296** which was a weak suppressor of NO production in RAW264.7 cells without notable cytotoxicity.²⁷¹ The same strain of fungus also provided four cytochalasin derivatives: cytochalasin B2 **297**, deoxaphomin B **298**, deoxaphomin C **299** and 20-deoxycytochalasin F **300**. Cytochalasin B2 and deoxaphomin C were cytotoxic to several HTCLs.^{272,273} Stachylidium sp. (sponge Callyspongia cf. flammea, location unspecified) yielded phthalimidine derivatives, the enantiomeric marilines A1 301 and A2 302 and marilines B 303 and C 304. The various marilines were active in a wide range of bioassays. 274 *Torula herbarum* (sea hare *Notarchus leachii*, Beihai, Guangxi, China) was the source of the heptaketide herbarone **305** and the *ent*-astropaquinones B **306** and C **307**. *O*-Methylherbarin, a metabolite previously reported from *T. herbarum*, ²⁷⁵ was also obtained and the absolute configuration determined as **308**. ²⁷⁶ Trichoderma aureoviride (gorgonian sea fan Annella sp., Similan Islands, Thailand) provided trichodermaquinone **309** and trichodermaxanthone **310.**²⁷⁷ An endophytic *Trichoderma* sp. (sea star *Acanthaster planci*, Hainan Sanya National Coral Reef Reserve, China) produced two sorbicillinoid analogues (4'Z)-sorbicillin 311 and 312 (moderately cytotoxic to several HTCLs),²⁷⁸ while three diterpenes phomactin K-L 313-315 were obtained from an unidentified fungus (brown alga Ishige okamurae, Tateishi, Kanagawa, Japan).279 #### 3.4 Fungi from mangroves An endophytic Acremonium sp. (mangrove branch Rhizophora apiculata, Satun, Thailand) provided the phthalide derivative, acremonide 316 and the isocoumarin derivatives acremonone A-H 317-324.280 The racemic spiroalkaloids effusin A and dihydrocryptoechinulin D (shown here as one of the enantiomers 325 and 326, respectively) were obtained from Aspergillus effusus (mangrove rhizosphere soil, Fujian, China). The racemates were subsequently each resolved and absolute configurations determined by solution time dependent density function theory (TDDFT) electronic CD (ECD) calculations. The racemate of dihydrocryptoechinulin D inhibited growth of P388 cells and the (12R,28S,31S)-enantiomer 326 showed selective, moderate inhibition of topoisomerase I.281 Aflatoxin B2b 327 was obtained from endogenous A. flavus (mangrove root Hibiscus tiliaceus, Wenchang, Hainan, China) and was moderately active against E. coli, B. subtilis and E. aerogenes.282 The dihydroisocoumarin derivatives aspergillumarin A 328 and B 329 were isolated from Aspergillus sp. (mangrove leaf Bruguiera gymnorrhiza, South China Sea), 283 while aspergilazine A 330, a diketopiperazine dimer consisting of two diketopiperazine units with a rare N-1 to C-6 linkage, was obtained from A. taichungensis (mangrove root soil, Acrostichum aureum, source not given).284 The butyrolactone 7"-hydroxybutyrolactone III 331 and terretriones A-C 332-334 were isolated from A. terreus (sediment, unnamed mangrove, Guangxi Zhuang, China).285 Along with three known terrestrial fungal metabolites, verticillin D286 and pullularins A and C287 (isolated from a marine source for the first time), the endophytic Bionectria ochroleuca (mangrove leaf Sonneratia caseolaris, Hainan Is., China) produced the peptides pullularin E 335 and F 336. Pullularin E was characterised as the chloro-derivative 337 that it had rapidly converted to.288 MeOOC OH $$R_1$$ O R_2 N O R_2 N O R_2 N O OH OH R_1 R_2 = i Pr P Corynespora cassiicola (mangrove leaf Laguncularia racemosa, Hainan Is., China) yielded xestodecalactones D-F **338-340** and corynesidone C **341** as well as the known terrestrial fungal metabolites corynesidone B²⁸⁹ and 6-(3-hydroxybutyl)-7-O-methylspinochrome B,²⁹⁰ both isolated for the first time as MNPs.²⁹¹ An endophytic *Diaporthe* sp. (mangrove leaves *Rhizophora stylosa*, Hainan Is., China) was the source of the sesquiterpenoid diaporol A **342** and drimane sesquiterpenoids diaporol B **343**, C **344** and F–H **345–347**.²⁹² Three synthetic sesquiterpenoids diaporol D **348**,²⁹³ E **349**²⁹⁴ and I **350**²⁹⁵ were isolated for the first time as natural products.²⁹² An endophytic strain of *Eurotium rubrum*, (semi-mangrove *Hibiscus tiliaceus*, Hainan Is., China) produced a diketopiperazine alkaloid 12-demethyl-12-oxo-eurotechinulin B **351** and an anthraquinone derivative 9-dehydroxyeurotinone **352**,²⁹⁶ in addition to the known fungal metabolites variecolorin G²⁹⁷ and alkaloid E-7.^{297,298} The alkaloids *N*-2-methylpropyl-2-methylbutenamide **353**, fusarine **354** and fusamine **355** were discovered from endophytic *Fusarium incarnatum* (mangrove fruit *Aegiceras corniculatum*, Xiamen, Fujian, China)²⁹⁹ along with the known synthetic compounds, 2-acetyl-1,2,3,4-tetrahydro-β-carboline³⁰⁰ and 3-(1-aminoethylidene)-6-methyl-2*H*-pyran-2,4(3*H*)-dione,³⁰¹ reported as first time MNPs. Fusarine was concurrently isolated from the Chinese plant *Alhagi sparsifolia*.³⁰² The isoflavone derivative **356** was obtained from an endophytic *Fusarium* sp. (mangrove leaves *Kandelia candel*, Dong Zai, Hainan, China).³⁰³ Endophytic *Guignardia* sp. (mangrove leaves *Scyphiphora hydrophyllacea*, Wenchang, Hainan, China) was the source of the meroterpenes guignardone F–I **357–360**.³⁰⁴ It should be noted that the planar structure of guignardone G was the same as that of coibanol A, recently obtained from a plant endophyte, *Pycnoporus sanguineus* from Panama.³⁰⁵ The co-isolated guignardone B³⁰⁶ was obtained from a marine source for the first time. Use of epigenetic modifiers to activate secondary metabolite genes in *Leucostoma persoonii* (mangrove branch *Rhizopora mangle*, Florida Everglades) induced production of a new cytosporone analogue cytosporone R **361**, in addition to known cytosporones. Of the isolated compounds, cytosporone E, ³⁰⁷ a first time MNP, inhibited the malaria parasite *P. falciparum* and was moderately inhibitory towards MRSA. ³⁰⁸ Endophytic *Nigrospora* sp. (semimangrove stem *Pongamia pinnata*, Guangxi Zhuang, China) yielded griseofulvin derivatives 362 and 363, 2,3-didehydro-19 α -hydroxy-14-epicochlioquinone B 364, in addition to griseophenone C³⁰⁹ (obtained for the first time from a marine source).³¹⁰ The diketopiperazine **365** (named chrysogenazine in an earlier patent application by the same authors),³¹¹ was obtained from endophytic *Penicillium chrysogenum* (mangrove leaves *Porteresia coarctata*, Chorao Is., Goa, India) and displayed antibacterial activity comparable to that of streptomycin.³¹² Endophytic *P. expansum* (mangrove *Excoecaria agallocha*, source unspecified) was the source of the polyphenols expansol C–F **366–369** and a new diphenyl ether derivative 3-*O*-methyl-diorcinol **370**.³¹³ A *Penicillium* sp. (mangrove rhizospheric soil *Bruguiera gym-norrhiza*, Hainan Is., China) produced meroterpenoid derivatives 4,25-dehydrominiolutelide B **371**, 4,25-dehydro-22- NPR Review deoxyminiolutelide B 372 and isominiolutelide A 373 from static culture and diphenyl ether derivatives $\Delta^{1'3'}$ -1'-dehydroxypenicillide 374, 7-O-acetylsecopenicillide C 375 and hydroxytenellic acid B 376 from shaken culture.314 A number of known compounds were also isolated from the shaken culture: penicillide, 315 secopenicillide C,316 dehydroisopenicillide317 3'-O-methyldehyand droisopenicillide318 (all obtained from a
marine source for the first time). The α-pyrones pestalotiopyrone A-C 377-379 were isolated from Pestalotiopsis sp. (mangrove twigs Rhizophora apiculata, Trang province, Thailand) and the seiricuprolides pestalotioprolide A 380 and B 381 (isolated as the diacetate) were obtained from Pestalotiopsis sp. (mangrove twigs Rhizophora mucronata, Satun province, Thailand).319 An endophytic Pestalotiopsis sp. (mangrove branch Rhizopora apiculata, Satun, Thailand) provided the diphenyl ether derivatives pestalotether A-D 382-385, the chromones pestalochromone A-C 386-388, pestaloxanthone 389 and the butenolide pestalolide 390 (modestly active against C. albicans and Cryptococcus neoformans).320 The tetrahydroanthraquinone derivative was isolated from Phomopsis sp. (mangrove leaf Rhizopora apiculata, Songkhla, Thailand) and possessed weak cytotoxicity against MCF-7 cells in addition to antibacterial activity against S. aureus and MRSA.321 Saccharopolyspora sp. (mangrove soil, Ishigaki Is., Japan) yielded the cyclizidine analogue JBIR-102 392, along with cyclizidine³²² itself (first time from a marine source). Both were cytotoxic to human malignant pleural mesothelioma (MPM) ACC-MESO-1 cells.323 Trichoderma atroviride (mangrove root soil Ceriops tagal, South Sea, China) yielded three new metabolites 393, 394 and atroviridetide 395.324 The succinic acid derivatives xylacinic acid A 396 and B 397 were isolated from Xylaria cubensis (mangrove branch Bruguiera parviflora, Suratthani, Thailand),325 while Xylaria sp. (mangrove leaf Acanthus ilicifolius, Yangjiang, China) produced the lactone 398 in addition to (S)-8-hydroxy-6-methoxy-4,5-dimethyl-3-methyleneisochromen-1-one, which although claimed as new, was previously isolated from a terrestrial Leptosphaeria sp. 326 The current isolation is however the first from the marine environment.327 Review NPR An endophytic Xylaria sp. (unidentified mangrove, South China Sea coast) was the source of the eremophilane sesquiterpenes 399-401328 and the known fungal metabolite 07H239-A.329 A fatty acid glucoside 402 with moderate inhibitory properties against S. aureus and MRSA was obtained from an unidentified endophytic fungus (mangrove leaves Scyphiphora hydrophyllacea, Wenchang, Hainan, China),330 while investigation of an unidentified endophytic fungus (mangrove leaves Avicennia marina, Oman) yielded farinomaleins C-E 403-405 and an isoindoline congener 406,331 in addition to the known farinomalein B.332 #### 3.5 Cyanobacteria Cyanobacteria continue to be a valuable source of new compounds, although the number of new metabolites isolated in the past year is somewhat less than in 2011. Leptolyngbya crossbyana (Hōnaunau reef, Hawaii) was the source of honaucins A-C 407-409, chlorinated metabolites that were potent inhibitors of bacterial quorum-sensing (inhibited bioluminescence in Vibrio harveyi) and inhibited NO production and expression of several pro-inflammatory cytokines in RAW264.7 cells. Honaucin A was synthesised, along with some analogues, to determine the structural features required for activity and some of the analogues had improved potency in the assays.333 Investigation of Lyngbya sp., (Tokunoshima Is., Japan) identified the macrolide biselyngbyolide A 410, which had potent apoptosis-inducing activity against HeLa S3 and HL-60 cells,334 while biselyngbyasides B-D 411-413, analogues of biselyngbyaside335 and biselyngbyolide A334 were obtained from another Lyngbya sp. (Tokunoshima Is., Japan). Biselyngbyaside B inhibited growth and induced apoptosis in HeLa S₃ and HL-60 cells with increased cytosolic Ca²⁺ concentration in the HeLa S₃ cells.336 Serinolamide B 414, a fatty acid amide obtained from a Lyngbya sp. (Piti Bomb Holes, Guam) along with malyngamide B337 are cannabinomimetics, decreasing forskolin-induced cAMP accumulation.338 The lipopeptides lyngbyabellin K 415 and L 416, 7-epi-lyngbyabellin L 417 and lyngbyabellin M 418 and N 419 were isolated from Moorea bouillonii (Strawn Is., Palmyra Atoll, Central Pacific Ocean). The possibility that the linear lyngbyabellin M was an artefact of isolation could not be discounted. Lyngbyabellin N, which contains the unusual N,Ndimethylvaline terminus, was strongly cytotoxic to HCT116 cells.339 NPR ŌН ŌМе ŌМе †410 †411 HO' ОМе HOO ОН . OMe ŌМе OH ŌМе [†]413 †412 †414 †415 R₁ = R₂ = CI †416 R₁ = H, R₂ = CI †417 R₁ = CI, R₂ = H **EtOOC** CI [†]418 The biosynthetic gene cluster for the chlorinated molluscicide barbamide,340 obtained from the marine species Moorea producens, was heterologously expressed in the terrestrial actinobacterium Streptomyces venezuelae and resulted in the production of a new barbamide analogue 4-O-demethylbarbamide 420, which also functioned as a potent molluscicide against the marine snail Biomphalaria glabrata.341 An [†]419 CI Oscillatoria sp. (Coiba National Park, Panama) was the source of the unsaturated polyketide lactone derivatives coibacin A-D 421-424 which had selective antileishmanial activity and potent anti-inflammatory activity.342 The viequeamides, 2,2-dimethyl-3-hydroxy-7-octynoic acid (Dhoya)-containing cyclic depsipeptides, were obtained from the "button" cyanobacterium Rivularia sp. (Playa de la Chiva, Vieques Is., Puerto Rico). Of these, viequeamide A 425 was highly toxic to H460 human lung cancer cells. Viequeamides B-F could not be separated but the absolute configuration of the major component of the mixture, viequeamide B 426 was determined, along with planar structures for viequeamides C 427 and D 428.343 Hoiamide D 429, with two consecutive thiazolines and a thiazole as well as a modified isoleucine residue, was obtained independently in both its carboxylic and conjugate base forms from two Symploca sp. (Kolaio Is., Papua New Guinea; Kape Point, Papua New Guinea), respectively. The carboxylate anion inhibited p53/MDM2 protein binding.344 Symplocin A 430, an N,N-dimethyl-terminated peptide, was isolated from Symploca sp. (San Salvador Is., Bahamas) as a potent inhibitor of the protease enzyme cathepsin E. Determination of the absolute configuration of the terminal N,N-dimethylisoleucine and valic acid residues employed a new methodology; chiral-phase HPLC assignment of the corresponding 2-naphthacyl esters, a procedure that may be generally applicable to other N-terminal blocked peptides.345 A collection of Symploca sp. (CARMABI, Curação) was the source of carmaphycins A 431 and B 432, peptidic proteasome inhibitors containing a leucine-derived α,β-epoxyketone connected respectively to methionine sulfoxide or methionine sulfone. Covergent and flexible total syntheses of each were achieved. Both carmaphycins A and B strongly inhibited the β5 subunit (chymotrypsin-like activity) of the S. cerevisiae 20S proteasome and displayed strong cytotoxicity to lung and colon cancer cells, as well as potent antiproliferative effects to HTCLs. 346 Collections of cyanobacteria from Curação and Papua New Guinea each yielded metabolites containing a chlorovinyl group. The lipoamide janthielamide A 433 was obtained from "tropical marine Symploca" (Jan Thiel Bay, Curação) whilst further lipoamides kimbeamide A-C 434-436 and a ketideextended pyranone kimbelactone A 437 were isolated from a consortium of "tropical marine Symploca" and Moorea producens (Kime Bay, New Britain, Papua New Guinea). Of these compounds, janthielamide A and kimbeamide A displayed moderate sodium channel blocking activity in murine Neuro-2a cells and janthielamide A was also an antagonist of veratridineinduced sodium influx in murine cerebrocortical neurons.347 #### 3.6 Dinoflagellates Amphidinium sp. (red alga Digenea simplex, Okinawa, Japan) was the source of the polyol amdigenol A 438, 348 while the polyether brevisulcenal F 439 was obtained from Karenia brevisulcata (Wellington, New Zealand)349 and exhibited mouse lethality and toxicity to P388 cells.350 The structure of ovatoxin-a 440, the major toxin of benthic Ostreopsis ovata (seawater, Adriatic and Tyrrhenian coasts, Italy), reported in a preliminary communication,351 has now been fully characterised using NMR-based analysis.352 Preliminary in vivo assessment of the activity of ovatoxin-a in mice indicated that it was lethal over a very short time period and also caused limb paralysis.353 A new palytoxin congener, ovatoxin-f was detected in a North Western Adriatic strain of Ostreopsis cf. ovata (Portonovo, Italy) but was not fully characterised.354 #### 3.7 Ciliates A number of diterpenes have been obtained from various strains of the ciliate Euplotes rariseta. One strain (Omaha Bay, New Zealand) provided the irregular diterpenoids omaholidenol 441 and omaholidenal 442, while ubatubaolidenal 443, ubatubadial A 444 and ubatubadial B 445 were obtained from a different strain (Ubatuba, Brazil). Euplotes quinquecarinatus (Mughsayl, Oman) yielded epoxyfocardolide 446 and Euplotes parkei (Margarita Is., Venezuela) the prenyl epoxyrarisetenolide 447.355 #### Synthetic aspects Asymmetric synthesis of streptophenazine G356 has been achieved by alkylation and aldol reactions using chiral oxazolidinones as the key steps and resulted in revision of the published structure to 448,357 consistent with the structural revision of streptophenazine A reported previously via synthesis.358 (-)-Heronapyrrole C, a farnesylated 2-nitropyrrole from an Australian Streptomyces sp., 359 has been synthesised in eight steps from commercially available starting materials and is suggested to be the enantiomer of the natural product. The absolute configuration of naturally occurring heronapyrrole C is proposed as 449.360 Total synthesis of the tricyclic polypropionate indoxamycin B, originally isolated from a marine-derived actinomycete, 361 has resulted in a stereochemical reassignment of the natural product to 450.362 A benzonaphthyridine alkaloid originally isolated from mangrove sediment derived Streptomyces albogriseolus363 was synthesised and the absolute configuration determined as 451.364 A
synthesis of apiosporic acid, originally isolated from Apiospora montagnei (fungal endophyte of the North Sea alga Polysiphonia violacea),365 has confirmed the absolute configuration as originally drawn.366 (+)-Gliocladin B, a diketopiperazine metabolite of the fungus Gliocladium sp.,367 has been synthesised in an enantioselective manner utilising a new regioselective Friedel-Crafts-based strategy that determined the absolute configuration as 452.368 Cephalosporolide H is a lactone from the marine fungus Penicillium sp.369 Mismatch of spectral data from an earlier synthesis of the proposed structure with those of the natural compound indicated that the structure may need to be revised.370 A stereocontrolled synthesis of the reported structure of cephalosporolide H and three diastereoisomers, via a zinc-chelation strategy for controlling the stereochemistry of oxygenated 5,5-spiroketals, led to a suggested structure for cephalosporolide H as 453. This awaits comparison with an authentic sample for confirmation.371 Xyloallenoide A, an N-cinnamoylcyclopeptide isolated from the endophytic mangrove fungus Xylaria sp.,372 has been synthesised and the absolute configuration determined as 454.373 Palmyrolide A is a neuroprotective macrolide obtained from an assemblage of the cyanobacteria Leptolyngbya and Oscillatoria spp. 374 Synthesis of (+)-ent-palmyrolide A has been achieved via a macrocyclisation reaction that established the absolute configuration of the natural product as 455.375,376 (-)-Palmyrolide A was subsequently synthesised via a protecting-group-free method.376 NPR Review The aglycon of the originally assigned structure of lyng-bouilloside, a glycosidic macrolide obtained from a Papua New Guinean *Lyngbya* sp.,³⁷⁷ has been synthesised from commercially available 3-methylbut-3-enol. A mismatch of the NMR spectroscopic data against the original data strongly indicates that the configuration at C-11 of lyngbouilloside should be revised to 456.³⁷⁸ This is in accord with results of an earlier synthesis of the macrocyclic core³⁷⁹ and also with the stereochemistry of lyngbyaloside B,³⁸⁰ a metabolite obtained from a different species of *Lyngbya*, but with the same macrocyclic core as lyngbouilloside.³⁷⁸ Veraguamide A is a cyclic hexadepsipeptide isolated from the cyanobacteria Symploca cf. hydnoides (Guam)381 and Oscillatoria margaritifera (Panama).382 Total synthesis of the proposed structure from three key fragments revealed that although the synthetic compound had a similar optical rotation to that reported for the natural product, there were significant differences in the NMR spectral data, particularly associated with the two N-methyl valine residues. The originally assigned structure may need revision.383 A convergent total synthesis of lodopyridone, the unusual alkaloid originally isolated from Saccharomonospora sp., (sediment, La Jolla Submarine Canyon, USA),384 was achieved in nine linear steps via cross-coupling of an iodopyridone fragment with a (quinolinethiazolyl)stannane.385 Marinoquinoline A, a pyrroloquinoline alkaloid obtained from the gliding bacterium Rapidithrix thailandica,386,387 has been synthesised from commercially available starting materials in six linear steps.³⁸⁸ Synthesis of tirandamycin C, a tetramic acid originally isolated from a Streptomyces sp., 389 has been completed 390 and the total synthesis of maremycin B, originally isolated from a marine Streptomyces sp.,391 has been accomplished starting from Lisoleucine and S-methyl-L-cysteine. 392 Salinipyrone A, a polyketide of the Palauan actinomycete Salinispora pacifica, 393 has been prepared in 14% yield via an eight step procedure from a vinylketene silyl N,O-acetal.394 Macrosphelide M, originally isolated from the fungus Periconia byssoides associated with the sea hare Aplysia kurodai,395 has been synthesised from diacetone glucose.396 As a positional isomer of macrosphelide E, this isomer has also been synthesised as part of a library of all 16 diastereomers of the natural products macrosphelides A and E.³⁹⁷ (\pm)-Penostatin B, originally isolated from *Penicillium* sp. associated with the green alga Enteromorpha intestinalis, 398 has been synthesised utilising a diastereoselective Pauson-Khand reaction and a relay ring-closing metathesis.399 7a(S)-p-Hydroxyphenopyrrozin, sourced originally from the fungus Chromocleista sp. (sediment, Gulf of Mexico),400 has been synthesised in an enantiospecific manner from L-proline utilising base-mediated cyclisation and oxygenation as key steps. 401 An improved method for the sulfenylation of 2,5-diketopiperazines utilising alkali metal hexamethyldisilazide bases has been employed in the synthesis of gliotoxin G,258 a metabolite of the marine fungus Penicillium sp.402 Balticolid, a 12-membered macrolide, originally isolated from an Ascomycetous fungus separated from driftwood,403 has been synthesised utilising a Hoveyda-Grubbs II catalyst assisted ring-closing metathesis. 404 Also reported are the syntheses of phomolides G and H, nonenolides originally obtained from an endophytic Phomopsis sp. of the mangrove Kandelia candel, 405 from (R)-epichlorohydrin. 406 7',8'-Dihydroaigialospirol, a metabolite of the mangrove fungus Aigialus parvus,407 was prepared in a highly convergent synthesis.408 Apratoxin D, a cytotoxic cyclodepsipeptide obtained from Lyngbya majuscula and Lyngbya sordida from Papua New Guinea, 409 has been synthesised by a procedure which utilised an Evans syn-aldol and a Paterson anti-aldol reaction amongst the key asymmetric transformations employed.410 The linear depsipeptide grassystatin A, originally isolated from Lyngbya cf. confervoides,411 has been synthesised by a [4 + 6] strategy. 412 Total synthesis of gambieric acid A, a polycyclic ether metabolite of the dinoflagellate Gambierdiscus toxicus,413 has been accomplished,414 which reinforced the previously established revised stereostructure.415 Amphidinolide F, originally obtained from the dinoflagellate Amphidinium sp., 416 has been synthesised in 34 steps which included silvercatalysed dihydrofuran formation.417 ### 3.9 Assorted bioactivities The dibenzodiazepine alkaloid diazepinomicin, isolated as a metabolite of a *Micromonospora* sp. associated with the ascidian *Didemnum proliferum*, has broad-spectrum antitumour activity. It has now been shown to be a potent antioxidant and an inhibitor of the proteases rhodesain and cathepsin L. Prodigiosin, 220 a tripyrrole red pigment with immunosuppressive and anticancer activities was found to exhibit selectivity for cells overexpressing the gene ErbB-2, so could show potential in human breast cancer therapy. 421 Streptomyces praecox (brown alga Undaria pinnatifida, S. Korean coast) produced the known (6S,3S)-6-benzyl-3-methyl-2,5-diketopiperazine (bmDKP)422 and (6S,3S)-6-isobutyl-3-methyl-2,5-diketopiperazine⁴²³ which both exhibited antifouling activity (inhibited zoospore settlement).424 Several known alkaloids were obtained from Bacillus pumilus (black coral Antipathes sp., Otoque Is., Panama), of which 3hydroxyacetylindole⁴²⁵ and *N*-acetyl-β-oxotryptamine⁴²⁶ were inhibitors of growth of Trypanosoma cruzi with moderate cytotoxicity to Vero cells. 427 Several known bacterial metabolites, including 2-undecen-1'-yl-4-quinolone,428 3-hexyl-6-pentyl-4hydroxyl-2H-pyran-2-one⁴²⁹ and 6-heptyl-3-hexyl-4-hydroxyl-2Hpyran-2-one⁴³⁰ were isolated from Alteromonas sp. (seawater, Masan Bay, S. Korea) as potent algicides. 431 The diterpene lobocompactol was originally isolated from the soft coral Lobophytum compactum432 but has now been obtained from Streptomyces cinnabarinus (seaweed, S. Korean Coast), where increased production was induced by co-culture with Alteromonas sp. Lobocompactol exhibited significant antifouling activity against the macroalga Ulva pertusa and the diatom Navicula annexa and inhibited growth of fouling bacteria. 433 #### 3.10 Biosynthesis A series of genetic experiments involving the discovery and heterologous expression of the biosynthetic genes for marinopyrroles, 1,3'-bipyrrole metabolites of a Streptomyces sp., 434,435 has indicated that two flavin-dependent halogenases catalyse the unprecedented N,C-bipyrrole homocoupling reaction.436 Haterumalides are antitumour halogenated macrolides obtained from terrestrial plant-associated bacteria, 437,438 and subsequently from a marine sponge⁴³⁹ and an ascidian.⁴⁴⁰ The biosynthetic gene cluster for the potent oocydin A (haterumalide NA) was identified by genome sequencing, comparative genomics and chemical analysis and found to be organised into three transcriptional units encoding trans-acyltransferase polyketide synthases.441 Several Streptomyces species389,442,443 have yielded tirandamycins, metabolites that target bacterial RNA polymerase. Inactivation of the enzyme TrdE, a putative glycoside hydrolase within the tirandamycin biosynthetic cluster, leads to accumulation of pre-tirandamycin. In vitro and site-directed mutagenesis studies demonstrated that TrdE catalyses the installation of the $\Delta^{11,12}$ double bond during tirandamycin biosynthesis in an atypical manner.444 Caerulomycins and collismycins are two groups of bacterial metabolites which contain a 2,2'-bipyridine core. Caerulomycins have been isolated from both terrestrial and marine445 sources, whilst collismycins are terrestrial in origin. Cloning of the caerulomycin biosynthetic gene cluster enabled mining of a highly conserved gene cluster encoding collismycin biosynthesis in a Streptomyces strain previously unknown as a 2,2'-bipyridine producer. In vitro and in vivo experiments indicated that caerulomycins and collismycins share a common paradigm with an atypical hybrid PKS/NPRS system responsible for the 2,2'-bipyridine core formation.446 Treatment of a strain of *Penicillium purpurogenum* (sediment, Bohai Bay, Tianjin, China) with the antibiotic gentamicin produced a mutant in which previously silent gene clusters were activated
to produce antitumour compounds of four different chemical types: janthinone,447 fructigenine A,448 aspterric acid methyl ester449 and citrinin,450 demonstrating the potential of this approach to elicit dormant fungal metabolic potential.451 Haloroquinone is a protein kinase B inhibitor and antitumour polyketide obtained from the fungus, Halorosellinia sp. 452 Feeding experiments on Halorosellinia sp. with [2-13C]malonate and [1,2,3-13C3]malonate indicated that fifteen carbon atoms of the haloroquinone skeleton were derived from malonate, eight from the methylene group and seven from the carboxyl group, thus determining its origin via a polyketide pathway using malonyl-CoA as both the starter and the extender unit.453 The biosynthesis of two N-acylated dihydropyrroles, (8E)-1-(2,3dihydro-1H-pyrrol-1-yl)-2-methyldec-8-ene-1,3-dione and 1-(2,3dihydro-1*H*-pyrrol-1-yl)-2-methyldecane-1,3-dione, isolated from terrestrial Penicillium brevicompactum454 but subsequently also obtained from a marine-derived Penicillium citrinum, 455 has been investigated in the latter species. Feeding experiments utilising 13C-labelled precursors established that the biosynthesis of both metabolites involves the incorporation of acetate, methionine and ornithine. 456 Reduction of emodin, a metabolite of both marine⁴⁵⁷ and terrestrial⁴⁵⁸ fungal origin, by sodium dithionite, resulted in the formation of two tautomeric forms of emodin hydroquinone. Subsequent conversion by the short-chain dehydrogenase/reductase (SDR) enzyme MdpC into the corresponding 3-hydroxy-3,4-dihydroanthracen-1(2H)-one implies that deoxygenation is the first step in the biosynthesis of the marine⁴⁵⁹ and terrestrial⁴⁶⁰ fungal metabolite monodictyphenone.461 NotB, the enzyme which catalyses the indole 2,3-oxidation of the Aspergillus metabolite notoamide E462 to notoamides C462 and D462 through an apparent pinacol-like rearrangement, has been characterised in vitro. Precursor incorporation experiments utilising [13C]₂-[15N]₂ quadruply labelled notoamide S,463 demonstrated that notoamide S is a pivotal branching point in notoamide biosynthesis.464,465 Stable-isotope labelling experiments on the endophyte Fusarium incarnatum (mangrove embryo Aegiceras corniculatum, unspecified source) indicated that the Fusarium processes coriolic acid, didehydrocoriolic acid and an epoxy fatty acid derived from linoleic acid by a process involving Δ^{15} desaturation and 13-lipoxygenation.466 The epoxy fatty acid was isolated in minute quantities as an inseparable mixture of diastereoisomers.466 The ladder-frame polyether yessotoxin (YTX) is produced by the dinoflagellate Protoceratium reticulatum. Culture of P. reticulatum under an ¹⁸O₂ atmosphere and with supplementation of the culture media with [18O2]acetate, followed by collision-induced dissociation tandem mass spectrometry (CID MS/MS) of the labelled yessotoxin, indicated that the ether oxygens were labelled from 18O2 and the hydroxy oxygen on C-32 was derived from [18O2]-acetate. This supports the proposed biosynthetic mechanism of marine ladder-frame polyethers that a polyene precursor is oxidised by a monooxygenase after acetate condensation.467 The biosynthetic origin of the okadaic acid water-soluble ester derivative DTX5c468 was investigated by addition of sodium [1-13C]- and NPR Review [2-13C]-acetate to artificial cultures of the dinoflagellate Prorocentrum belizeanum and indicated that the polyketide backbone is interrupted by three "m-m" sequences in the ester side chain.469 The finding in 2011 that the ascidian-derived didemnins are produced by an α -proteobacterium of the genus Tistrella470 has been followed by another significant paper in 2012 reporting that T. mobilis (Red Sea and other sources) also produced didemnins. A putative didemnin biosynthetic gene cluster has been isolated from the genome of the Red Sea species. This locus encodes a 13-module hybrid NPRS-PKS enzyme complex for the synthesis of the acyl glutamine didemnins X and Y, precursors to didemnin B. Mass spectrometry of T. mobilis bacterial colonies captured the timedependent extracellular conversion of didemnins X and Y to didemnin B.471 The discovery of the didemnin biosynthetic gene cluster potentially obviates the supply problems that presently hinder the development of the didemnins as therapeutic agents as well as paving the way for the engineering of new didemnin congeners. #### 4 Green algae There were just two new metabolites reported from publications on green algae in 2012. Research into Tydemania expeditionis (Yellow Sea, China) defined the new ketosteroid 457 along with three known sterols and established modest activity against prostate cancer cells. 472 The other new metabolite characterised was the weakly antifungal chloro-bisindole 458 from Caulerpa racemosa (Zhanjiang coastline, China) isolated along with caulerpin and two related caulerpin derivatives. 473 Included in the green algal literature for 2012 were a number of papers, that while not reporting new compounds, are worthy of comment. These include the finding that separate isoprenoid-24-alkyl sterol pathways have evolved in fungi and green algae which converge to yield ergosterol, 474 the role of caulerpin as a potential antiviral drug against HSV Type 1,475 tetrapyrrolic pigments as photosensitisers for photodynamic therapy476 and a careful evaluation of the antioxidant activity of a wide range of Hawaiian brown, red and green algae. 477 Also of interest was the identification of 208 volatile compounds from the green alga, Capsosiphon fulvescens, used by Koreans for centuries for its unique taste and flavour properties. 478 #### 5 Brown algae The chemistry of the Ochrophyta in 2012 was again dominated by terpenoids and phenolics and, as for the Chlorophyta, the number of new compounds characterised was relatively low. Further investigation into the chemistry of Cymathere triplicata (Deception Pass, Washington, USA) led to the characterisation of the unusual polycyclic oxylipins cymatherelactone 459 and cymatherols A-C 460-462 (isolated as the methyl esters).479,480 A plausible biogenesis for 459-461 was offered. Two studies on Bifucaria bifurcata (Roscoff, France) defined the metabolic makeup of this alga with the isolation of the sesquiterpenoids formyleleganolone 463, bibifuran 464 and four new eleganolone derivatives 465-468.481,482 Also isolated were eleganolone,483 five previously described eleganolone derivatives484-488 and 16-hydroxygeranylgeraniol489 (isolated for the first time from this species) which collectively can be correlated in a hypothetical metabolic grid.482 In a follow-up study the structures and relative configurations of a further 13 dolabellane diterpenoids 469-481 from the alga Dilophus spiralis (Elafonissos Is., Greece) were described along with the antibacterial properties of 469-477 and 481. The absolute configuration of 469 was determined and extended by implication across the series.490 †469 X = H,H 470 X = O 471 ŌR **475** $R_1 = R_2 = H$, $R_3 = OAc$, X = O ÓH 477 R = Ac 478 R = H ŌН 480 Investigation of the kinase and antibacterial activity of *Zonaria spiralis* (North Walkerville, Victoria, Australia) led to the isolation of the hemiketal spiralisones A-D, **482-485**. These are phloroglucinol-derived lipids and were isolated as racemates. The relative instability of the spiralisones, the zero optical rotation and the isolation of co-occuring chromones corresponding to dehydration of spiralisones B and D led to a biogenetic scheme, biomimetic syntheses of spiralisones A and D and raised the possibility that previously reported algal chromones could be artefacts of isolation. ⁴⁹¹ Radical scavenging activity led to the isolation of sargussumol **486** from *Sargassum micracanthum* (Wando County, Jeonnam province, S. Korea). ⁴⁹² Sargussumol was the phenolic rather than the methyl ether (sargussumketone) previously isolated from *S. kjellmanianum*.⁴⁹³ From a survey of 15 algae from the Sea of Japan for α -amylase activity, the phlorotannin DDBT was found in *Sargassum patens* (Noto Peninsula, Japan). DDBT was a potent competitive inhibitor of α -amylase and also inhibited α -glucosidase suggesting a potential role as a natural nutraceutical to prevent diabetes.⁴⁹⁴ DDBT was claimed as a new compound but had earlier been found in *Cystophora congesta*.⁴⁹⁵ The phlorotannin octaphlorethol A **487** from the S. Korean brown alga *Ishige foliacea* (Jeju Is.) mediated glucose uptake and as such has potential as an antidiabetic,⁴⁹⁶ while another Jeju Is. brown alga, *Ecklonia cava*, was the source of 2,7"-phloroglucinol-6,6'-bieckol **488**, a new antioxidant.⁴⁹⁷ The absolute configuration of dilospirane B (*Dilophus spiralis*, Elafonissos Is., Greece)⁴⁹⁸ has been assigned as **489** following conformational analysis and TDDFT calculations on the preponderant conformers (\sim 92% of the total population) of the (11R)-enantiomer. This afforded a negative Cotton Effect comparable to that observed experimentally.⁴⁹⁹ NPR Review In light of the confusion that has surrounded the absolute configurations of the meroditerpenoids taondiol 500,501 and epitaondiol 502 vibrational CD (VCD) approaches have been used to clarify the situation. 503 The diacetates were used in the study rather than the free alcohols which often show intermolecular solute–solute associations that complicate comparison of experimental and DFT calculated spectra. The calculations showed that the absolute configuration of taondiol diacetate **490** is (2S,3S,6R,7R,10R,11R,14S) and that of epitaondiol diacetate **491** is (2S,3S,6S,7S,10R,11R,14S) with single crystal X-ray analyses to support the relative configurations. A stereoselective synthesis of the trans-hydrindane core of dictyoxetane504 has been reported,505 as has the development of "borono-sclareolide", a terpenyl radical precursor that can be produced on the multi-gram scale allowing
rapid access to a wide variety of meroterpenoids. This was demonstrated by the synthesis of 10 meroterpenoids, the majority being of marine origin.506 The C40 allenic-carotenoid fucoxanthin has been synthesised by a stereocontrolled route that also led to a longer chain (C₄₂) analogue.⁵⁰⁷ The taxonomic implications of the re-isolation of five known diterpenoids of the dictyol series from Dictyota guineensis (Penha Beach, Brazil)508 and of a known meroditerpenoid509 from Cystoseira nodicaulis (Penmarc'h, Brittany, France) were considered. 510 The incidence of betaines in species of the Laminariales was studied511 and two papers have been published on the biological properties of sargachromanol G from Sargassum siliquastrum⁵¹² covering anti-inflammatory properties⁵¹³ and the expression of osteoclastogenic factors. 514 The tyrosinase inhibitory activity of dieckol from Eklonia cava515 was examined in silico against mushroom tyrosinase and an effective binding site defined suggesting that dieckol has potential for further development as a pharmaceutical or cosmetic agent. 516 A particularly interesting techniques paper was the application of electrochemical methods to guide the isolation of antioxidants from crude samples. This was illustrated with the isolation of four known antioxidants from Sargassum elegans (Noordhoeck, Port Elizabeth, South Africa).517 ## 6 Red algae The 46 new compounds reported from red algae in 2012 is similar to the number reported from the previous year (42). Three bromoallenes, including the new dihydroitomanallene B **492**, were obtained from *Laurencia nangii* (Sabah, Malaysia). Desepilaurallene **493** is a C₁₂-acetogenin extracted from *L. okamurai* (Rongcheng, China), along with four new sesquiterpenes described later in this section. A different collection of *L. okamurai* (Weihai, Shandong Province, China) also contained a mixture of a C₁₂-acetogenin okamuragenin **494** and five new sesquiterpenes (see later). An on-line/off-line HPLC-NMR study of an extract from *Plocamium angustum* (Pt. Lonsdale, Vic., Australia) revealed the known halogenated monoterpene plocamenone, but with the revised structure **495** shown here, and the new isomeric compound isoplocamenone with the structure **496** previously ascribed to plocamenone. The brominated chamigrenes **497** and **498** and cuparene **499**, together with the known sesquiterpene **500**, but new as a natural product, were isolated from the same L. okamurai that yielded the C_{12} -acetogenin **493** described earlier. The sesquiterpene **500** had potent antibacterial activity. In a separate paper, but resulting from this same collection of L. okamurai, three additional halogenated chamigrenes laurokamin A–C **501–503** were characterised. Sea Review NPR Four new chamigranes laurecomin A-D 504-507 and the sesquiterpene 508 were isolated from L. composita (Pingtan Is., China). Laurecomin B was the only compound showing antifungal activity.524 A Red Sea (Jeddah, KSA) collection of L. obtusa yielded three new laurene sesquiterpenes 509-511 all of which had strong antibacterial activity, while 510 also had significant activities.525 antifungal and antitumour Four bisabolanes okamurene A-D 512-515 and the new chamigrane okamurane E 516 were obtained from the earlier-described L. okamurai. 520 The structure proposed for the sesquiterpene aldingenin aldingensis)526 has been synthesised, discrepancies between the spectroscopic data of the synthetic and natural material suggest that the claimed structure is incorrect.527 From a Fijian (Mango Bay Resort, Viti Levu) collection of Callophycus sp., five new compounds of the diterpene-benzoate class, bromophycoic acids A-E 517-521, were isolated. These compounds displayed a range of activities in antitumour, antimalarial and antibacterial assays.528 The antigenotoxic ketosteroid 522 was obtained from an extract of Jania adhaerens (Al-Shoaiba coast, Red Sea). 529 The two new cytotoxic oxasqualenoids saiyacenol A 523 and B 524 were obtained from Laurencia viridis (Callao Salvaje, Tenerife, Canary Is.).530 These compounds share a significant part of their structures with aplysiol B, and with the definition of the stereocentre configurations in the saiyacenols well established, it was possible to confirm with more certainty the recently proposed structural revision for aplysiol B.531 Bromophenols are frequently reported from red algae, and an additional 13 were described in 2012. The potently radical scavenging bromophenols 525-529 were obtained from Rhodomela confervoides (Dalian, Liaoning Province, China).532 A collection of Symphyocladia latiuscula (Qingdao, Shandong Province, China) provided a bromophenol coupled to a diketopiperazine 530.533 In another paper, this same collection of S. latiuscula was reported as having produced the symphyocladins A-G 531-537. Symphyocladin G showed modest antifungal activity.⁵³⁴ Several papers described new biological activities for red algal metabolites, including anti-HSV-1 and HSV-2 glycolipids from *Osmundaria obtusiloba*,⁵³⁵ antitumour effects of elatol from *Laurencia microcladia*,⁵³⁶ antinociceptive and anti-inflammatory extracts from *Bryothamnion triquetrum*⁵³⁷ and anti-human rhinoviral activities of polybromocatechols from *Neorhodomela aculeata*.⁵³⁸ Surface enhanced Raman spectroscopy combined with transposed Orthogonal Partial Least Squares (T-OPLS) provided chemical images of the antibacterial surface-active 1,1,3,3-tetrabromo-heptan-2-one on *Bonnemaisonia hamifera* at concentration levels of sub-femtograms per μm².⁵³⁹ ## 7 Sponges The number of new compounds reported from marine sponges in 2012 (355) has increased by approximately 20% compared with 2011.¹ Pachastrissamine (*Pachastrissa* sp.),⁵⁴⁰ also known as jaspine B, requires dual inhibition of both Forkhead box 03 (Fox03) and cyclin-dependent kinase 2 (Cdk2) to prevent melanoma cell growth.⁵⁴¹ Niphatenones A **538** and B **539** were isolated from *Niphates digitalis* (Pennville, Commonwealth of Dominica) and synthesised to permit bioactivity profiling. The enantiomers proved to be more active as androgen receptor inhibitors.⁵⁴² Leucettamols A and B (*Leucetta microrhaphis*)⁵⁴³ act as non-electrophilic activators of transient receptor potential (TRP) ion channels and have potential as pain modulators.⁵⁴⁴ A S. Korean *Spirastrella abata* yielded three sulfated sphingolipids **540–542** and one phosphorylated glycerol ether **543**.⁵⁴⁵ Myrmekioside E **544** is an acetylated glycolipid from *Myrmekioderma dendyi* (Epi Is., Vanuatu Archipelago) with moderate potency against lung tumour cells. ⁵⁴⁶ A Micronesian *Xestospongia* cave sponge was the source of three polyacetylenes **545–547** with low μM activity against *Pseudomonas aeruginosa* (*P. aeruginosa*), ⁵⁴⁷ while an extract of *Haliclona fulva* (Procida Is., Gulf of Naples, Italy) contained the nine acetylenes fulvyne A–I **548–556**. ⁵⁴⁸ The structures of plakotenin **557** (*Plakortis* sp.),⁵⁴⁹ homoplakotenin **558** and norplakotenin **559** (*Plakortis lita*)⁵⁵⁰ have been revised following total synthesis and intensive spectroscopic characterisation.^{551,552} Two comprehensive synthetic, chemical and spectroscopic investigations of various plakortolide congeners (*Plakinastrella clathrata*) have confirmed that ОН R_3 ОН 12 СООН ÓН ÓН ÓН 548 R₁ = H, R₂ = R₃ = OH 550 R₁ = R₃ = OH, R₂ = H **552** R₁ = R₂ = H, R₃ = OH 553 R₁ = R₃ = H, R₂ = OH **554** R_1 = OH, R_2 = R_3 = H **556** R₁ = R₂ = R₃ = H ОН ОН COOH ÓН ÓН ÓН ÓН ÓН 549 R = OH 551 R = H ОН ÓН ÓН ÓН СООН ÓН 555 the originally reported plakortolides E (Plakortis sp.)553 and I (Plakortis simplex)554 are actually seco-plakortolide E 560 and plakortolide E 561, respectively, and that a related but previously unnamed variant from Plakinastrella sp.555 is plakortolide I 562.556,557 Warning: it was shown that optical rotation alone is not a reliable predictor of absolute configuration in this structural class.556 Further investigation of P. clathrata (Gneerings Reef, Mooloolaba, Australia) yielded plakortolides T-W 563-566, plakortoperoxides A-D 567-570, carboxyplakortolides 1 571 and 2 572, and a series of other related metabolites 573-579 with 569-579 isolated as mixtures of diastereomers.558 $$R_1$$ H_2 R_2 $COOH$ †557 $R_1 = H$, $R_2 = Me$ †558 $R_1 = R_2 = Me$ †559 $R_1 = R_2 = H$ Manadoperoxides E-K 580-586 and peroxyplakoric ester C 587 are potent antiprotozoals (Trypanosoma brucei rhodesiense) from Plakortis lita (Bunaken, Sulawesi, Indonesia).559 Mycalamide E 588 and congeners (Mycale hentscheli, Pelorus Sound, New Zealand) are potent protein synthesis inhibitors that are not actively transported by drug efflux pumps in yeast.560 Investigations of *Plakortis simplex* (Yongxing Is., South China Sea) revealed the moderately antifungal woodylides A–C 589–591, ⁵⁶¹ and the less active simplexolides A–E 592–596 and plakorfuran A 597. ⁵⁶² A Fijian *Plakinastrella mamillaris* contained plakilactones A-F **598–603** and gracilioether D **604**. Plakilactone C has potential as an antidiabetic and anti-arthrosclerosis agent due to its covalent binding to the peroxisome proliferator-activated receptor γ (PPAR γ), inhibiting adipocyte gene transcription.⁵⁶³ Further investigation of the same sponge sample yielded gracilioethers E–J **605–610** with only gracilioether H being antimalarial (*P. falciparum*), highlighting the importance of the peroxide functionality for activity.⁵⁶⁴ Tedarenes A **611** and B **612** are atropisomeric compounds from *Tedania ignis* (Sweetings Cay, Bahamas) with tedarene A inhibiting NO-production in LPS-induced macrophages. The published structure of a dimethoxy binaphthyl compound from *Lendenfeldia* sp. has been shown to be incorrect, and is likely a brominated biphenyl. The structure of OSO₃-OH [†]612 611 yielded Malaysian 14-hvdrox-Α Petrosia alfiani ymethylxestoquinone 613, 15-hydroxymethylxestoquinone 614 and
14,15-dihydroxymethylxestoquinone 615, all of which activated the hypoxia-inducible factor-1 (HIF-1). Moreover, 613 enhanced respiration and decreased mitochondrial membrane potential suggesting its mode of action uncouples mitochondrial respiration.⁵⁶⁸ 613 R₁ = H, R₂ = CH₂OH 614 R₁ = CH₂OH, R₂ = H 615 R₁ = R₂ = H, $$\Delta$$ saturated Xestosaprol N 616 has been reported from a Xestospongia sp. (Weno Is., Chuuk State, Federated States of Micronesia),569 while the antifungal aurantoside K 617 was isolated from a species of Melophlus (Cicia, Lau group of Fiji). 570 Iotrochamides A 618 and B 619 (Iotrochota sp., Curacao Is., Queensland) were both moderately selective against Trypanosoma brucei. 571 The total synthesis of (-)-irciniastatin B (Ircinia ramosa)⁵⁷² has been achieved. 573 The accepted structure of cyclocinamide A (Psammocinia sp.), originally reported in 1997 and revised in 2008, 574,575 has been disproven by synthesis leaving the structure of the natural product as a mystery.⁵⁷⁶ Namalide 620 is a potent carboxypeptidase A inhibitor isolated from Siliquariaspongia mirabilis (Nama Is., Chuuk Lagoon, Federated States of Micronesia). The structure of 620 was confirmed by solid-phase synthesis.577 The Lithistid sponge Discodermia calyx (Shikine-Jima Is., Japan) provided the moderately antiproliferative calyxamides A 621 and B 622. The presence of metagenomic DNA from the filamentous bacterium Candidatus Enthotheonella sp. that produces similar NPR Review cyclopeptides in other sponges suggested that the calyxamides are produced by a symbiont.⁵⁷⁸ The proline-rich octapeptide stylissamide X **623** was reported from *Stylissa* sp. (Biak, Indonesia), and inhibited HeLa cell migration at sub-inhibitory concentrations.⁵⁷⁹ Droplet counter-current chromatography (DCCC) was used to isolate perthamides G-K **624-628** from a *Theonella swinhoei* (Solomon (Malaita) Is.). All of the perthamides isolated had some anti-inflammatory activity, suggesting structure activity relationships (SAR) were linked to the γ -methylproline, 3-amino-2-hydroxy-6-methylheptanoic acid and 2-amino-2-(2,4-dioxooxazolidin-5-yl)acetic acid sidechains. ⁵⁸⁰ $$R_1$$ R_1 R_1 R_2 R_1 R_2 R_3 R_4 R_5 R_5 R_5 R_5 R_6 R_7 The sponge *Neamphius huxleyi* (Milln Reef, Cape Grafton, Queensland) yielded neamphamides B-D **629-631** as potent and non-selective cytotoxins. An earlier report had used the name neamphamide B to describe **632** from *Neamphius* sp. (Okinawa, Japan), which inhibited the growth of *Mycobacterium smegmatis*. Neither report detailed the full stereochemical assignment of the isolated material, but they are different compounds as **632** is claimed to contain a D-Asn while **629** has L-Asn at the same position. [†]**627** R = H **628** R = Me The sponge *Pipestela candelabra* (Guadalcanal, Solomon Is.) contained the mixed NRPS-PKS pipestelides A–C **633–635**, which are related to the well known jaspamides.⁵⁸³ 634 635 The absolute configuration of both leiodermatolide (Leiodermatium sp.)584 and callipeltoside B (Callipelta sp.)585 were confirmed as originally drawn by total synthesis,586,587 while salarin C (Fascaplysinopsis sp.)588 was a potent activator of apoptosis.589 Spirastrellolides A 636 and B 637 were isolated from an Epipolasis sponge (Nagannu Is., East China Sea) as the free acids, although the methyl esters had been prepared previously to aid isolation of the natural products (Spirastrella coccinea). 590-592 The free acids are more cytotoxic than their methyl esters. 593 648 The first total synthesis of halichondrin B (Halichondria okadai)594 has been achieved.595 N-Methylnorsalsolinol 638 is a radical scavenging antioxidant from Xestospongia sp. Reef, Queensland),596 while (Bougainville purpuroines A-J 639-648 are halogenated zwitterionic amino acid antimicrobial derivatives with and kinase inhibitory activities isolated from Iotrochota purpurea (Sanya, Hainan, China).597 Fuscain (Phacellis fusca)598 has been synthesised.599 The structures of haliclamines G 649 and H 650 have been reported from Haliclona viscosa (Kongsfjorden, Svalbard, Norway) and confirmed by synthesis.600 A Petrosid sponge collected from the Coral Sea (Queensland, Australia) yielded the potent antimalarials 22-hydroxyingamine A 651 and dihydroingenamine D 652 with activities in the low ng mL⁻¹ range against various strains of P. falciparum.601 (-)-8,15-Diisocyano-11(20)-amphilectene (Hymeniacidon amphilecta)602 and 7,15-diisocyano-11(20)-amphilectene⁶⁰³ (Hymeniacidon sp.) are potent inhibitors (nM range) of thromboxane B2 suggesting potential as neurological antiinflammatory agents, 604 while bengamides A and B, originally sponge,605 Jaspidae immune modulators inhibiting NFkB at non-toxic concentrations (nM range) in RAW264.7 cells. The isolation of bengamides from a myxobacterial source (Myxococcus virescens) suggests a possible microbial, not sponge, origin for this class of compound.606 Acantholactone 653 was isolated from an Indonesian Acanthostrongylophora sp. but the bioactivity profile could not be established due to a paucity of material.607 The and B 655 were reported from densanins A 654 Haliclona densaspicula (Keomun Is., S. Korea) and inhibited NO production in LPS-stimulated BV2 monoglial cells.608 Renieramycin V **656** (*Xestospongia* sp.) is the first compound of the class to be conjugated to a sterol, ⁶⁰⁹ while pre-treatment of another *Xestospongia* sp. (Puerto Galera, Philippines) with KCN unsurprisingly yielded the cyano-derivatives renieramycin W–Y **657–659**. ⁶¹⁰ The sponge *Axinella polypoides* (Calvi, Corsica, France) was the source of a new betaine **660**.⁶¹¹ The asymmetric total synthesis of nakinadine B (*Amphimedon* sp.)⁶¹² has been accomplished, although the original report did not contain an optical rotation so the absolute configuration of the natural product cannot be confirmed.⁶¹³ Sponges continue to be a rich source of 3-alkylpyridinium alkaloids. Investigation of a *Haliclona* sp. (Sagyeri, Jeju Is., S. Korea) revealed cyclostellettamines N **661** and Q **662**, along with eight unnamed congeners **663–670.**⁶¹⁴ While cyclostellettamines N and Q have been reported as synthetic intermediates previously, ^{615,616} this is their first report as natural products. 661 m = 7, n = 6 662 m = 8, n = 7 663 m = 7, n = 5 664 m = n = 7 668 m = 5, $$\Delta^{15}$$, (Z) 669 m = 6, Δ^{15} , (Z) 670 m = 6, Δ^{15} , (Z) An Arctic *Haliclona viscosa* (Blomstrandhalvøya, Svalbard, Norway) yielded viscosalines B_1 **671**, B_2 , **672**, E_1 **673** and E_2 **674**, with the structures established from NMR and comprehensive mass spectrometric fragmentation studies using different ionisation sources. The structures were confirmed by total synthesis.⁶¹⁷ The proposed use of polymeric 3-alkylpyridinium alkaloids (*Reniera sarai*) as therapeutic adjuvants may be unwise due to their cardiotoxicity. 618 *Mycale fibrexilis* (Hainan Is., China) was the source of the 6-bromo-1*H*-indole-3-carboxamide **675**,⁶¹⁹ while a Thai *Smenospongia* sponge (PP Is., Krabi Province) provided a series of brominated indole alkaloids **676–684**, isolated from a natural source for the first time.⁶²⁰ The synthesis of keramamine C **685** (*Amphimedon* sp.)⁶²¹ established the absolute configuration.⁶²² Hyrtioreticulins A-E **686-690** were reported from *Hyrtios reticulatus* (N. Sulawesi, Indonesia) with hyrtioreticulins A and B inhibiting the formation of the E1-ubiquitin-activating enzyme and having promise as anti-cancer proteasome modulators. ⁶²³ Heterologous expression of a biosynthetic gene cluster isolated from metagenomic DNA extracted from *Halichondria okadai* led to the isolation of the yellow pigment halichrome A $691.^{624}$ Two brominated β -carbolines 692 and 693 have been isolated from a species of *Penares* collected by dredging at 95 m in the South China Sea. 625 A *Suberites* sponge (Unten Port, Okinawa) was the source of nakijinamines A **694**, B **695**, F-I **696-699** and 6-bromoconicamin **700**. Nakijinamines A, B, F and I were isolated as racemates.⁶²⁶ Suberitines A–D **701–704** were isolated from *Aaptos suberitoides* (Xisha Is., South China Sea), and are low micromolar inhibitors of P388 cells. They are thought to occur naturally via radical dimerisation.⁶²⁷ The bromopyrrole **705** was reported from *Agelas mauritiana* (Paracel (Xisha) Is.),⁶²⁸ while phorbatopsins A–C **706–708** are anti-oxidant aminoimidazolines from *Phorbas topsenti* (Marseille, France).⁶²⁹ Two new stevesines **709** and **710** and two debromolatonduines **711** and **712** have been isolated from an Indonesian *Stylissa* sp. (Derawan Is., Berau)⁶³⁰ The original latonduines (*Stylissa carteri*)⁶³¹ are extremely potent correctors of Δ F508 protein misfolding by inhibition of the poly(ADP-ribose) polymerase (PARP) family, with latonduine A inhibiting PARP-3 in particular at the 400 pM level, whilst being totally inactive in all other assays tested. This makes the latonduines an important new lead for treatment of cystic fibrosis.⁶³² The bromopyrrole ageladine A (*Agelas nakamurai*)⁶³³ has been used as an inherently fluorescent, pH-sensitive imaging molecule for transparent animals such as jellyfish.⁶³⁴ The pyrroloiminoquinone makaluvone (*Zyzzya* sp.)⁶³⁵ has been synthesised,⁶³⁶ while the related tsitsikammamine C **713** (*Zyzzya* sp., Rodda Reef, Queensland) was a potent antimalarial, inhibiting both chloroquine sensitive and resistant *P. falciparum* at the very low nM level.⁶³⁷ Eleven cytotoxic crambescins including the new congeners **714–721** have been reported from *Crambe crambe* (Villefranche-Sur-Mer, France).⁶³⁸ The structure of merobatzelladine B (*Monanchora* sp.)⁶³⁹ has been confirmed by synthesis,⁶⁴⁰ while the related monanchomycalins A 722 and B 723 were potent cytotoxins (low nM level) isolated from a dredged *Monanchora pulchra* (Sea of Okhotsk).⁶⁴¹ Members of the
kealiinine class (*Leucetta chagosensis*)⁶⁴² have been synthesised independently by two different groups, but with discrepancies in spectral data to those of the natural products noted. These discrepancies are likely due to different tautomeric forms. 643,644 An Ianthella sp. collected by trawling (Bass Strait, Australia) yielded ianthellidones A-H 724-731 and lamellarins O1 732 and O2 733. The ianthellidones A-H were isolated as racemates.⁶⁴⁵ The same sponge sample was also the source of the related dictyodendrins F-J 734-738, with all but variant G being modest β-secretase (BACE) inhibitors making them potential anti-Alzheimer's agents.646 Didebromonagelamide A 739 was isolated from a Caribbean Stylissa caribica (Bahamas). Cell-free enzyme preparations from the same sponge and also Agelas sceptrin were able to catalyse 738 the synthesis of benzosceptrin C (Agelas sp.)647 and nagelamide H (Agelas sp.)⁶⁴⁸ from oroidin (Agelas oroides).^{649,650} The "meta-biosynthetic" conversion of oroidin to the sceptrin and nagelamide families likely goes through a series of single electron transfer (SET) and radical processes. 651 The biomimetic SET-based syntheses of bromo- and dibromoageliferin (Agelas sp.)652 were achieved.653 An Axinella sponge (Great Australian Bight) yielded three new massadines 740-742,654 while Axinella donnani (Mauritius) was the source of donnazoles A 743 and B 744, oxidised analogues of the postulated "preaxinellamine", the key intermediate to all dimeric pyrrole-aminoimidazole alkaloids.655 Cavernicolin-1 and -2 (Aplysina cavernicola)656 have been synthesised starting from 3,5-dibromoverongiaquinol (Aplysina sp.),657,658 while ceratinines A-E 745-749 were reported from Pseudoceratina arabica (Hurghada, Egypt). 659 Ianthellamide A 750 is a modestly potent and selective inhibitor of kynurenine-3hydroxylase isolated from Ianthella quadrangulata (Harrier Point, Orpheus Is., Queensland).660 Tyrokeradines A–D **751–754** are bromotyrosine-derived alkaloids from an Okinawan Verongid sponge. Examination of *Suberea ianthelliformis* (Manta Ray Bommie, Stradbroke Is., Australia) revealed the ianthelliformisamines A–C **755–757** that are selective inhibitors of *P. aeruginosa*. 662 The syntheses of pseudoceramines A–D (*Pseudoceratina* sp.)⁶⁶³ have been achieved,⁶⁶⁴ as have the syntheses of psammaplin C and tokaradine A,^{665,666} both from *Psammaplysilla purpurea*.⁶⁶⁷ Aplysamine-2 (*Aplysina* sp.),⁶⁶⁸ aplyzanzine A (*Aplysina* sp.),⁶⁶⁹ anomoian A (*Anomoianthella popeae*),⁶⁷⁰ purpurealidin E (*Psammaplysilla purpurea*)⁶⁷¹ and suberedamines A and B (*Suberea* sp.)⁶⁷² have all been synthesised for the first time, with the structure of anomoian A confirmed as 758.⁶⁷³ A *Pseudoceratina* sp. (Port Campbell, Victoria, Australia) contained aplysamine 7 759, purealins B–D 760–762, (–)-purealidin R 763, (–)-aerophobin 2 764 and the racemic purealin 765. Compounds 763 and 764 are the enantiomers of metabolites found from *Psammaplysilla purpurea* and *Verongia aerophoba*, respectively.^{674–676} Psammaplysins I 766 and J 767 were reported from a "Twilight Zone" (50–1000 m depth) *Suberea* sponge collected in Guam, ⁶⁷⁷ while four individuals of *Suberea ianthelliformis* collected at various locations in the Solomon Islands yielded the five araplysillin congeners 768–772. Araplysillin N-20 formamide 768 and araplysillin N-20-hydroxyformamide 769 are moderate antimalarials. ⁶⁷⁸ 765 Twenty one psammaplysin variants 773–793 were isolated from *Aplysinella strongylata* (Tulamben Bay, Bali, Indonesia), although only 19-hydroxypsammaplysin E 773 showed any activity against *P. falciparum*.⁶⁷⁹ **786** R_1 = OH, R_2 = $C_{12}H_{24}sBu$ **789** R₁ = H, R₂ = $C_{13}H_{24}iPr \Delta^9 (9Z)$ **791** R₁ = H, R₂ = $C_{15}H_{29}$ Δ^9 (9*Z*) **792** R₁ = H, R₂ = $C_{18}H_{35}$ Δ^{12} (12*Z*) **793** R₁ = OH, R₂ = $C_{18}H_{35}$ Δ^{12} (12*Z*) **790** R₁ = OH, R₂ = $C_{13}H_{24}iPr \Delta^9 (9Z)$ **787** R₁ = H, R₂ = $C_{14}H_{28}sBu$ **788** R₁ = OH, R₂ = $C_{14}H_{28}sBu$ The dioxepine bastadin-3 (Ianthella synthesis of reticulata)680 has been achieved.681 A new cyclonucleoside 794 has been reported from Axinella polypoides (Calvi, Corsica. France).611 Siphonodictyal sulfate 795 and akadisulfates A 796 and B 797 are antioxidant merosesquiterpenoids from Aka coralliphaga (Quintana Roo, Mexico),682 while dysideavarones A-D 798-801 are cytotoxic merosesquiterpenes from Dysidea avara (Xisha Is., South China Sea). The absolute configurations of dysideavarones A-D were determined by comparison of DFT-calculated and experimental ECD measurements.683 $$R_1$$ T_{1} T_{2} T_{2} T_{3} T_{2} T_{3} T_{2} T_{3} T_{2} T_{3} T_{3} T_{4} A *Smenospongia* sponge (PP Is., Thailand) was the source of the iodine-containing 6'-iodoauerol 802 and the dimeric 6'-aueroxyaureol 803. The total synthesis of akaol A (Aka sp.) 684 confirmed the absolute configuration as originally drawn. 685 An *Ircinia* sponge (Weno Is., Chuuk State, Federated States of Micronesia) was the source of three linear polyprenyl hydroquinones **804–806**. The asymmetric synthesis of (+)-akaterpin **807** (*Callyspongia* sp.)⁶⁸⁷ established the absolute stereostructure as shown. ⁶⁸⁸ The merotriterpenoids halicloic acid A **808** and B **809** were isolated from a *Haliclona* sponge (Culasian Point, Leyte, Philippines). Both compounds inhibited indoleamine 2,3-dioxygenase, which is required for tumour immune-response escape, but were unstable in deuterated DMSO.⁶⁸⁹ Rhaphoxya sp. (Blue Hole, Guam) provided the sesquiterpene theonellin isocyanate **810**.⁶⁷⁷ The synthesis of 10-isothiocyanato-4-cadinene **811** (*Acanthella cavernosa*)⁶⁹⁰ established the absolute configuration, although the spectroscopic data differed from those reported for a metabolite with the same assigned structure isolated from the nudibranch *Phyllidiella pustulosa*.⁶⁹¹ This study also synthesised the structure proposed for 10-*epi*-10-isothiocyanato-4-cadinene (*Stylissa* sp.).⁶⁹² However, discrepancies in the NMR data between the synthesised and reported compounds suggest that the natural product structure requires revision.⁶⁹³ Halichonadins K **812** and L **813** are sesquiterpene dimers from a *Halichondria* sponge (Unten Port, Okinawa). The absolute configurations of the compounds were determined by X-ray crystallography and chemical interconversion. Racemic syntheses of luffarin X (*Luffariella geometrica*) and cacospongionolide C (*Fasciospongia cavernosa*) have been achieved. Cavernenes A-D **814-817**, kalihinenes E **818** and F **819** and kalihipyran C **820** are formamide diterpenoids from *Acanthella cavernosa* (Xisha Is., South China Sea). Also obtained from *A. cavernosa* (Xisha Is., South China Sea) were the antifouling compounds kalihinols M-T **821-828**. Review The absolute configurations of kalihinol A,⁷⁰⁰ 10-*epi*-kalihinol I,⁷⁰¹ and kalihinol Y,⁷⁰² all from species of *Acanthella*, have been confirmed by synthesis.^{703,704} The stereoselective synthesis of 7-isocyano-11(20),14-epiamphilectadiene (*Adocia* sp.),⁷⁰⁵ a potent antimalarial, has been achieved,⁷⁰⁶ while the isolation of two new formamido-amphilectane diterpenes **829** and **830** from a Thai *Stylissa massa* (Koh-Tao, Surat-Thani Province) have been reported.⁷⁰⁷ Jaspiferin A **831** was isolated from *Jaspis stellifera* (Guangdong, South China Sea) along with an oxidative degradation product jaspiferin B **832**.⁷⁰⁸ Chromodorolide D **833**, a heavily rearranged spongian diterpene, was reported along with **834** from an unidentified sponge (Cape Manza, Okinawa).⁷⁰⁹ Chromodorolide D was also reported as chromodorolide E from an Australian *Dysidea* sp., along with a second structure **835** that was also called chromodorolide D.⁷¹⁰ Given the order in which the reports were accepted and published, **835** should be renamed chromodorolide E to reconcile the two separate papers. A linear C_{21} furanoterpene **836** was reported from *Coscinoderma matthewsi* (Gneerings Reef, Mooloolaba, Australia),⁷¹⁰ while *Clathria compressa* (Panama City Beach, Florida) was the source of three bicyclic C_{21} terpenoids **837–839**.⁷¹¹ The cytotoxic diterpene alkaloids 8'-oxo-agelasine D **840** and ageloxime B **841** were isolated from *Agelas mauritiana* (Yongxing Is., South China Sea) along with a taurinated diterpenoid **842**.⁶²⁸ NPR Agelasidines E 843 and F 844 are weakly antifungal compounds from Agelas citrina (Bahamas) that were isolated along with agelasine N 845,712 while agelasines O-U 846-852 are broadly active diterpene alkaloids isolated from an Okinawan Agelas sp.713 NH_2 Sarcotin P 853 is a linear furano-norsesterterpenoid isolated from a Sarcotragus sp. (Cheju Is., S. Korea),714 while diacarperoxide S 854 is a cytotoxic norsesterterpene peroxide from Diacarnus megaspinorhabdosa (Pula Baranglompo Is., Indonesia).715 The total syntheses of (-)-alotaketal A (*Hamigera* sp.)⁷¹⁶ by two independent confirmed absolute groups have the configuration.717,718 Four sesterterpenoids, phorone A 855, isophorbasone A 856, ansellone B 857 and phorbasone A acetate 858, were isolated from a S. Korean Phorbas sp. Compounds 857 and 858, described in the paper's supporting information, were low µM inhibitors of NO production in LPS-stimulated RAW 264.7 cells, while 855 and 856 are the first examples of two new carbon skeletons.719 Flabelliferins A 859 and B 860 came from Carteriospongia flabellifera (Tutuba Is., Vanuatu). Both showed modest growth inhibition against human colon cancer cell lines,720 while a Review Hippospongia sponge (Taitung, Taiwan) was the source of hippospongides A 861 and B 862.721 The archetypical anti-inflammatory scalarane sesterterpenoid scalaradial (Cacospongia mollior)722 acted as a non-covalent binder in the active site of phospholipase A₂ and chelates Ca²⁺ but did not covalently bind to the enzyme through dial reactivity.723 The total synthesis of
solomonsterol B (Theonella swinhoei)724 has allowed for SAR studies to be performed.725 Chalinulasterol 863 came from Chalinula molitba (Little San Salvador, Caribbean) and is the first chlorinated/sulfated sterol known.726 A species of Dysidea (Ishigaki Is., Okinawa) was the source of dysideasterols F-H 864-866, all of which inhibited human epidermoid carcinoma cells.727 Theonella swinhoei from various locations in the Solomon Islands (Malaita and Vangunu Is.) have yielded conicasterols E 867, 728 F 868, 729 and G-K 869-873, 730 along with theonellasterol I 874,729 and J 875.730 All are dual ligands of the pregnane X (PXR) and farnesol X receptors (FXR) with potential in modulating bile acid homeostasis in the liver and hence, metabolic disorders.728-730 T. swinhoei (Pingtung, Taiwan) was the source of theonellasterol K 876, acetyltheonellasterol 877 and acetyldehydroconicasterol 878, with theonellasterol K being moderately active against a panel of cancer cell lines.731 NPR Acanthifoliosides G–J **879–882** were isolated from *Pandaros acanthifolium* (Marathon, Florida Keys) with acanthifolioside G activating the antioxidant response element in a dose-dependent manner without a significant increase in the activity of the detrimental xenobiotic response element. 732 The sponge *Lissodendryx fibrosa* (North Sulawesi, Indonesia) was the source of manadosterols A **883** and B **884**, dimeric sterols that are potent inhibitors of the ubiquitin Ubc13-Uev1a complex and therefore have potential as anticancer agents.⁷³³ Geoditin A (*Geodia japonica*)⁷³⁴ had antimelanogenic activity suggesting potential as a skin whitening agent,⁷³⁵ while sarasinosides N–R **885–889** are nortriterpenoid glycosides from *Lipastrotethya* sp. (Chuuk State, Micronesia).⁷³⁶ The isomalabaricane triterpenoids globostelletin J-R **890-898** were isolated from *Rhabdastrella globostellata* (Hainan Is., South China Sea), although in the paper there is no mention of the congener globostelletin S referred to in the title.⁷³⁷ *Plakortis lita* (Manado, Indonesia) was the source of the hopanoid glycoside plakohopanoid **899**, although the terpenoid and carbohydrate components are reminiscent of bacterial secondary metabolites and it is likely that **899** is of symbiotic origin.⁷³⁸ #### 8 Cnidarians Although decreased from 2011, the number of new metabolites reported from cnidarians (213) is about the average number per year over the past decade. Sinularioside 900, a bis- α -p-arabinopyranosyl myristyl glycolipid, ⁷³⁹ sinulasulfoxide 901 and sinulasulfone 902⁷⁴⁰ were isolated from *Sinularia* sp. (Manado, North Sulawesi, Indonesia), with sinularioside and sinulasulfoxide acting as moderate inhibitors of NO release from LPS-stimulated macrophages. Brazilian collections (Paracuru Beach, near Fortaleza) of the zoanthids *Palythoa caribaeorum* and *Protopalythoa variabilis* yielded the sulfonylated ceramides palyosulfonoceramide A **903** and B **904**.⁷⁴¹ The structure elucidation of palyosulfonoceramides A and B was aided by comparison with two known cometabolites; none of the four ceramides exhibited cytotoxicity. OSO OH NHMe HN 13 903 904 $$\triangle$$ saturated A new method of detection and quantification of palytoxin has been reported based on detection of the interaction of fluorescein-labeled Na,K-ATPase with palytoxin using fluorescence polarisation. The method has a limit of detection of 2 nM. Paralemnolide A 905 is an unusual bisnorsesquiterpene from *Paralemnalia thyrsoides* (Taitong County, Taiwan) and specimens of *Sinularia* sp. (Hainan Is., South China Sea) were the source of the cyclopentenones and butenolides sinularone A–I 906–914. Absolute configuration was assigned to several of the metabolites *via* comparison with calculated ECD, optical NPR rotation and chemical shifts. Sinularones A, B, G, H and I exhibited antifouling activity *in vitro* towards *Balanus amphitrite* (*B. amphitrite*). In addition to known congeners, fifteen new terpenes anthogorgienes A–O **915–929**, based on a guaiazulene sesquiterpene scaffold, were isolated from *Anthogorgia* sp. (Weizhou Is., China).⁷⁴⁵ Absolute configurations were assigned to enantiomers **928** and **929** by CD analysis. Anthogorgiene G and known analogues exhibited antifouling activity (*B. amphitrite*) and antimicrobial properties. 919 Menelloide E 930, a germacrane-type sesquiterpene, and *seco*-germacrane anhydride 931, previously reported from fruit of a Turkish plant, ⁷⁴⁶ were isolated from a deep-sea trawl collection of *Menella* sp. (southern coast of Taiwan). ^{747,748} Two carbamates obtucarbamate C 932 and D 933 and two sesquiterpene-taurine conjugates 934 and 935 were reported from *Melitodes squamata* (Sanya, Hainan Province, South China Sea). ⁷⁴⁹ [†]**928** (7*R*,8S,9S) †929 (7S,8R,9R) 930 931 NHCOOMe 932 $$R_1$$ = NHCOOMe, R_2 = H 933 R_1 = H, R_2 = NHCOOMe MeO NH NH SO₃H NH SO₃H Of the two epimeric sesquiterpene hydroperoxides scabralin A 936 and B 937 (*Sinularia scabra*, Southern Taiwan), the former was found to exhibit mild antitumour activity and to reduce levels of iNOS protein in LPS-stimulated macrophages.⁷⁵⁰ Sesquiterpenes lochmolin A–G 938–944 were reported from *Sinularia lochmodes* (northern coast of Taiwan); only lochmolin A was found to have an ability to reduce levels of COX-2 protein in LPS-stimulated macrophages.⁷⁵¹ Prenylated purines **945**, **946** and formamide **947** (malonganenones I–K), and a number of previously reported congeners were isolated from *Euplexaura robusta* (Weizhou Is., South China Sea). While **945–947** exhibited mild cytotoxicity, related co-metabolites malonganeones A, D and $E^{753,754}$ were more cytotoxic. Two cembranes yalongene A **948** and B **949** were identified in extracts from *Sarcophyton trocheliophorum* (Yalong Bay, Hainan, South China Sea), with the former exhibiting cytoprotective effects towards cells injured with H₂O₂.⁷⁵⁵ In addition to a number of congeners, epoxy-containing cembranes knightine **950** and related analogues **951** and **952** were isolated from *Eunicea knighti* (Santa Marta Bay, Colombian Caribbean Sea).⁷⁵⁶ While only **951** and **952** and a related known co-metabolite inhibited quorum sensing in *Chromobacterium violaceum*, many of the cembranes inhibited biofilm formation for a number of different microorganisms. Epoxy-diol cembranes sicrassarine A 953 and B 954 (*Sinularia crassa*, Taitung County, Taiwan) were non-cytotoxic⁷⁵⁷ while the C-4/C-14 ether linked cembrane lobocrassin F 955 (*Lobophytum crassum*, Northeast Taiwan) was a moderate inhibitor of elastase release from human neutrophils.⁷⁴⁷ In contrast, cembranes 956 (a sarcophine analogue), 957 and 958 (ehrenbergol A and B) isolated from *Sarcophyton ehrenbergi* (Taitung County, Taiwan) exhibited cytotoxicity (P388 cells) and antiviral activity (human cytomegalovirus (CMG)).⁷⁵⁸ Of two cembranes sinumerolide A **959** and B **960** reported from *Sinularia numerosa* (Hainan Is., South China Sea) the latter contains the more usual combination of 5,8-epoxy linkage and C-4 norcembrane skeleton, while the former is unusual in possessing a complete C_{20} diterpene backbone. One other example of a 5,8-epoxy-C-4-norcembrane, 5-episinuleptolide acetate **961** was reported as a moderately cytotoxic component of *Sinularia* sp. (Taitung County, Taiwan). A collection of *Sinularia* sp. (Dongluo Is., Hainan, South China Sea) afforded sinuflexibilins A–E **962–966**, with the authors speculating about the potential artefactual nature of α -methoxyfuranocembranoid **966**. ⁷⁶¹ Co-metabolite flexibilide ⁷⁶² was the only compound in the study found to inhibit NF- κ B activation. Cembranoid diterpenes flexibilisolide C–G **967–971**, flexibilisin C **972** and the ring opened 11,12-secoflexibillin **973** were reported from *Sinularia flexibilis* (Dongsha Atoll, South China Sea).⁷⁶³ Flexibilisolide C, as well as several related co-metabolites, exhibited cytotoxicity and reduced the accumulation of iNOS and COX-2 pro-inflammatory proteins. From a suite of new diterpenes sinumaximol A–I **974–982** and known congeners (*Sinularia maxima*, Nha trang Bay, Vietnam), sinumaximols B and C were found to inhibit IL-12, IL-6 and TNF- α production in LPS-stimulated bone marrow dendritic cells.⁷⁶⁴ HOO 970 971 COOMe COOMe 972 973 COOMe СООМе ĊООМе 974 975 COOMe OMe HO Ó, НŌ ó' 977 976 ιOH ΗŌ НО 978 979 НŌ но 980 981 OHO COOMe The structures of sarcophine hydroperoxide analogues 983 and 984 (*Sarcophyton glaucum*, Hurghada, Egyptian Red Sea) were secured by X-ray and CD analysis.⁷⁶⁵ The NMR data of ŌН the co-metabolite 8-epi-sarcophinone 985 were different to those previously reported for the isomeric iso-sarcophinone⁷⁶⁶ but could not be directly compared with earlier reported semi-synthetic isomers due to a lack of reported NMR data.⁷⁶⁷ Metabolites 984 and 985 inhibited CYP450 1A and induced glutathione-S-transferase and quinone reductase activity. As would be expected, the α -exo-methylene- γ -lactone containing examples of michaolide L–Q **986–991** (Lobophytum michaelae, Ping-Tong County, Taiwan) exhibited more potent cytotoxicity than the seco analogue **989**. Absolute configuration was assigned to michaolide L, though it should be noted that there is disagreement between configuration descriptors for C-4 and C-10 in the text versus the structure shown in the paper. All three hydroperoxides sarcocrassocolide M-O 992-994 (Sarcophyton crassocaule, Dongsha Atoll, Taiwan) exhibited some degree of cytotoxicity towards tumour cell lines, with 992 NPR and 994 and to a lesser extent 993 also inhibiting the induction of iNOS protein.769 Dihydrofuranocembranoids sarcophytonin F 995 and G 996 (Sarcophyton sp., Dongsha Atoll, Taiwan)⁷⁷⁰ are, respectively, the hydroperoxide and acetate derivatives of the co-metabolites sarcophytoxide and sarcophytonin C.771 Sarcophytonin G can also be classified as
ent-crassumol C.772 A structurally diverse set of diterpenes, the pavidolides A-E 997-1001, were isolated from Sinularia pavida (Sanya Bay, Hainan Is., South China Sea). While pavidolides B and C were mildly cytotoxic, pavidolides C and D inhibited settlement of B. amphitrite.773 Cespitularia taeniata (Green Is., Taiwan) was the source of norverticillane cespitulin E 1002, secoverticillane cespitulin F 1003 and cespitulin G 1004.774 Cespitulin G was a moderate inhibitor of elastase release and superoxide production by stimulated human neutrophils. The serrulatane-skeletoned diterpene anthogorgiene P 1005 and triterpenoid anthogorgiene O 1006 were isolated from Anthogorgia sp. (Weizhou Is., South China Sea) and the absolute configuration of the tricyclic core of anthogorgiene P was assigned.775 Dimethylamino-naphthalene 1007 and lobane 1008 (Sinularia sp., Bowden reef, Great Barrier Reef, Australia) exhibited mild to moderate cytotoxicity towards three HTCLs.776 Eunicidiol 1009 and known related diterpenes eunicol⁷⁷⁷ and fuscol⁷⁷⁷ were identified as potent topical anti-inflammatory metabolites of Eunicea fusca (Hillsboro Ledge, Florida).778 Extracts of Lobophytum pauciflorum (Taketomijima Is., Okinawa)⁷⁷⁹ provided cyclolobatriene 1010 and the related metabolites lobatriene,780 eunicol777 and fuscol.777 A low temperature (7 °C) NMR spectrum of 1010 identified three conformational isomers, while heating to 70 °C induced a thermal Cope rearrangement to lobatriene (identical by NMR and sign of $[\alpha]$). A similar rearrangement was induced for eunicol, converting it to fuscol. All four natural products showed moderate cytotoxicity towards a tumour cell line. Review NPR Two metabolites calyculone H **1011** and I **1012** (*Eunicea* sp., Old Providence Is., Colombia)⁷⁸¹ appear to be respectively the C-4,5-bis-epimers of previously reported calyculones C and A,⁷⁸² while triangulene C **1013** (*Sinularia triangula*, Taitung County, Taiwan) is another (possibly C-1) stereoisomer of calyculone C.⁷⁸³ Calyculones A, B, C and H exhibited mild antimalarial activity, while calyculone A displayed strong cytotoxicity in testing at the NCI. In contrast, the related cubitane crassalone A **1014** (*Sinularia crassa*, Taitung County, Taiwan) exhibited no cytotoxicity towards a panel of tumour cell lines.⁷⁸⁴ Two separate studies of *Cespitularia* sp. (Zamami Is., Okinawa) afforded the mildly cytotoxic alcyonolide-type diterpenes **1015–1023**. 785,786 Twelve related diterpenes astrogorgin B-M **1024-1035** were isolated from *Astrogorgia* sp. (Beibuwan Bay, South China Sea). Astrogorgin L was observed to undergo dehydration of the allylic alcohol functional group in CDCl₃ NMR solvent – the diene product was named astrogorgin N. Astrogorgins A-C exhibited moderate potency in a *B. amphitrite* antifouling bioassay. Duplicate structures were evident in the case of metabolites simplexin P-S **1036-1039** reported from *Klyxum simplex* (Dongsha Atoll, Taiwan).⁷⁸⁸ Simplexin Q is identical to klysimplexin C,⁷⁸⁹ while simplexin S is identical to cladieunicellin G concurrently reported from *Cladiella* sp. (Indonesia).⁷⁹⁰ In addition, this latter study noted the presence of 6-*epi*-cladieunicellin F **1040** in the organism. The same specimen of *Cladiella* sp. also yielded the hemiketal congener cladieunicellin H **1041**.⁷⁹¹ Seco-briarellinone **1042** and briarellin S **1043** are C-12 keto eunicellin diterpenes (*Briareum asbestinum*, Bocas del Toro, Panamanian Caribbean) that mildly inhibited the production of NO by LPS-stimulated macrophages. Cristaxenicin A **1044** from *Acanthoprimnoa cristata* (dredging, Yakushima-Shinsone, Kagoshima, Japan) exhibited sub-micromolar activity towards the human protozoal targets *Leishmania amazonesis* (modest selectivity) and *Trypanosoma congolense*, but was less active towards *P. falciparum*. Absolute configuration was assigned by comparison of calculated and experimental ECD spectra. In three separate accounts, new halimane diterpenes **1045** (echinohalimane A) and **1046** (echinoclerodane A) and labdane **1047** (echinolabdane A) were reported from a single collection of *Echinomuricea* sp. (Taiwan)^{794–796} with echinohalimane A inhibiting the release of elastase from stimulated human neutrophils. Diepoxybriaranes briaroxalide A–G **1048–1054** (*Briareum* sp., Ishigaki Is., Okinawa) all share the same absolute configuration; the configuration of briaroxalide A was determined (derivative, X-ray) and related to the others by peracetylation.⁷⁹⁷ A southern Taiwanese collection of *Briareum* sp. afforded briarenolides E–I **1055–1059**. Hydroperoxide briarenolide F was a strong inhibitor of superoxide generation by stimulated neutrophils. The 8,17-epoxybriaranes briacavatolide A–F **1060–1065** were all reported from *Briareum excavatum* (Orchid Is., Taiwan). ^{801,802} While none of the diterpenes exhibited cytotoxicity, briacavatolides C and F were modest inhibitors of CMG. Review Of six 11,20-epoxybriaranes (gemmacolide T-Y **1066-1071**) isolated from *Dichotella gemmacea* (Beihai, China), gemmacolides V and Y exhibited the most pronounced cytotoxicity towards two tumour cell lines.⁸⁰³ Investigation of *Junceella juncea* (Taitung County, Taiwan) secured three briaranes, juncenolide M–O **1072–1074**;⁸⁰⁴ unfortunately the structure of juncenolide O is identical to that previously reported for juncin Z (*Junceella juncea*).⁸⁰⁵ AcO,,,,,H QH CI QAC $$OR_1$$ R_2 R_3 AcO A Briareolate esters J **1075** and K **1076** (*Briareum asbestinum*, Boca Raton, Florida)⁸⁰⁶ are hexanoate esters of briareolate esters G and D,⁸⁰⁷ respectively. Briareolate ester K was a weak growth inhibitor of human embryonic stem cells. Sinularia crassa (Taitung County, Taiwan) yielded crassarosterol A **1077** and glycosides crassarosteroside A–D **1078–1081**; crassarosteroside A inhibited the expression of iNOS protein in stimulated macrophages.⁸⁰⁸ Of the four tetraols anthogorgsteroid A–D 1082-1085 isolated from Anthogorgia sp. (Beihai, South China Sea), anthogorgsteroid A appears to be identical to the previously reported sterol menellsteroid C^{809} (Menella sp.). 810 Mildly cytotoxic pentaols 1086 and 1087 were isolated from Subergorgia suberosa (Naozhou Is., South China Sea). 811 NPR Two studies reported sterols with antagonistic activity towards FXR. In the first study, two new sterols **1088** and **1089** were isolated from *Dendronephthya gigantea* (Geo-je Is., S. Korea);⁸¹² although three sterols were claimed to be new, one had in fact been reported the previous year from a Chinese specimen of *Astrogorgia* sp. (astrogorgol N).⁸¹³ Sterol **1088** was the most active of those isolated at inhibiting FXR transactivation induced by chenodeoxycholic acid. In addition to a number of known sterols, new examples **1090–1093** (new natural products) and **1094** were reported from *Sinularia* sp. (Bunaken Marine Park, Manado, Indonesia).⁸¹⁴ The most potent antagonist of FXR identified in this second study was gorgosterol. Extraction of *Echinomuricea* sp. (Taiwan) that had afforded a new labdane diterpene **1047** (see earlier) also yielded 6-*epi*-yonarasterol B **1095** which was notable for the ability to inhibit the generation of superoxide and the release of elastase from stimulated human neutrophils.⁷⁹⁶ Three examples of C-19 oxygenated sterols, nebrosteroid N-P **1096-1098** (*Nephthea cabrolii*, Taitung County, Taiwan), were moderately cytotoxic towards a range of tumour cell lines.⁸¹⁵ In addition to two cembranes **959** and **960** (see earlier), specimens of *Sinularia numerosa* (Hainan Is., South China Sea) also yielded the 7 β -hydroxy analogue of gorgosterol **1099**, while triol **1100** and tetraols **1101** and **1102** were characterised from extracts of *Sinularia* sp. (Weizhou Is., South China Sea). The 9,11-secosterol **1103** (*Sinularia granosa*, Pingtung, Taiwan) is an H-8, 5,6-epoxy diastereomer of a previously reported co-metabolite (*Sinularia lochmodes*);⁸¹⁷ both compounds exhibited cytotoxicity and inhibited expression of iNOS and COX-2 proteins in stimulated macrophages.⁸¹⁸ The first examples of 9,11-secosterol glycosides, sinularoside A **1104** and B **1105** (*Sinularia humilis*, South China Sea) exhibited growth inhibition properties towards two fungi, a microalga and a Gram-positive bacterium, but not a Gram-negative bacterium.⁸¹⁹ Review NPR **1114** $R_1 = H$, $R_2 = Ac$, $R_3 = Me$ Of a diverse range of pregnanes, including new examples sclerosteroid A–I **1106–1114** (*Scleronephthya gracillimum*, Green Is., Taiwan), only sclerosteroids A, B and E inhibited expression of the pro-inflammatory proteins iNOS and COX-2 in stimulated macrophages.⁸²⁰ Mass-guided fractionation of the hydroid *Thuiaria breitfussi* (Bear Is., Arctic) identified the halogenated alkaloids breitfussin A **1115** and B **1116**. These structures were established using atomic force microscopy in combination with structure elucidation software and chemical shift calculations.⁸²¹ The structure of a second γ -lactone 'trocheliophorolide B', originally reported from $Sarcophyton\ trocheliophorum$, ⁸²² has been shown to be incorrect. ⁸²³ The trivial name trocheliophorol, ascribed to a cembranoid metabolite isolated from cultured specimens of S. trocheliophorum, ⁸²⁴ has been used before. ⁸²⁵ As a consequence the authors have changed the name to trocheliol. ⁸²⁶ Syntheses of the modestly cytotoxic *seco*-caryophyllane rumphellaone A⁸²⁷ and clovane rumphellclovane A⁸²⁸ (*Rumphella antipathies*) have been reported; the latter study used the filamentous fungi *Pestalotiopsis palustris* to biotransform synthetically prepared (1*S*,2*S*,5*S*,8*R*,9*R*)-2-methoxyclovan-9-ol into the soft coral metabolite, simultaneously establishing the absolute configuration. Several studies have been reported on further biological investigation of purified cembranoids. Sinularin (Sinularia flexibilis)832
inhibits the up-regulation of pro-inflammatory proteins iNOS and COX-2 as well as TGF-β in stimulated macrophages.833 Such in vitro results also translated to in vivo studies, where sub-cutaneous application led to observable analgesic effects. While one study of 11-dehydrosinulariolide834 noted an ability to induce apoptosis and act as an antiproliferative and antimigration agent towards human melanoma cells,835 a second study noted the same cembranoid significantly reduced 6-hydrodopamine-induced cytotoxicity and apoptosis of a human neuroblastoma cell line, mediated by caspase-3/7 and PI3K, suggesting a potential role as a neuroprotective candidate.836 The related cembrane sinulariolide837 exhibited antiproliferative, antimigratory and apoptosisinducing activities, the latter via mitochondrial and p38MAP kinase pathways against human urinary bladder carcinoma cells.838 Investigation of the antiproliferative activity of an unnamed γ -lactone cembranoid (*Sinularia mayi*)⁸³⁹ revealed NPR Review that it functions by activation of apoptosis via reactive oxygen species (ROS) generation, which has further downstream consequences of inhibiting signal transduction.840 A semi-synthetic analogue of cembranoid sarcophine. sarcophine diol, inhibited mouse melanoma cell proliferation by arresting cell division at Go and by also activating apoptosis.841 A configurational reassignment of 11-gorgiacerol⁸⁴² (= 11pseudopteranol?)843 and 11-epi-gorgiacerol (aka 11-epi-pseudopteranol)844 to those shown in 1117 and 1118 has been reported; the syntheses made use of a stereospecific photochemical ring contraction reaction.845 The absolute configurations of bis-cembranoid ximaolide A⁸⁴⁶ 1119 and cembrane (+)-sinulaparvalide A⁸⁴⁷ 1120 were established by comparison of calculated ECD spectra (derived from X-ray structure conformation) with spectra observed for micro-crystalline solids.62 Comparison with solution ECD spectra also allowed assignment of absolute configurations to ximaolide B and E, methyl tortuosoate (= methyl tetrahydrosarcoate)848 and (+)-sinulaparvalide B. By stereospecific synthesis of a stereoisomer, the absolute configuration of elisabethatriene,849 a diterpene representing the first committed step in pseudopterosin biosynthesis, has been corrected to that shown here, 1121.850 Purified pterosins and seco-pterosins (Pseudopterogorgia elisabethae, Providencia Is., Colombia) demonstrated selective ability to inhibit the growth and biofilm of Grampositive bacteria, suggesting that the natural products play a role in regulation of the gorgonian surface bacterial communities.851 Further investigation of the antimycobacterial activity demonstrated by pseudopteroxazole852 and homopseudopteroxazole853 has identified a semi-synthetic histidine analogue with similar levels of potency and selectivity.854 Theoretical studies suggested that the photochemical [2 + 2]cycloaddition reaction proposed for the biogenesis of the cyclobutane-containing diterpene plumisclerin A855 could also be realised by a thermal step-wise proton-promoted process.856 The configuration of clavulactone absolute (Sinularia sp.)857 has been established by enantioselective synthesis.858 As indicated in the previous review in this series,1 the structure of gemmacolide H⁸⁵⁹ has been confirmed⁸⁶⁰ as identical to the previously reported briarane 12-epifragilide G.861 The structure of pregnane krempene B (Cladiella krempfi)862 has been confirmed by synthesis from 3β-acetoxy-5-pregnen-20one,863 while two cholestane-dienones previously reported from Minabea sp. 864 and Anthomastus bathyproctus 865 have been prepared from $(25S)-\Delta^4$ -dafachronic acid.⁸⁶⁶ A systematic nomenclature for sea anemone toxins has been proposed, combining descriptors of biological activity, generic family name, genus and species of original source and relationship to known isoforms.867 Further proof of the need of a consistent nomenclature system was demonstrated in a report on digital marine bioprospecting, whereby deep sequencing of transcriptomes of cold-water anemones Bolocera tuediae and Hormathia digitata and subsequent homology searching identified four highly similar and 15 additional new neurotoxin peptide candidates.868 A concise synthesis of the guanidine hydantoin alkaloid parazoanthine A (Parazoanthus axinellae)869 and the methyl ether analogue has been reported.870 # Bryozoans Only two investigations of bryozoan chemistry have been reported in the last year. A collection of Amathia tortuosa (northern New South Wales, Australia) provided the tribrominated indole alkaloid kororamide A 1123 which was marginally active against chloroquine-sensitive and resistant strains of P. falciparum.871 Br NH Total synthesis of the published structure of amathamide D, a metabolite of *Amathia wilsoni*, ⁸⁷² indicated that the structure should be revised to that indicated by other researchers. ⁸⁷³ This revised structure was also synthesised. ⁸⁷⁴ Convolutamine H, a metabolite of *Amathia convoluta*, ⁸⁷⁵ was synthesised *via* a Grob fragmentation-aromatisation strategy. ⁸⁷⁴ ### 10 Molluscs There was a pronounced increase in the number of new metabolites reported from molluscs when compared with recent years. The antioxidant activity detected in Japanese samples of the Pacific Oyster (*Crassostrea gigas*) was attributed to 3,5-dihydroxy-4-methoxybenzyl alcohol, ⁸⁷⁶ previously reported from the brown alga *Leathesia nana*. ⁸⁷⁷ The new C-terminus pyroglutamate gonadotropin-releasing hormone related peptides Cg-GnRH-a **1124** and Cg-GnRH-G **1125** were isolated from French (Normandy) specimens of the Pacific Oyster.⁸⁷⁸ pQNYHFNSNGWQP-NH₂ 1124 pQNYHFNSNGWQPG 1125 Optimised purification using extracts of *Mytilus edulis* (Bruckless, Donegal, Ireland) afforded sufficient quantities of the toxin azaspiracid-6 **1126**, previously characterised by MS, ⁸⁷⁹ to enable the characterisation by NMR spectroscopy. ⁸⁸⁰ While **1126** was stable in aqueous acetonitrile solution, storage in methanol formed a C-21 methyl ketal. A diverse array of fatty acid esters of pinnatoxin G were identified in extracts of *M. edulis* (Atlantic coast, Canada).⁸⁸¹ Specimens of the sea snails *Gibbula umbilicalis* (flat top shell) and *Monodonta lineata* (thick top shell) collected on the Portuguese coast were found to contain low levels of tetrodotoxin and/or analogues, highlighting these species as new toxin vectors.⁸⁸² A number of new conotoxins continue to be isolated from snail venom. *Conus regius* (Plantation Key, Florida) yielded an $\alpha 4/7$ -conotoxin, RegIIA 1127, comprised of 16 residues with two disulfide bonds. The structure was confirmed by synthesis and the 3D-conformation established by NMR methods. The peptide was a low nM blocker of $\alpha 3\beta 4$ nAChRs. In contrast, the amidated 11-residue peptide pc16a 1128 (*Conus pictus*, Port Elizabeth, South Africa), which contained a rare cysteine framework XVI, was found to be inactive in a range of bioassays. S84 A novel framework XXIII was present in two toxins im23a (42 residues) and im23b (43 residues) isolated from *Conus imperialis* (South China Sea). Sea The conformation of recombinant im23a was determined by NMR spectroscopy; the sequence and cysteine framework suggests that this peptide is the first member of the K-superfamily. Intracranial injections of either peptide caused excitatory symptoms. μ - and μ O-Conotoxins are well known as blockers of voltage-gated sodium channels (VGSC) and nAChRs, making them of interest as potential analgesics. A new μ -conotoxin congener, CnIIIC **1129** (*Conus consors*, Chesterfield Is., New Caledonia) was isolated, synthesised and tested against a range of skeletal muscle and VGSC targets. ⁸⁸⁶ Potent blocking of skeletal muscle (Na_V 1.4) and neuronal (Na_V 1.2) VGSCs was observed. A hydrophobic 32-residue peptide, μ O-conotoxin MfVIA (*Conus magnificus*, unspecified location) preferentially inhibited Na_V 1.8 and Na_V 1.4 sodium channel isoforms.⁸⁸⁷ Synthesis of the peptide made use of an interesting sequence of selective oxidative deprotections of cysteine residues that allowed for synthesis without requiring chromatographic purification of intermediates. A combined proteomic/transcriptomic analysis of the venom duct of *Conus consors* (Chesterfield Is., New Caledonia) identified 105 components (of over 400 detected) covering A-, M- and O1-superfamily toxins, as well as unusual disulfide-free peptides and actinoprin- and hyaluronidase-like proteins. **888* However, the ability to automate such analysis is confounded somewhat by the complexity of post-translational modifications in *Conus* venoms. The interplay of three *Conus imperialis* venom duct proteins, protein-disulfide isomerase, peptidyl-prolyl *cis*- NPR trans isomerase and immunoglobulin-binding protein in directing the oxidative folding of cysteine-rich peptides has been studied.889 Investigation of the chemistry of Siphonaria oculus (Eastern Cape, South Africa) afforded new polypropionates 1130–1132.890 The potential artefactual nature of cyclic products 1130, 1131 and a fourth known polypropionate was suggested when analysis of the crude mucous released from individual molluscs revealed ¹H NMR signals attributable to only **1132** in the extract. The more structurally complex labdane diterpene 1133 was reported from specimens of the limpet Trimusculus peruvianus (Bahía de Pichidangui, Chile).891 Enantioselective synthesis of ent-caloundrin B (Siphonaria zelandica)892 confirmed the proposed relative and absolute configuration and in the presence of imidazole was found to isomerise to ent-siphonarin B.893 The absolute configurations of the bis-γ-pyrone polyproprionate onchidione (Onchidium sp.)894 and two methanolysis products have been assigned by analysis of X-ray diffraction data and TDDFT calculated ECD spectra.895 Dolabrifera dolabrifera (El Escambron, Puerto Rico) afforded the known non-contiguous polyproprionate
ester dolabriferol896 and two new congeners dolabriferol B 1134 and C 1135.897 The artefactual nature of all three metabolites was suggested. Although the first synthesis, potential not biomimetic synthesis of (-)-dolabriferol has been reported, utilising a retro-Claisen rearrangement of a 1,3polypropionate diketone yield the non-contiguous skeleton.898 Dactylomelatriol 1136 (Aplysia dactylomela, La Gomera, Canary Is.) contains a rare sesquiterpene skeleton previously seen in a metabolite isolated899 from a liverwort.900 Use of either silica gel or AgNO3-impregnated silica gel chromatography yielded diterpenes thuridillin D-F 1137-1139 from the sacoglossan mollusc Thuridilla splendens (Mooloolaba, Queensland).901 Alkenes 1138 and 1139 may be purification artefacts of tertiary alcohol 1137. Five new aplyronine congeners D-H 1140-1144 were reported as cytotoxic constituents of Aplysia kurodai (Mie Prefecture, Japan).902 While aplyronines D-G were equipotent or more cytotoxic (HeLa S₃ cells) than aplyronine A,903 aplyronine H was less cytotoxic highlighting that translocation of the di (or tri) methylserine residue to C-9 is detrimental to cellbased activity. Photoaffinity probes of aplyronine A have been used to identify two actin-related proteins Arp2 and Arp3 as target binding proteins.904 As neither Arp2 nor Arp3 were covalently bound directly by the probes, it was suggested these proteins bind to the aplyronine A-actin complex or to oligomeric actin. Further evidence for the disconnect between actin-depolymerising activity and whole cell cytotoxicity of aplyronine A was observed for a synthetic hybrid combining the macrolactone of aplyronine A and the sidechain of the actin-depolymerising sponge metabolite mycalolide B.905 While the hybrid was as potent as aplyronine A as an actin depolymeriser it was ca. 1000-fold less cytotoxic towards HeLa S₃ cells.906 Review Biosynthetic incorporation studies have established that the C₃ units present in the opistobranch mollusc *Ercolania funerea* metabolite 7-methyl-cyercene⁹⁰⁷ result from intact incorporation of propionic acid.⁹⁰⁸ What is intriguing about this story is that the same metabolite is biosynthesised by the terrestrial fungus *Leptosphaeria maculans/Phoma lingam via* the acetate/SAM pathway.⁹⁰⁹ The mollusc incorporation study made use of analysis of cross-peak volumes in HSQC and HMBC data to determine sites of isotopic enrichment. SAR studies on the cytotoxic cyclic depsipeptide kulokekahilide-2 (*Philinopsis speciosa*) 910,911 have identified the importance of the cyclic structure (but not the ring size), and the configuration at 21-L-Ala and 24-D-MePhe as important determinants of potency. 912,913 *para*-Chloro-24-MePhe analogues were found to be particularly potent cytotoxins. The structures of α -pyrone polyketides aplysiopsene A–D (*Aplysiopsis formosa*) 914 have been confirmed by synthesis, with the absolute configuration of aplysiopsene D **1145** defined by synthesis of the enantiomer. 915 Also confirmed by synthesis are the structures of the 1,2,4-oxadiazole ring-containing alkaloids phidianidine A and B (*Phidiana militaris*). In addition to a number of known PUFAs, heneicosa-5,8,11,14-tetraenoic acid (21;4 *n*-7) was reported as a new natural product from the opistobranch molluse *Scaphander lignarius* (Arctic). Mild, non-specific cytotoxicity was observed. The biosynthesis of the aromatic polyketides previously reported from Mediterranean specimens of *S. lignarius*^{920,921} has been investigated identifying the functional expression of a phenylalanine ammonia lyase (PAL), representing the first report of PAL in animal cells, and that biosynthesis is located specifically to the mantle border Blochmann's glands cells. ⁹²² The γ-pyrone tridachiahydropyrone (*Tridachia crispata*)^{923,924} and two putative polyene precursors insert themselves into two phospholipid vesicle models of membranes, indicative perhaps of their location in molluscan cells.⁹²⁵ Mass spectrometry imaging, using a perfluorinated siloxane-pretreated porous silicon support, of the hypobranchial gland of the mollusc *Dicathais orbita*, has established the spatial distribution of brominated precursors of Tyrian purple dye.⁹²⁶ New indigoids, of undefined structure, were identified by LC-MS/MS (Orbitrap) analysis of dye from *Hexaplex trunculus* (French Mediterranean coast). P27 In addition to three previously reported palmadorin diterpene glyceride esters, P28 sixteen new congeners 1146–1161 were isolated from specimens of the nudibranch *Austrodoris kerguelenensis* (Anvers Is., Palmer Station, Antarctic). Six of the diterpenes inhibited (μ M) the growth of human erythroleukaemia cells, with the most potent analogue 1155 also inhibiting Jak2-STAT5 and Erk1/2 activation pathways. NPR Review Investigation of the organelle distribution of metabolites in a single specimen of *Chromodoris albopunctata* (Inner Gneerings Reef, Mooloolaba, Queensland) yielded the sponge-derived diterpene **1162** and known analogues^{930,931} from the internal organs, while **1163–1165** were isolated from the mantle extract.⁹³² New phorboxazole congeners **1166** and **1167** were isolated from the dorid nudibranch *Aldisa andersoni* (Muttom Coast, India).⁹³³ Both metabolites were feeding deterrents in a shrimp bioassay and mildly growth inhibitory to a panel of HTCLs, while **1167** was determined to exert cytostatic effects towards two of the tumour cell lines. $$R_1$$ CI CI N OH R_2 R_2 R_2 R_3 R_4 R_5 R_6 R_7 R_8 R_9 Tambjamine alkaloids C, E, F and BE-18591, 934-936 isolated from nudibranchs, ascidians or a bacterium, acted as efficient transmembrane anion transporters, releasing chloride from phospholipid vesicles. 937 Syntheses of the *Hexabranchus sanguineus* cyclic peptides 938 sanguinamide A **1168**939 and B940 have been reported. The *cis,cis* proline configuration originally proposed for sanguinamide A was corrected to Pro 4 *cis*, Pro 6 *trans* as shown – the resultant structure is stabilised by transannular hydrogen bonds making the natural product orally bioavailable in rats. In the case of sanguinamide B, final step macrocyclisation yielded the *cis,cis*-conformer as the dominant (kinetic control) product, while heating afforded a 1 : 1 mixture of the *trans,trans* natural product and *trans,cis*-conformer. The mixture of the latter two conformers inhibited *P. aeruginosa* fimbriae twitching motility. Analogues of (–)-jorumycin (*Jorunna funebris*),⁹⁴¹ with variation at the pendant methylene C-22, exhibited varied levels of potency towards a panel of HTCLs. A hippuric acid ester derivative exhibited broad spectrum nM potency.⁹⁴² ## 11 Tunicates (ascidians) The 51 new tunicate-derived natural products presented in this review is one of the highest number reported per annum over the last decade. New alkyl sulfates 1169 and 1170 (*Aplidium elegans*) and 1171 (*Ciona edwardsii*) were reported from ascidians collected in the Bay of Naples.⁹⁴³ While 1169 and 1170 exhibited cytotoxicity towards murine macrophage cells, 1171 was inactive, highlighting the importance of sulfate groups for biological activity. Two unusual dimethylamino lipidsulfoxides aplisulfamine A **1172** and B **1173** were isolated from *Aplidium* sp. (Pozzuoli, Naples). A comprehensive combination of nOe analysis, *J*-based configurational analysis, and calculated ¹³C chemical shift and ECD data secured the absolute configurations of the alkaloids. Three separate studies reported new congeners of the rubrolide and cadiolide families of furanones. In the first, South African specimens of *Synoicum globosum* (Algoa Bay) yielded known rubrolides E and F⁹⁴⁵ in addition to new more highly brominated analogues **1174–1177**.⁹⁴⁶ Variable levels of antibacterial activity were observed for all six metabolites. Review As well as rubrolide P 1178 and 1179 and 1177 (3'-bromorubrolide F, which the authors of this second study named rubrolide O), a collection of Pseudodistoma antinboja (Tong-Yeong City, South Sea, S. Korea) also afforded four new cadiolide analogues C-F 1180-1184.947 Some of the latter examples, in addition to the known co-metabolite cadiolide B,948 exhibited potent antibacterial activity towards MSSA and MRSA strains. As well as cadiolide E, related furanones cadiolide G 1185, H 1186,1187 and I 1188 and diesters synoilide A 1189,1190 and B 1191,1192 (Synoicum sp., Chuja-do, S. Korea) were evaluated for antibacterial activity as well as activity in sortase A, isocitrate lyase (ICL) and Na⁺/K⁺-ATPase assays.949 Cadiolides E, G-I exhibited antibacterial activity towards Gram-positive and Gram-negative bacteria, while the diesters were inactive, helping define an important SAR parameter. All metabolites exhibited activity towards the ATPase target, and all except cadiolide H were active against ICL but only cadiolide E inhibited sortase A (weak). Using calculated ECD data, the absolute configuration of 1185 was also assigned. Br $$R_1$$ R_2 R_3 R_4 R_5 R_5 R_5 R_6 R_7 R_8 R_9 R A small library of semi-synthetic analogues of eudistomin Y2 and Y₃ was prepared and evaluated against the same set of biological targets used for the cadiolides; only one analogue exhibited increased cytotoxic potency, while all other analogues were less active than the natural products in the respective assays.950 New efficient syntheses of rubrolides C and E have been reported.951 Potently cytotoxic macrolides mandelalide A-D 1193-1196 were isolated from Lissoclinum sp. (Algoa Bay, South Africa); relative configurations were assigned by extensive J-based and rOe analysis and absolute configuration was assigned to 1193 by a combination of sugar analysis (GC-MS) and rOe data. 952,953 Note that the structure diagram in the original paper⁹⁵² implying mandelalide C to be a hydroperoxide at C-24, is a typographical error, and that the macrolide is indeed a C-24 carbinol.954 NPR New
rossinone congeners 1197-1199 (Aplidium fuegiense, dredge Western Weddell Sea, Antarctica) were localised in extracts of the ascidian internal organs.955,956 Both rossinone B957 and a mixture of meridianin alkaloids exhibited feeding deterrence towards the sea star Odontaser validus and amphipod Cheirimedon femoratus.958 In contrast to the monomeric, presumed precursor 1,8dihydroxy-9,10-anthraquinone, the anthrone-anthraquinone dimer albopunctatone 1200 (Didemnum albopunctatum, Swain Reefs, Great Barrier Reef) was equipotent towards chloroquinesensitive and chloroquine-resistant strains of P. falciparum. 959 While a previous study of an Australian collection of Leptoclinides durus afforded, amongst other metabolites, (+)-(S)leptoclinidamine B,960 Indonesian (Lembeh Strait, North Sulawesi) specimens of L. dubius have yielded leptoclinidamide 1201 and (-)-(R)-leptoclinidamine B **1202**. 961 Further investigation of an extract of Herdmania momus (Jeju Is., S. Korea), from which anti-inflammatory amino acid derivatives had been previously identified,962 afforded new congeners herdmanine E-L 1203-1210, in addition to (-)-(R)-leptoclinidamine B. 963,964 The latter compound and herdmanine I and K all transactivated PPAR- γ in a cell-based luciferase reporter assay. Review Mollamides E **1211** and F **1212** and molleurea A **1213** were obtained from *Didemnum molle* (New Britain, Papua New Guinea) with NMR chemical shift and nOe data defining the proline conformations as *cis* in **1211** and *cis* and *trans* in **1212**. ⁹⁶⁵ These same two peptides have previously been identified as predicted products from the genome sequence of *Prochloron* spp., and detected by LC-MS in an ascidian ⁹⁶⁶ or in *E. coli* heterologously expressing the pathway. ⁹⁶⁷ Australian collections of *Didemnum* sp. (Wasp Is., New South Wales, and Northern Rottnest Shelf, Western Australia) afforded an extensive number of lamellarin alkaloids including the new members lamellarin A1–A6 1214–1219. Evaluation of the library identified examples exhibiting cytotoxicity towards a human carcinoma cell line and a P-gp-overexpressing variant, while addition to doxorubicin (P-gp substrate) in the same assays identified a permethylated semi-synthetic analogue as being the best inhibitor of P-gp activity. $$R_3O$$ R_4O R_5O R_6 R_6 1214 $R_1=R_2=R_5=R_6=H,\,R_3=R_4=Me$ 1215 $R_1=R_2=H,\,R_3=R_4=R_5=Me,\,R_6=OH$ 1216 $R_1=R_7=H,\,R_2=R_3=R_4=R_5=Me$ 1217 $R_1=R_2=R_3=R_4=R_5=R_6=R_7=H$ 1218 $R_1=R_2=R_4=R_5=R_6=H,\,R_3=Me,\,\Delta^{5,6}$ 1219 $R_1=R_3=R_4=Me,\,R_2=R_5=R_6=H$ Further investigation of the Northern Rottnest Shelf specimens of *Didemnum* sp. also yielded ningalins E–G **1220–1222**. Singalins C, D and G were potent inhibitors of CK1 δ , CDK5 and GSK3 β kinases. Biological evaluation of a mixture of two new staurosporine analogues **1223** and **1224** (*Eudistoma vannamei*, Ceara state, Brazil) identified the mixture as more potent than the parent compound. Synthesis of the structure originally proposed for palmerolide C (*Synoicum adareanum*) has required correction of configurations at C-9 and C-10 to those shown in **1225**. Synthesis of the structure originally proposed for haouamine B (*Aplidium haouarianum*) combined with re-examination/reacquisition of NMR data for haouamine B peracetate requires the structure to be corrected to the *ortho*-diphenol (catechol) shown in **1226**. Synthesis of the structure to the *ortho*-diphenol (catechol) shown in **1226**. A stereoselective and convergent synthesis of lepadiformines A–C (*Clavelina lepadiformis* and *C. moluccensis*)^{975,976} has been reported, confirming the absolute configuration of lepadiformine B.⁹⁷⁷ A thorough investigation of different methods used to determine the absolute configuration of synox-azolidinone natural products (*Synoicum pulmonaria*)^{978,979} has highlighted the value and reliability of VCD.⁹⁸⁰ The structures 1226 and absolute configurations of the brominated 1,2,3,4-tetrahy-dro- β -carboline alkaloids eudistomidin G–I (*Eudistoma glaucus*) 981,982 have been confirmed by synthesis 983 as have those of an iodinated nucleoside 984 originally reported from *Diplosoma* sp. 985,986 Biomimetic syntheses of the apoptosis-inducing prenylated thiazinoquinones thiaplidiaquinone A and B (Aplidium conicum)987 have been reported.988,989 Two different routes for the pyrroloquinoline synthesis of the antimalarial aplidiopsamine A (Aplidiopsis confluata)990 have been reported,991 with one992 of the studies also identifying the natural product as a moderate inhibitor of rat and human PDE4. Total synthesis of the structure proposed for didemnaketal A (Didemnum sp.)993 gave a product that exhibited different NMR spectra compared to those reported for the natural product, calling into question the original stereochemical assignments.994 ### 12 Echinoderms The 37 new metabolites reported from echinoderms in 2012 is a modest increase from the number reported in 2011. Known sulfated alkanes 2,6-dimethylheptyl sulfate, octyl sulfate and decyl sulfate as well as new sulfated alkenes (5*Z*)-dec-5-en-1-yl sulfate and (3*E*)-dec-3-en-1-yl sulfate were isolated from the sea cucumber *Apostichopus japonicus* (commercially supplied). 995 All of the metabolites exhibited moderate to potent cytotoxicity and antibiotic activity towards *E. coli*. Cerebrosides 1227 and 1228 were obtained as pure entities for the first time (*Cucumaria frondosa*, undefined location), 996 with 1227 having previously been reported as a component of a mixture from *Stichopus japonicus*. 997 Crude preparations of cerebrosides from the sea cucumber *Acaudina molpadioides* (Zhejiang Province, China) and the starfish *Asterias amurensis* (S. Hokkaido, Japan) exhibited pronounced *in vitro* and *in vivo* antitumour activity and appear to function by induction of apoptosis *via* a mitochondrial-mediated pathway. A series of complex ganglioside molecular species PNG-1 (disaccharide), PNG-2A and PNG-2B (tetraosides) were reported from the starfish *Protoreaster nodosus* (Katsuren, Okinawa). The sterol sulfate mithrotriol 1229 was isolated as a noncytotoxic component of the starfish *Mithrodia clavigera* (Maldives Is.). An unusual peroxy-ester lucunterperacetate **1230** and the more classical peroxy-bridged sterol peroxylucunterine **1231** were reported from the urchin *Echinometra lucunter* (Dakar, Senegal).¹⁰⁰¹ An amidotaurine β -D-xyloside, fisherioside A **1232**, was isolated from the starfish *Leptasterias fisheri* (Sakhalin Is., Sea of Okhotsk), while pentaosides lethasteriosides A **1233** and B **1234** were reported from *L. fusca* (Posyet Bay, Sea of Japan). Lethasterioside A, while being weakly cytotoxic, had pronounced ability to inhibit colony formation of tumour cells in a soft agar clonogenic assay. In five separate accounts, a series of tri-, tetra- and pentaosides were reported from the same collection of the sea cucumber *Eupentacta fraudatrix* (Peter the Great Gulf, Sea of Japan). Of the two side-chain isomeric triosides, cucumarioside B_1 1235 and B_2 1236, only the latter demonstrated cytotoxicity and haemolytic activity (mild). Minor metabolite tetraosides cucumarioside A_1 – A_{15} 1237–1251 all incorporated the same tetrasaccharide unit. Cucumariosides A_1 , A_5 , A₁₀ and A₁₁ are desulfated derivatives of previously reported cucumariosides G1, G3, G2 and G4, respectively and cucumarioside A₁₅ appears to be identical to a previously reported starfish metabolite. 1012 Cucumariosides A1, A2, A6, A8 and A₁₃ were the most active of the series in a range of biological studies assessing cytotoxicity, antifungal and haemolytic activities. Out of the three pentaosides cucumarioside H₂-H₄ 1252-1254, there was more pronounced cytotoxicity and haemolytic activity for the likely artefactual ethyl ether, cucumarioside H₄.1013 The sea cucumber Apostichopus japonicus is used as a food and a tonic in China - investigation of constituents of specimens (Dalian coast, Bohai Sea of China) identified penta- and hexaosides 1255, holotoxin D-G 1256-12591014 and holotoxin D₁ 1260 and 24,25-dihydroxyholotoxin A₁ 1261. Broad spectrum antifungal activity was observed for holotoxins D-G and holotoxin D₁, with indications that the presence of a lactone and a double bond in the sidechain at C-25 increases activity. antifungal properties of the closely related hexaoside, bivittoside D (Bohadschia vitiensis), 1016 have also been investigated1017 while tetraosides echinosides A and B echinites and Holothuria (Actinopyga demonstrated schistomicidal activity in vitro. 1019 The antitumour effects of the echinosides A and B have also been investigated, establishing that each echinoside can induce apoptosis in human HepG2 cells via the mitochondrial pathway, induce cell cycle arrest in G₀/G₁ phase and reduce tumour growth in vivo (ip dosing). 1020 Interestingly, desulfated echinoside B suppressed NF-κB expression, while echinoside A did not. The related tetraoside neothyonidioside1021 (Australostichopus mollis) demonstrated antifungal activity by binding to ergosterol, leading to altered membrane curvature and fusion capability.1022 ŌН ŌН Review **NPR** ## Mangroves 13 Three known dimeric alkyl aromatics integracin A 1262, B 1263 and dehydroxy-B 1264 were isolated from Sonneratia hainanensis (Hainan Province, China), and absolute configurations assigned to 1262 (degradation and Mosher), 1263 (degradation and optical rotation) and 1264 (loosely on biogenetic grounds).1023 Investigation of the chemistry of the bark of Aegiceras corniculatum (Nizampatnam coast, India) yielded corniculatolide macrolides 1265-1268.1024 excoecariphenol A-D 1269-1272, polyphenols Four including two unusual thioglycosides, were reported from Excoecaria agallocha (China). 1025 Excoecariphenol D inhibited NS3-4A protease and exhibited anti-hepatitis C virus (HCV) activity in two assays. 1271 Extracts of seeds
of *Xylocarpus moluccensis* collected at two sites (Godavari and Krishna estuaries, Andhra Pradesh, India) yielded new limonoids **1273–1280** in addition to several known congeners¹⁰²⁶ including **1281.**¹⁰²⁷ Absolute configuration was assigned to both **1277** and **1281**. The known 2-hydroxyfissinolide and **1273**, **1274** and **1281** exhibited antifeedant activity towards third-instar larvae of *Brontispa longissima*, with 2-hydroxyfissinolide being the most active. The structurally rare or unique limonoids andhraxylocarpin A–E **1282–1286** were isolated from seeds of *X. moluccensis* and *X. granatum* (Godavari and Krishna estuaries, Andhra Pradesh, India) with relative configurations of **1282** and **1284** established by X-ray analysis and absolute configurations assigned to all metabolites *via* quantum chemical calculations of CD or optical rotation properties. A bioinspired [4 + 2] dimerisation of a 4-hydroxybutenolide precursor has been used to confirm the structure of paracaseolide A, ¹⁰²⁹ recently reported from stem bark extract of *Sonneratia paracaseolaris*. ¹⁰³⁰ †1281 ## Miscellaneous 14 The cyanobacterial neurotoxin β-N-methylamino-1-alanine has been detected in fins of seven species of sharks in South Florida, raising the possibility of human exposure through consumption. 1031 Using a previously reported cuttlefish (Sepia officinalis) neuropeptide1032 as a biologically inactive starting point, substitution of aza-β³-amino acids led to the discovery of analogues with increased potency. 1033 The data suggested that a peptide helical structure was not necessary for biological activity and that structural flexibility was important. ## 15 Conclusion MNP research can be conveniently divided into two areas; the discovery of new compounds from macro and micro marine sources, and all other aspects including those involved with syntheses of newly discovered compounds, corrections of structure and/or stereochemistry, assignment of stereochemistry, reviews, bioactivity and biosynthetic studies along with ecological and general surveys of marine species. All but the ecological and survey aspects are normally covered each year in this annual review. Just how many corresponding authors are involved worldwide in this effort? This information is shown in Table 1 below. A survey of the literature from 2007 to 2012 was undertaken to identify those corresponding authors (hereinafter referred to as 'authors') involved in these two broad areas as well as the distribution of effort by country. Interrogation of the marine literature database MarinLit¹⁰³⁴ identified all papers reporting new compounds published over that period, the year of publication and the author responsible (Compounds) as well establishing a comparable set of results for papers reporting syntheses, corrections of structure, stereochemistry, reviews, ecological studies, surveys, bioactivities etc (Other Aspects). After compilation by author the results were assessed and Table 1 Worldwide distribution of corresponding authors for MNP publications | | Compounds | | | | Other Aspects | | | | |------------------------------|-----------|-----|-----|-----|---------------|-----|------|------| | | A | В | С | | A | В | C | | | Australia | 5 | 5 | 5 | 15 | 2 | 8 | 50 | 60 | | Brazil | | 2 | 5 | 7 | 4 | 8 | 73 | 85 | | Canada | 2 | 1 | 6 | 9 | 2 | | 46 | 48 | | China | 23 | 23 | 134 | 180 | 5 | 17 | 190 | 212 | | Colombia | | 1 | 3 | 4 | 1 | 1 | 3 | 5 | | Egypt | 1 | 2 | 14 | 17 | 1 | | 13 | 14 | | France | 3 | 2 | 20 | 25 | 3 | 9 | 109 | 121 | | Germany | 4 | 5 | 22 | 31 | 5 | 14 | 101 | 120 | | India | | | 17 | 17 | 6 | 11 | 105 | 122 | | Italy | 6 | 4 | 11 | 21 | 1 | 7 | 50 | 58 | | Japan | 9 | 20 | 68 | 97 | 12 | 35 | 188 | 235 | | Malaysia | 1 | | 4 | 5 | | 2 | 9 | 11 | | New Zealand | 1 | 1 | 6 | 8 | 4 | 2 | 15 | 21 | | Norway | | 1 | 3 | 4 | 1 | 1 | 13 | 15 | | Russia | 8 | 4 | 4 | 16 | 1 | 5 | 46 | 52 | | South Korea | 6 | 5 | 17 | 28 | 2 | 7 | 67 | 76 | | Saudi Arabia | | 1 | 3 | 4 | | | 5 | 5 | | Spain | 2 | 2 | 12 | 16 | 4 | 6 | 94 | 104 | | Taiwan | 4 | 5 | 7 | 16 | | 3 | 25 | 28 | | Thailand | 2 | 3 | 5 | 10 | | | 12 | 12 | | UK | 1 | 1 | 7 | 9 | 4 | 10 | 75 | 89 | | USA | 15 | 13 | 67 | 95 | 29 | 51 | 341 | 421 | | Other countries ^a | 3 | 7 | 24 | 34 | 3 | 16 | 195 | 214 | | | 96 | 108 | 464 | 668 | 90 | 213 | 1825 | 2128 | ^a There were 40 countries that each had fewer than 4 corresponding authors in the Compounds section. placed into one of three categories, A, B or C. The placement was based on the numbers of papers published by each author over the six-year period and the frequency at which they were published. For the Compounds group the numbers of papers published by an individual author ranged down from 65 to just one and the frequency from every year to one year out of the six. Typically for an A placement in Compounds the authors needed to have published ≥10 papers and published in at least three of the years between 2007-2012. As the numbers and/or frequency diminished the rankings decreased. A comparable system based on ≥7 papers was used for Other Aspects where the range of papers from one author was from 19 downwards. While varying the ranking system might change the relative populations of the A, B and C categories, the totals remain the same. A comparable system based on ≥7 papers was used for Other Aspects where the range of papers from one author was from 19 downwards. While varying the ranking system might change the relative populations of the A, B and C categories, the totals remain the same. That is, 668 authors contributed papers on isolation only, while 286 of these authors, along with a further 1842 authors, published in the Other Aspects area. The crossover was usually in the direction of specialist isolation chemists also undertaking the likes of synthetic/stereochemical work. The countries that were dominant (>15 authors) in the Compounds area are (in alphabetical order): Australia, China, Egypt, France, Germany, India, Italy, Japan, Russia, South Korea, Spain, Taiwan and the USA. For Other Aspects it is a comparable list with the addition of Brazil, Canada, New Zealand, Norway, and the UK. The 96 A-ranked authors in Compounds reported 4033 compounds in 1234 papers, those in B (108) were responsible for 1264 compounds in 435 papers and for C (464) a total of 1282 compounds in 549 papers. In Other Aspects the A-ranked authors (90) published 712 papers, those in B (213) 772 papers while the 1825 authors in C published 2142 papers. Of the overall 2510 corresponding authors across the 2007-2012 period, 499 authors published more than two papers. Possible trends across this publication period were evaluated based on the numbers of publications and the years in which they were published: Constant if publications for 2007-2009 = 2010-2012; Upward if numbers for 2007-2009 < 2010-2012; Downward if numbers for 2007-2009 > 2010-2012. These data were included as it was felt that the method of assessment used could have disadvantaged younger, emerging scientists who only started to publish in the 2010–2012 period. It was found that the *Upward*/ Downward trend for the two broad areas of research across all scientists was relatively constant, but at the country level there was an Upward trend in Compounds for China and Taiwan. The crossover between the two areas is interesting. Of the 93 Aranked authors in Compounds, 12 were also A in Other Aspects and 24 were ranked B. If the rankings for Compounds and Other Aspects are combined the top 50 ranked authors are almost all well-known isolation chemists confirming the breadth of interests of the marine natural product community. The marine natural product database MarinLit¹⁰³⁴ has been an essential tool for the authors in assembling all aspects of this review. The ownership of MarinLit has now been transferred from the University of Canterbury, New Zealand to the Royal Society of Chemistry, London.¹⁰³⁵ The database was maintained by the University of Canterbury until the end of 2013. In 2014 a web-based version of MarinLit will become available. ## 16 References - 1 J. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. G. Munro and M. R. Prinsep, *Nat. Prod. Rep.*, 2013, **30**, 237–323. - 2 J. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. G. Munro and M. R. Prinsep, *Nat. Prod. Rep.*, 2012, 29, 144–222. - 3 R. A. Hill, Annu. Rep. Prog. Chem., Sect. B: Org. Chem., 2012, 108, 131–146. - 4 Handbook of Marine Natural Products, ed. E. Fattorusso, W. H. Gerwick and O. Taglialatela-Scafati, Springer, Dordrecht, 2012. - 5 http://marinepharmacology.midwestern.edu/ Accessed 24 May 2013. - 6 A. M. S. Mayer, Toxicon, 2012, 60, 104. - 7 D. J. Newman and G. M. Cragg, *J. Nat. Prod.*, 2012, 75, 311–335. - 8 C. I. Schroeder and D. J. Craik, *Future Med. Chem.*, 2012, 4, 1243–1255. - 9 R. J. Lewis, S. Dutertre, I. Vetter and M. J. Christie, *Pharmacol. Rev.*, 2012, **64**, 259–298. - 10 J. Lee, J. N. Currano, P. J. Carroll and M. M. Joullié, *Nat. Prod. Rep.*, 2012, **29**, 404–424. - 11 J. Y. Hong and H. Luesch, Nat. Prod. Rep., 2012, 29, 449-456. - 12 P. A. Harnedy and R. J. FitzGerald, *J. Funct. Foods*, 2012, 4, 6–24. - 13 G.-M. Suarez-Jimenez, A. Burgos-Hernandez and J.-M. Ezquerra-Brauer, *Mar. Drugs*, 2012, **10**, 963–986. - 14 F. Lazcano-Perez, S. A. Roman-Gonzalez, N. Sanchez-Puig and R. Arreguin-Espinosa, *Protein Pept. Lett.*, 2012, **19**, 700–707. - 15 S. N. Sunassee and M. T. Davies-Coleman, *Nat. Prod. Rep.*, 2012, **29**, 513–535. - 16 V. Sele, J. J. Sloth, A. K. Lundebye, E. H. Larsen, M. H. G. Berntssen and H. Amlund, *Food Chem.*, 2012, 133, 618–630. - 17 B. F. Ruan and H. L. Zhu, *Curr. Med. Chem.*, 2012, **19**, 2652–2664 - 18 C.-S. Jiang, W. E. G. Muller, H. C. Schröder and Y.-W. Guo, *Chem. Rev.*, 2012, **112**, 2179–2207. - 19 S. B. Bharate, S. Manda, N. Mupparapu, N. Battini and R. A. Vishwakarma, *Mini-Rev. Med. Chem.*, 2012, 12, 650– 664. - 20 M. Sugumaran and W. E.
Robinson, *Comp. Biochem. Physiol.*, *Part B: Biochem. Mol. Biol.*, 2012, **163**, 1–25. - 21 V. I. Kalinin, N. V. Ivanchina, V. B. Krasokhin, T. N. Makarieva and V. A. Stonik, *Mar. Drugs*, 2012, **10**, 1671–1710. - 22 B. Frazão, V. Vasconcelos and A. Antunes, *Mar. Drugs*, 2012, **10**, 1812–1851. - 23 R. A. Mosey and P. E. Floreancig, *Nat. Prod. Rep.*, 2012, 29, 980–995. - 24 Z. J. Witczak, R. M. Rampulla and A. Bommareddy, *Mini-Rev. Med. Chem.*, 2012, **12**, 1520–1532. - 25 Q.-F. Lin, J.-G. Cui, C.-F. Gan, L. Liu, Q.-C. Yao and Y.-M. Huang, *Chin. J. Org. Chem.*, 2012, 32, 2214–2222. - 26 B. M. Fraga, Nat. Prod. Rep., 2012, 29, 1334-1366. - 27 B. Yang, X.-F. Zhou, X.-P. Lin, J. Liu, Y. Peng, X.-W. Yang and Y. Liu, *Curr. Org. Chem.*, 2012, **16**, 1512–1539. - 28 A. D. Borthwick, Chem. Rev., 2012, 112, 3641-3716. - 29 M. Nagarajan, V. Maruthanayagam and M. Sundararaman, *J. Appl. Toxicol.*, 2012, **32**, 153–185. - 30 M. Costa, J. Costa-Rodrigues, M. H. Fernandes, P. Barros, V. Vasconcelos and R. Martins, *Mar. Drugs*, 2012, **10**, 2181–2207. - 31 J. Gallardo-Rodríguez, A. Sánchez-Mirón, F. García-Camacho, L. López-Rosales, Y. Chisti and E. Molina-Grima, *Biotechnol. Adv.*, 2012, **30**, 1673–1684. - 32 R. Pistocchi, F. Guerrini, L. Pezzolesi, M. Riccardi, S. Vanucci, P. Ciminiello, C. Dell'Aversano, M. Forino, E. Fattorusso, L. Tartaglione, A. Milandri, M. Pompei, M. Cangini, S. Pigozzi and E. Riccardi, *Mar. Drugs*, 2012, 10, 140–162. - 33 S. B. Zotchev, J. Biotechnol., 2012, 158, 168–175. - 34 L.-H. Wang, J.-H. Sheu, S.-Y. Kao, J.-H. Su, Y.-H. Chen, Y.-H. Chen, Y.-D. Su, Y.-C. Chang, L.-S. Fang, W.-H. Wang, Y.-C. Wu and P.-J. Sung, *Mar. Drugs*, 2012, **10**, 2415–2434. - 35 E. W. Schmidt, M. S. Donia, J. A. McIntosh, W. F. Fricke and J. Ravel, *J. Nat. Prod.*, 2012, 75, 295–304. Review 36 E. L. Cooper and D. Yao, *Drug Discovery Today*, 2012, **17**, 636–648. - 37 P. L. Kiew and M. M. Don, *Int. J. Food Sci. Nutr.*, 2012, 63, 616–636. - 38 M. L. C. da Frota, R. B. da Silva, B. Mothes, A. T. Henriques and J. C. F. Moreira, *Curr. Pharm. Biotechnol.*, 2012, 13, 235–244. - 39 J. C. Noro, J. A. Kalaitzis and B. A. Neilan, *Chem. Biodiversity*, 2012, **9**, 2077–2095. - 40 M. Roué, E. Quévrain, I. Domart-Coulon and M. L. Bourguet-Kondracki, *Nat. Prod. Rep.*, 2012, **29**, 739–751. - 41 R. C. Pereira and L. V. Costa-Lotufo, *Rev. Bras. Farmacogn.*, 2012, 22, 894–905. - 42 A. L. L. de Oliveira, R. de Felicio and H. M. Debonsi, *Rev. Bras. Farmacogn.*, 2012, 22, 906–920. - 43 K. D. Feussner, K. Ragini, R. Kumar, K. M. Soapi, W. G. Aalbersberg, M. K. Harper, B. Carte and C. M. Ireland, *Nat. Prod. Rep.*, 2012, 29, 1424–1462. - 44 O. Sacristán–Soriano, B. Banaigs and M. A. Becerro, *Mar. Drugs*, 2012, **10**, 677–693. - 45 S. Rohde, D. J. Gochfeld, S. Ankisetty, B. Avula, P. J. Schupp and M. Slattery, *J. Chem. Ecol.*, 2012, 38, 463–475. - 46 F. Amir, Y. C. Koay and W. S. Yam, *Trop. J. Pharm. Res.*, 2012, **11**, 485–498. - 47 F. Amir, Y. C. Koay and W. S. Yam, *Trop. J. Pharm. Res.*, 2012, **11**, 499–517. - 48 C. Nastrucci, A. Cesario and P. Russo, Recent Pat. Anti-Cancer Drug Discovery, 2012, 7, 218–232. - 49 E. Delfourne, Mini-Rev. Med. Chem., 2012, 12, 988-996. - 50 J. Liu, Y. Hu, D. L. Waller, J. Wang and Q. Liu, *Nat. Prod. Rep.*, 2012, 29, 392–403. - 51 C.-S. Jiang, L.-F. Liang and Y.-W. Guo, *Acta Pharmacol. Sin.*, 2012, 33, 1217–1245. - 52 I. Abraham, K. El Sayed, Z.-S. Chen and H. Guo, *Mar. Drugs*, 2012, **10**, 2312–2321. - 53 S. Fiorucci, E. Distrutti, G. Bifulco, M. V. D'Auria and A. Zampella, *Trends Pharmacol. Sci.*, 2012, 33, 591–601. - 54 Y. Mizushina, I. Kuriyama and H. Yoshida, *Curr. Org. Chem.*, 2012, **16**, 2961–2969. - 55 N. D'Orazio, M. A. Gammone, E. Gemello, M. De Girolamo, S. Cusenza and G. Riccioni, *Mar. Drugs*, 2012, 10, 812–833. - 56 P. N. Leão, N. Engene, A. Antunes, W. H. Gerwick and V. Vasconcelos, *Nat. Prod. Rep.*, 2012, **29**, 372–391. - 57 D. J. Gochfeld, H. N. Kamel, J. B. Olson and R. W. Thacker, J. Chem. Ecol., 2012, 38, 451–462. - 58 M. C. Leal, C. Madeira, C. A. Brandão, J. Puga and R. Calado, *Molecules*, 2012, 17, 9842–9854. - 59 M. C. Leal, J. Puga, J. Serôdio, N. C. M. Gomes and R. Calado, *PLoS One*, 2012, 7, e30580. - 60 J. C. Morris, Nat. Prod. Rep., 2013, 30, 783-805. - 61 T. F. Molinski and B. I. Morinaka, *Tetrahedron*, 2012, 68, 9307–9343. - 62 T. Kurtán, R. Jia, Y. Li, G. Pescitelli and Y.-W. Guo, *Eur. J. Org. Chem.*, 2012, **34**, 6722–6728. - 63 M. Slattery, S. Ankisetty, J. Corrales, K. E. Marsh-Hunkin, D. J. Gochfeld, K. L. Willett and J. M. Rimoldi, J. Nat. Prod., 2012, 75, 1833–1877. - 64 D. Camp, R. A. Davis, E. A. Evans-Illidge and R. J. Quinn, Future Med. Chem., 2012, 4, 1067–1084. - 65 S. Goulitquer, P. Potin and T. Tonon, *Mar. Drugs*, 2012, **10**, 849–880. - 66 K. Duarte, T. A. P. Rocha-Santos, A. C. Freitas and A. C. Duarte, *TrAC*, *Trends Anal. Chem.*, 2012, 34, 97–110. - 67 W. H. Gerwick and B. S. Moore, Chem. Biol., 2012, 19, 85-98. - 68 S. Sato, F. Iwata, S. Yamada and M. Katayama, *J. Nat. Prod.*, 2012, 75, 1974–1982. - 69 F. S. Tareq, J. H. Kim, M. A. Lee, H.-S. Lee, Y.-J. Lee, J. S. Lee and H. J. Shin, *Org. Lett.*, 2012, 14, 1464–1467. - 70 Z. Ma, N. Wang, J. Hu and S. Wang, J. Antibiot., 2012, 65, 317–322. - 71 M. Azumi, K. Ogawa, T. Fujita, M. Takeshita, R. Yoshida, T. Furumai and Y. Igarashi, *Tetrahedron*, 2008, **64**, 6420–6425. - 72 J. Itoh, T. Shomura, S. Omoto, S. Miyado, Y. Yuda, U. Shibata and S. Inouye, *Agric. Biol. Chem.*, 1982, **46**, 1255–1259. - 73 Y. Li, Y. Xu, L. Liu, Z. Han, P. Y. Lai, X. Guo, X. Zhang, W. Lin and P.-Y. Qian, *Mar. Drugs*, 2012, **10**, 319–328. - 74 A. P. Terent'ev, A. N. Grinev and A. B. Terent'ev, *Zhurnal Obshchei Khimii*, 1954, **24**, 1433–1435. - 75 N. Moriya, N. Ikeda and Y. Tada, *Jpn. Kokai Tokkyo Koho*, 2011, JP 2011088873 A 20110506. - 76 A. S. Leutou, K. Yun, H. D. Choi, J. S. Kang and B. W. Son, J. Microbiol. Biotechnol., 2012, 22, 80–83. - 77 Y. Hu, A. G. Legako, A. P. D. M. Espindola and J. B. MacMillan, *J. Org. Chem.*, 2012, 77, 3401–3407. - 78 S. H. Kim, Y. K. Shin, Y. C. Sohn and H. C. Kwon, *Molecules*, 2012, 17, 12357–12364. - 79 X. Zhou, H. Huang, Y. Chen, J. Tan, Y. Song, J. Zou, X. Tian, Y. Hua and J. Ju, *J. Nat. Prod.*, 2012, 75, 2251–2255. - 80 H. A. Kirst, D. E. Dorman, J. L. Occolowitz, N. D. Jones, J. W. Paschal, R. L. Hamill and E. F. Szymanski, J. Antibiot., 1985, 38, 575–586. - 81 Q. Zhu, J. Li, J. Ma, M. Luo, B. Wang, H. Huang, X. Tian, W. Li, S. Zhang, C. Zhang and J. Ju, *Antimicrob. Agents Chemother.*, 2012, 56, 110–114. - 82 S. Baur, J. Niehaus, A. D. Karagouni, E. A. Katsifas, K. Chalkou, C. Meintanis, A. L. Jones, M. Goodfellow, A. C. Ward, W. Beil, K. Schneider, R. D. Süssmuth and H. P. Fiedler, *J. Antibiot.*, 2006, 59, 293–297. - 83 Z. Feng, J. H. Kim and S. F. Brady, *J. Am. Chem. Soc.*, 2010, 132, 11902–11903. - 84 G. Fendrich, W. Zimmermann, J. Gruner and J. A. L. Auden, *Eur. Pat. Appl.*, 1989, EP 304400 A2 19890222. - 85 W. Zhang, Z. Liu, S. Li, Y. Lu, Y. Chen, H. Zhang, G. Zhang, Y. Zhu, J. Li and C. Zhang, J. Nat. Prod., 2012, 75, 1937– 1943. - 86 T. D. S. Sousa, P. C. Jimenez, E. G. Ferreira, E. R. Silveira, R. Braz-Filho, O. D. L. Pessoa and L. V. Costa-Lotufo, *J. Nat. Prod.*, 2012, 75, 489–493. - 87 T. P. Wyche, Y. Hou, E. Vazquez-Rivera, D. Braun and T. S. Bugni, *J. Nat. Prod.*, 2012, 75, 735–740. - 88 J. Y. Cho, P. G. Williams, H. C. Kwon, P. R. Jensen and W. Fenical, *J. Nat. Prod.*, 2007, **70**, 1321–1328. 89 J. W. Cha, J.-S. Park, T. Sim, S.-J. Nam, H. C. Kwon, J. R. Del 1 - Valle and W. Fenical, *J. Nat. Prod.*, 2012, 75, 1648–1651. S. Ranatunga, C.-H. A. Tang, C.-C. A. Hu and J. R. Del Valle, *J. Org. Chem.*, 2012, 77, 9859–9864. - 91 K. B. Selim, B. K. Lee and T. Sim, *Tetrahedron Lett.*, 2012, 53, 5895–5898. - 92 B. Elazari-Volcani, Arch. Microbiol., 1939, 10, 343-58. - 93 W. N. Cude, J. Mooney, A. A. Tavanaei, M. K. Hadden, A. M. Frank, C. A. Gulvik, A. L. May and A. Buchan, *Appl. Environ. Microbiol.*, 2012, **78**, 4771–4780. - 94 Y.-H. Chen, M.-C. Lu, Y.-C. Chang, T.-L. Hwang, W.-H. Wang, C.-F. Weng, J. Kuo and P.-J. Sung, *Tetrahedron Lett.*, 2012, 53, 1675–1677. - 95 Y.-H. Chen, J. Kuo, J.-H. Su, T.-L. Hwang, Y.-H. Chen, C.-H. Lee, C.-F. Weng and P.-J. Sung, *Mar. Drugs*, 2012, 10, 1566–1571. - 96 D. Kim, J. S. Lee, Y. K. Park, J. F. Kim, H. Jeong, T.-K. Oh, B. S. Kim and C. Lee, *J. Appl. Microbiol.*, 2007, **102**, 937–944. - 97 D. Feher, R. S. Barlow, P. S. Lorenzo and T. K. Hemscheidt, J. Nat. Prod., 2008, 71, 1970–1972. - 98 Y. Wang, A. Nakajima, K. Hosokawa, A. B. Soliev, I. Osaka, R. Arakawa and K. Enomoto, *Biosci. Biotechnol. Biochem.*, 2012, **76**, 1229–1232. - 99 H. He, W. D. Ding, V. S. Bernan, A. D. Richardson, C. M. Ireland, M. Greenstein, G. A. Ellestad and G. T. Carter, *J. Am. Chem. Soc.*, 2001, **123**, 5362–5363. - 100 C. M. Woo, N. E. Beizer, J. E. Janso and S. B. Herzon, *J. Am. Chem. Soc.*, 2012, **134**, 15285–15288. - 101 Y. Hu and J. B. MacMillan, *Nat. Prod. Commun.*, 2012, 7, 211–214. - 102 L.-L. Liu, Y. Xu, Z. Han, Y.-X. Li, L. Lu, P.-Y. Lai, J.-L. Zhong, X.-R. Guo, X.-X. Zhang and P.-Y. Qian, *Mar. Drugs*, 2012, 10, 2571–2583. - 103 M. Igarashi, R. Utsumi and T. Watanabe, *Jpn. Kokai Tokkyo Koho*, 2011, JP 2011201843, A 20111013. - 104 W. Xin, X. Ye, S. Yu, X.-Y. Lian and Z. Zhang, *Mar. Drugs*, 2012, **10**, 2388–2402. - 105 P. Fu, Y. Zhuang, Y. Wang, P. Liu, X. Qi, K. Gu, D. Zhang and W. Zhu, *Org. Lett.*, 2012, **14**, 6194–6197. - 106 T. Yamada, K. Minoura and A. Numata, *Tetrahedron Lett.*, 2002, **43**, 1721–1724. - 107 T. Yamada, K. Minoura and A. Numata, *Tennen Yuki Kagobutsu Toronkai Koen Yoshishu*, 2001, **43**, 455–460. - 108 T. Yamada, T. Kikuchi, R. Tanaka and A. Numata, Tetrahedron Lett., 2012, 53, 2842–2846. - 109 H. Huang, T. Yang, X. Ren, J. Liu, Y. Song, A. Sun, J. Ma, B. Wang, Y. Zhang, C. Huang, C. Zhang and J. Ju, *J. Nat. Prod.*, 2012, 75, 202–208. - 110 Y. Hu,
E. D. Martinez and J. B. MacMillan, *J. Nat. Prod.*, 2012, 75, 1759–1764. - 111 N. A. Mahyudin, J. W. Blunt, A. L. J. Cole and M. H. G. Munro, *J. Biomed. Biotechnol.*, 2012, 894708, DOI: 10.1155/2012/894708. - 112 T. Hosoya, T. Hirokawa, M. Takagi and K. Shin-ya, *J. Nat. Prod.*, 2012, **75**, 285–289. - 113 S. Imai, K. Furihata, Y. Hayakawa, T. Noguchi and H. Seto, *J. Antibiot.*, 1989, **42**, 1196–1198. - 114 T. P. Kondratyuk, E.-J. Park, R. Yu, R. B. van Breemen, R. N. Asolkar, B. T. Murphy, W. Fenical and J. M. Pezzuto, *Mar. Drugs*, 2012, **10**, 451–464. - 115 U. R. Abdelmohsen, G. Zhang, A. Philippe, W. Schmitz, S. M. Pimentel-Elardo, B. Hertlein- Amslinger, U. Hentschel and G. Bringmann, *Tetrahedron Lett.*, 2012, 53, 23–29. - 116 R. Raju, A. M. Piggott, Z. Khalil, P. V. Bernhardt and R. J. Capon, *Tetrahedron Lett.*, 2012, 53, 1063–1065. - 117 Z. Lin, M. Flores, I. Forteza, N. M. Henriksen, G. P. Concepcion, G. Rosenberg, M. G. Haygood, B. M. Olivera, A. R. Light, T. E. Cheatham III and E. W. Schmidt, J. Nat. Prod., 2012, 75, 644–649. - 118 D.-G. Kim, K. Moon, S.-H. Kim, S.-H. Park, S. Park, S. K. Lee, K.-B. Oh, J. Shin and D.-C. Oh, *J. Nat. Prod.*, 2012, 75, 959–967. - 119 W. Zhang, Z. Liu, S. Li, T. Yang, Q. Zhang, L. Ma, X. Tian, H. Zhang, C. Huang, S. Zhang, J. Ju, Y. Shen and C. Zhang, *Org. Lett.*, 2012, 14, 3364–3367. - 120 B. Ohlendorf, D. Schulz, A. Erhard, K. Nagel and J. F. Imhoff, *J. Nat. Prod.*, 2012, 75, 1400–1404. - 121 Z. Xie, B. Liu, H. Wang, S. Yang, H. Zhang, Y. Wang, N. Ji, S. Qin and H. Laatsch, *Mar. Drugs*, 2012, **10**, 551–558. - 122 G. Sakoulas, S.-J. Nam, S. Loesgen, W. Fenical, P. R. Jensen, V. Nizet and M. Hensler, *PLoS One*, 2012, 7, e29439. - 123 L. Kaysser, P. Bernhardt, S.-J. Nam, S. Loesgen, J. G. Ruby, P. Skewes-Cox, P. R. Jensen, W. Fenical and B. S. Moore, *J. Am. Chem. Soc.*, 2012, 134, 11988–11991. - 124 L. Ding, J. Münch, H. Goerls, A. Maier, H.-H. Fiebig, W.-H. Lin and C. Hertweck, *Bioorg. Med. Chem. Lett.*, 2010, **20**, 6685–6687. - 125 Q. Zhang, A. Mándi, S. Li, Y. Chen, W. Zhang, X. Tian, H. Zhang, H. Li, W. Zhang, S. Zhang, J. Ju, T. Kurtán and C. Zhang, Eur. J. Org. Chem., 2012, 27, 5256–5262. - 126 H. Li, Q. Zhang, S. Li, Y. Zhu, G. Zhang, H. Zhang, X. Tian, S. Zhang, J. Ju and C. Zhang, J. Am. Chem. Soc., 2012, 134, 8996–9005. - 127 T. Amagata, J. Xiao, Y.-P. Chen, N. Holsopple, A. G. Oliver, T. Gokey, A. B. Guliaev and K. Minoura, *J. Nat. Prod.*, 2012, 75, 2193–2199. - 128 J. Rohr and A. Zeeck, J. Antibiot., 1987, 40, 459-467. - 129 M. Sezaki, S. Kondo, K. Maeda, H. Umezawa and M. Ohno, *Tetrahedron*, 1970, **26**, 5171–5190. - 130 K. Supong, C. Thawai, K. Suwanborirux, W. Choowong, S. Supothina and P. Pittayakhajonwut, *Phytochem. Lett.*, 2012, 5, 651–656. - 131 E. Pan, M. Jamison, M. Yousufuddin and J. B. MacMillan, *Org. Lett.*, 2012, **14**, 2390–2393. - 132 Y. Igarashi, S. Miura, T. Fujita and T. Furumai, *J. Antibiot.*, 2006, **59**, 193–195. - 133 Y. Igarashi, D. Asano, K. Furihata, N. Oku, S. Miyanaga, H. Sakurai and I. Saiki, *Tetrahedron Lett.*, 2012, 53, 654–656. - 134 M.-J. Xu, X.-J. Liu, Y.-L. Zhao, D. Liu, Z.-H. Xu, X.-M. Lang, P. Ao, W.-H. Lin, S.-L. Yang, Z.-G. Zhang and J. Xu, *Mar. Drugs*, 2012, 10, 639–654. - 135 N. Kawamura, E. Tsuji, Y. Watanabe, K. Tsuchihashi and T. Takako, *Jpn. Kokai Tokkyo Koho*, 2000, JP 2000072766 A 20000307. - 136 E. H. Andrianasolo, L. Haramaty, R. Rosario-Passapera, C. Vetriani, P. Falkowski, E. White and R. Lutz, *Mar. Drugs*, 2012, 10, 2300–2311. - 137 L. Gram, J. Melchiorsen and J. B. Bruhn, *Mar. Biotechnol.*, 2010, 12, 439–451. - 138 A. Nielsen, M. Mansson, M. Wietz, A. N. Varming, R. K. Phipps, T. O. Larsen, L. Gram and H. Ingmer, *Mar. Drugs*, 2012, **10**, 2584–2595. - 139 J. M. Gauglitz, H. Zhou and A. Butler, *J. Inorg. Biochem.*, 2012, **107**, 90–95. - 140 G. G. Harrigan, B. L. Harrigan and B. S. Davidson, *Tetrahedron*, 1997, **53**, 1577–1582. - 141 Y. Kawabata, K. Mochida, M. Nishishima and M. Sugi, *Jpn. Kokai Tokkyo Koho*, 2000, JP 2000245497 A 20000912. - 142 R. Raju, K. Kawabata, M. Nishijima and W. G. L. Aalbersberg, *Tetrahedron Lett.*, 2012, 53, 6905–6907. - 143 Z. Han, Y. Xu, O. McConnell, L. Liu, Y. Li, S. Qi, X. Huang and P. Qian, *Mar. Drugs*, 2012, **10**, 668–676. - 144 P. Fu, C. Yang, Y. Wang, P. Liu, Y. Ma, L. Xu, M. Su, K. Hong and W. Zhu, Org. Lett., 2012, 14, 2422–2425. - 145 L. Ding, A. Maier, H.-H. Fiebig, W.-H. Lin, G. Peschel and C. Hertweck, *J. Nat. Prod.*, 2012, 75, 2223–2227. - 146 Z. Chen, Y. Song, Y. Chen, H. Huang, W. Zhang and J. Ju, *J. Nat. Prod.*, 2012, 75, 1215–1219. - 147 E. Julianti, H. Oh, H.-S. Lee, D.-C. Oh, K.-B. Oh and J. Shin, *Tetrahedron Lett.*, 2012, **53**, 2885–2886. - 148 K. Banert, Tetrahedron Lett., 2012, 53, 6443-6445. - 149 F.-Z. Wang, Z. Huang, X.-F. Shi, Y.-C. Chen, W.-M. Zhang, X.-P. Tian, J. Li and S. Zhang, *Bioorg. Med. Chem. Lett.*, 2012, 22, 7265–7267. - 150 X. Xu, S. Zhao, J. Wei, N. Fang, L. Yin and J. Sun, *Chem. Nat. Compd.*, 2012, **47**, 893–895. - 151 C.-J. Zheng, C.-L. Shao, Z.-Y. Guo, J.-F. Chen, D.-S. Deng, K.-L. Yang, Y.-Y. Chen, X.-M. Fu, Z.-G. She, Y.-C. Lin and C.-Y. Wang, J. Nat. Prod., 2012, 75, 189–197. - 152 J. J. Irwin and B. K. Shoichet, *J. Chem. Inf. Model.*, 2005, **45**, 177–182. - 153 C. Hopmann, M. A. Knauf, K. Weithmann and J. Wink, *PCT Int. Appl.*, 2001, WO 2001044264 A2 20010621. - 154 G. Bringmann, G. Lang, S. Steffens, E. Günther and K. Schaumann, *Phytochemistry*, 2003, **63**, 437–443. - 155 O. I. Zhuravleva, S. S. Afiyatullov, V. A. Denisenko, S. P. Ermakova, N. N. Slinkina, P. S. Dmitrenok and N. Y. Kim, *Phytochemistry*, 2012, 80, 123–131. - 156 D. Zhang, M. Satake, S. Fukuzawa, K. Sugahara, A. Niitsu, T. Shirai and K. Tachibana, *J. Nat. Med.*, 2012, **66**, 222–226. - 157 S. S. Afiyatullov, O. I. Zhuravleva, E. L. Chaikina and M. M. Anisimov, Chem. Nat. Compd., 2012, 48, 95–98. - 158 S. S. Afiyatullov, O. I. Zhuravleva, A. S. Antonov, A. I. Kalinovsky, M. V. Pivkin, E. S. Menchinskaya and D. L. Aminin, *Nat. Prod. Commun.*, 2012, 7, 497–500. - 159 Y. Wang, Z.-L. Li, J. Bai, L.-M. Zhang, X. Wu, L. Zhang, Y.-H. Pei, Y.-K. Jing and H.-M. Hua, *Chem. Biodiversity*, 2012, **9**, 385–393. - 160 F. He, Y.-L. Sun, K.-S. Liu, X.-Y. Zhang, P.-Y. Qian, Y.-F. Wang and S.-H. Qi, *J. Antibiot.*, 2012, **65**, 109–111. - 161 X.-J. Li, Q. Zhang, A.-L. Zhang and J.-M. Gao, J. Agric. Food Chem., 2012, 60, 3424–3431. - 162 R. P. Ubillas, Ph.D. thesis, University of Missouri-Columbia, 1990, pp. 61–74. - 163 M. Kitano, T. Yamada, T. Amagata, K. Minoura, R. Tanaka and A. Numata, *Tetrahedron Lett.*, 2012, 53, 4192–4194. - 164 Q. X. Wu, X. J. Jin, M. Draskovic, M. S. Crews, K. Tenney, F. A. Valeriote, X. J. Yao and P. Crews, *Phytochem. Lett.*, 2012, 5, 114–117. - 165 D. Li, Y. Xu, C.-L. Shao, R.-Y. Yang, C.-J. Zheng, Y.-Y. Chen, X.-M. Fu, P.-Y. Qian, Z.-G. She, N. J. de Voogd and C.-Y. Wang, *Mar. Drugs*, 2012, 10, 234–241. - 166 M. W. Sumarah, J. R. Kesting, D. Soerensen and J. D. Miller, *Phytochemistry*, 2011, 72, 1833–1837. - 167 J. D. Miller, G. W. Adams and M. Sumarah, *Can. Pat. Appl.*, 2012, CA 2766412 A1 20120728. - 168 L.-L. Sun, C.-L. Shao, J.-F. Chen, Z.-Y. Guo, X.-M. Fu, M. Chen, Y.-Y. Chen, R. Li, N. J. de Voogd, Z.-G. She, Y.-C. Lin and C.-Y. Wang, *Bioorg. Med. Chem. Lett.*, 2012, 22, 1326–1329. - 169 S. A. Neff, S. U. Lee, Y. Asami, J. S. Ahn, H. Oh, J. Baltrusaitis, J. B. Gloer and D. T. Wicklow, *J. Nat. Prod.*, 2012, 75, 464–472. - 170 H. Huang, F. Wang, M. Luo, Y. Chen, Y. Song, W. Zhang, S. Zhang and J. Ju, *J. Nat. Prod.*, 2012, 75, 1346–1352. - 171 S. Liu, C. Lu, J. Huang and Y. Shen, *Rec. Nat. Prod.*, 2012, **6**, 334–338. - 172 S.-S. Liu, B.-B. Zhao, C.-H. Lu, J.-J. Huang and Y.-M. Shen, *Nat. Prod. Commun.*, 2012, 7, 1057–1062. - 173 R. Wang, T.-M. Liu, M.-H. Shen, M.-Q. Yang, Q.-Y. Feng, X.-M. Tang and X.-M. Li, *Molecules*, 2012, 17, 13175–13182. - 174 D. Zhang, S. Fukuzawa, M. Satake, X. Li, T. Kuranaga, A. Niitsu, K. Yoshizawa and K. Tachibana, *Nat. Prod. Commun.*, 2012, 7, 1411–1414. - 175 T. Yang, Z. Lu, L. Meng, S. Wei, K. Hong, W. Zhu and C. Huang, *Bioorg. Med. Chem. Lett.*, 2012, **22**, 579–585. - 176 O. I. Zhuravleva, S. S. Afiyatullov, O. S. Vishchuk, V. A. Denisenko, N. N. Slinkina and O. F. Smetanina, *Arch. Pharmacal Res.*, 2012, **35**, 1757–1762. - 177 H. Guo, T. Feng, Z.-H. Li and J.-K. Liu, *Nat. Prod. Bioprospect.*, 2012, 2, 170–173. - 178 H. N. Abramson and H. C. Wormser, *J. Heterocycl. Chem.*, 1981, **18**, 363–366. - 179 F. M. Dean, A. Robertson, J. C. Roberts and K. B. Raper, *Nature*, 1953, 172, 344. - 180 W. E. Doering, R. J. Dubos, D. S. Noyce and R. Dreyfus, *J. Am. Chem. Soc.*, 1946, **68**, 725–726. - 181 N. Kawahara, K. Nozawa, S. Nakajima, K. Kawai and M. Yamazaki, *J. Chem. Soc., Perkin Trans.* 1, 1988, 2611–2614. - 182 S. Sureram, S. Wiyakrutta, N. Ngamrojanavanich, C. Mahidol, S. Ruchirawat and P. Kittakoop, *Planta Med.*, 2012, **78**, 582–588. - 183 G.-Y. Li, T. Yang, Y.-G. Luo, X.-Z. Chen, D.-M. Fang and G.-L. Zhang, *Org. Lett.*, 2009, **11**, 3714–3717. 184 K. Ito, A. Yamane, T. Hamasaki and Y. Hatsuda, *Agric. Biol. Chem.*, 1976, **40**, 2099–2100. - 185 P. S. Steyn, R. Vleggaar, P. L. Wessels, R. J. Cole and D. B. Scott, J. Chem. Soc., Perkin Trans. 1, 1979, 451–459. - 186 F.-P. Miao, X.-D. Li, X.-H. Liu, R. H. Cichewicz and N.-Y. Ji, *Mar. Drugs*, 2012, **10**, 131–139. - 187 X.-H. Liu, F.-P. Miao, X.-D. Li, X.-L. Yin and N.-Y. Ji, *Nat. Prod. Commun.*, 2012, 7, 819–820. - 188 Y. Zhang, X.-M. Li and B.-G. Wang, *Biosci., Biotechnol., Biochem.*, 2012, **76**, 1774–1776. - 189 C. Shao, Z. She, Z. Guo, H. Peng, X. Cai, S. Zhou, Y. Gu and Y. Lin, *Magn. Reson. Chem.*, 2007, **45**, 434–438. - 190 D. G. I. Kingston, P. N. Chen and J. R. Vercellotti, *Phytochemistry*, 1976, **15**, 1037–1039. - 191 F. Song, X. Liu, H. Guo, B. Ren, C. Chen, A. M. Piggott, K. Yu, H. Gao, Q. Wang, M. Liu, X. Liu, H. Dai, L. Zhang and R. J. Capon, *Org.
Lett.*, 2012, 14, 4770–4773. - 192 U. W. Hawas, A. A. El-Beih and A. M. El-Halawany, *Arch. Pharmacal Res.*, 2012, 35, 1749–1756. - 193 H.-F. Sun, X.-M. Li, L. Meng, C.-M. Cui, S.-S. Gao, C.-S. Li, C.-G. Huang and B.-G. Wang, J. Nat. Prod., 2012, 75, 148– 152. - 194 J. W. Dorner, R. J. Cole, J. P. Springer, R. H. Cox, H. Cutler and D. T. Wicklow, *Phytochemistry*, 1980, **19**, 1157–1161. - 195 G. A. Ellestad, R. H. Evans Jr. and M. P. Kunstmann, Tetrahedron Lett., 1971, 497–500. - 196 H. M. T. B. Herath, W. H. M. W. Herath, P. Carvalho, S. I. Khan, B. L. Tekwani, S. O. Duke, M. Tomaso-Peterson and N. P. D. Nanayakkara, *J. Nat. Prod.*, 2009, 72, 2091–2097. - 197 T. A. M. Gulder, H. Hong, J. Correa, E. Egereva, J. Wiese, J. F. Imhoff and H. Gross, *Mar. Drugs*, 2012, **10**, 2912–2935. - 198 H. Yamazaki, H. Rotinsulu, T. Kaneko, K. Murakami, H. Fujiwara, K. Ukai and M. Namikoshi, *Mar. Drugs*, 2012, **10**, 2691–2697. - 199 M. P. Kuntsmann and L. A. Mitscher, *J. Org. Chem.*, 1966, 31, 2920–2925. - 200 E. M. K. Wijeratne, T. J. Turbyville, A. Fritz, L. Whitesell and A. A. L. Gunatilaka, *Bioorg. Med. Chem.*, 2006, **14**, 7917–7923. - 201 M.-Y. Kim, J. H. Sohn, J.-H. Jang, J. S. Ahn and H. Oh, *J. Antibiot.*, 2012, **65**, 161–164. - 202 J. L. Reino, R. M. Duran-Patron, M. Daoubi, I. G. Collado and R. Hernandez-Galan, *J. Org. Chem.*, 2006, 71, 562–565. - 203 J. Moraga, C. Pinedo, R. Durán-Patrón, I. G. Collado and R. Hernández-Galán, *Tetrahedron*, 2011, 67, 417–420. - 204 J. Moraga, C. Pinedo, R. Durán-Patrón, I. G. Collado and R. Hernández-Galán, *Tetrahedron*, 2011, **67**, 8583. - 205 M. Yasuhide, T. Yamada, A. Numata and R. Tanaka, *J. Antibiot.*, 2008, **61**, 615–622. - 206 T. Yamada, M. Yasuhide, H. Shigeta, A. Numata and R. Tanaka, *J. Antibiot.*, 2009, **62**, 353–357. - 207 Y. Muroga, T. Yamada, A. Numata and R. Tanaka, *Tetrahedron*, 2009, **65**, 7580–7586. - 208 T. Yamada, Y. Muroga, M. Jinno, T. Kajimoto, Y. Usami, A. Numata and R. Tanaka, *Bioorg. Med. Chem.*, 2011, 19, 4106–4113. - 209 T. Yamada, M. Jinno, T. Kikuchi, T. Kajimoto, A. Numata and R. Tanaka, *J. Antibiot.*, 2012, **65**, 413–417. - 210 W. Lan, H. Li and Y. Xie, Faming Zhuanli Shenqing, 2011, CN 102267884 A 20111207. - 211 H.-J. Li, Y.-L. Xie, Z.-L. Xie, Y. Chen, C.-K. Lam and W.-J. Lan, *Mar. Drugs*, 2012, **10**, 627–638. - 212 M. F. Elsebai, L. Natesan, S. Kehraus, I. E. Mohamed, G. Schnakenburg, F. Sasse, S. Shaaban, M. Gütschow and G. M. König, *J. Nat. Prod.*, 2011, 74, 2282–2285. - 213 M. F. Elsebai, M. Nazir, S. Kehraus, E. Egereva, K. N. Ioset, L. Marcourt, D. Jeannerat, M. Gütschow, J.-L. Wolfender and G. M. König, *Eur. J. Org. Chem.*, 2012, 31, 6197– 6203. - 214 K. Tarman, G. J. Palm, A. Porzel, K. Merzweiler, N. Arnold, L. A. Wessjohann, M. Unterseher and U. Lindequist, *Phytochem. Lett.*, 2012, 5, 83–86. - 215 G. K. Poch and J. B. Gloer, J. Nat. Prod., 1989, 52, 257-260. - 216 P. R. Krishna, V. S. Mallula and P. V. A. Kumar, *Tetrahedron Lett.*, 2012, **53**, 4997–4999. - 217 A. Pinheiro, T. Dethoup, J. Bessa, A. M. S. Silva and A. Kijjoa, *Phytochem. Lett.*, 2012, 5, 68–70. - 218 J. Kimura, M. Furui, M. Kanda and M. Sugiyama, *Jpn. Kokai Tokkyo Koho*, 2002, JP 2002047281 20020212. - 219 J. Peng, J. Jiao, J. Li, W. Wang, Q. Gu, T. Zhu and D. Li, *Bioorg. Med. Chem. Lett.*, 2012, 22, 3188–3190. - 220 H. Fujimoto, T. Fujimaki, E. Okuyama and M. Yamazaki, *Chem. Pharm. Bull.*, 1999, 47, 1426–1432. - 221 H. Nagasawa, A. Isogai, A. Suzuki and S. Tamura, *Tetrahedron Lett.*, 1976, 1601–1604. - 222 F.-Y. Du, X.-M. Li, C.-S. Li, Z. Shang and B.-G. Wang, *Bioorg. Med. Chem. Lett.*, 2012, **22**, 4650–4653. - 223 A. P. Almeida, T. Dethoup, N. Singburaudom, R. Lima, M. H. Vasconcelos, M. Pinto and A. Kijjoa, *J. Nat. Pharm.*, 2010, 1, 25–29. - 224 N. M. Gomes, T. Dethoup, N. Singburaudom, L. Gales, A. M. S. Silva and A. Kijjoa, *Phytochem. Lett.*, 2012, 5, 717–720. - 225 L. Sun, D. Li, M. Tao, Y. Chen, F. Dan and W. Zhang, *Mar. Drugs*, 2012, **10**, 539–550. - 226 X. Xia, J. Zhang, Y. Zhang, F. Wei, X. Liu, A. Jia, C. Liu, W. Li, Z. She and Y. Lin, *Bioorg. Med. Chem. Lett.*, 2012, 22, 3017–3019. - 227 L. Sun, D.-L. Li, M.-H. Tao, F.-J. Dan and W.-M. Zhang, *Helv. Chim. Acta*, 2012, **95**, 157–162. - 228 S. Takahashi, Y. Itoh, M. Takeuchi, K. Furuya, K. Kodama, A. Naito, T. Haneishi, S. Sato and C. Tamura, *J. Antibiot.*, 1983, 36, 1418–1420. - 229 O. F. Smetanina, A. N. Yurchenko, S. S. Afiyatullov, A. I. Kalinovsky, M. A. Pushilin, Y. V. Khudyakova, N. N. Slinkina, S. P. Ermakova and E. A. Yurchenko, *Phytochem. Lett.*, 2012, 5, 165–169. - 230 K.-L. Yang, M.-Y. Wei, C.-L. Shao, X.-M. Fu, Z.-Y. Guo, R.-F. Xu, C.-J. Zheng, Z.-G. She, Y.-C. Lin and C.-Y. Wang, *J. Nat. Prod.*, 2012, 75, 935–941. - 231 F. Song, B. Ren, K. Yu, C. Chen, H. Guo, N. Yang, H. Gao, X. Liu, M. Liu, Y. Tong, H. Dai, H. Bai, J. Wang and L. Zhang, *Mar. Drugs*, 2012, 10, 1297–1306. Review - 232 T. Kawahara, M. Takagi and K. Shin-ya, J. Antibiot., 2012, **65**, 45–47. - 233 N. Khamthong, V. Rukachaisirikul, S. Phongpaichit, S. Preedanon and J. Sakayaroj, Tetrahedron, 2012, 68, - 234 L. Chen, K. Huang, P. Zhong, X. Hu, Z.-X. Fang, J. Wu and Q.-Q. Zhang, Heterocycles, 2012, 85, 413-419. - 235 S.-S. Gao, Z. Shang, X.-M. Li, C.-S. Li, C.-M. Cui and B.-G. Wang, Biosci., Biotechnol., Biochem., 2012, 76, 358- - 236 J. Wang, P. Liu, Y. Wang, H. Wang, J. Li, Y. Zhuang and W. Zhu, Chin. J. Chem., 2012, 30, 1236-1242. - 237 J. Wang, P. Liu, Y. Wang, H. Wang, J. Li, Y. Zhuang and W. Zhu, Chin. J. Chem., 2012, 30, 2880. - 238 G. Wu, H. Ma, T. Zhu, J. Li, Q. Gu and D. Li, Tetrahedron, 2012, 68, 9745-9749. - 239 T. Sassa, H. Kachi and M. Nukina, J. Antibiot., 1985, 38, 439-441. - 240 Y.-L. Sun, F. He, K.-S. Liu, X.-Y. Zhang, J. Bao, Y.-F. Wang, X.-H. Nong, X.-Y. Xu and S.-H. Qi, *Planta Med.*, 2012, 78, 1957-1961. - 241 S.-W. Yang, T.-M. Chan, J. Terracciano, R. Patel, M. Patel, V. Gullo and M. Chu, J. Antibiot., 2006, 59, 720-723. - 242 Y. Myobatake, T. Takeuchi, K. Kuramochi, I. Kuriyama, T. Ishido, K. Hirano, F. Sugawara, H. Yoshida and Y. Mizushina, J. Nat. Prod., 2012, 75, 135-141. - 243 A. A. Stierle, D. B. Stierle and T. Girtsman, J. Nat. Prod., 2012, 75, 344-350. - 244 T. Takeuchi, Y. Mizushina, S. Takaichi, N. Inoue, K. Kuramochi, S. Shimura, Y. Myobatake, Y. Katayama, K. Takemoto, S. Endo, S. Kamisuki and F. Sugawara, Org. Lett., 2012, 14, 4303-4305. - 245 S.-M. Fang, C.-B. Cui, C.-W. Li, C.-J. Wu, Z.-J. Zhang, L. Li, X.-J. Huang and W.-C. Ye, Mar. Drugs, 2012, 10, 1266-1287. - 246 X. Lin, X. Zhou, F. Wang, K. Liu, B. Yang, X. Yang, Y. Peng, J. Liu, Z. Ren and Y. Liu, Mar. Drugs, 2012, 10, 106-115. - 247 L.-Y. Ma, W.-Z. Liu, L. Shen, Y.-L. Huang, X.-G. Rong, Y.-Y. Xu and X.-D. Gao, Tetrahedron, 2012, 68, 2276-2282. - 248 L.-Y. Ma, W.-Z. Liu, L. Shen, Y.-L. Huang, X.-G. Rong, Y.-Y. Xu and X.-D. Gao, Tetrahedron, 2013, 69, 8316. - 249 J. He, U. Lion, I. Sattler, F. A. Gollmick, S. Grabley, J. Cai, M. Meiners, H. Schünke, K. Schaumann, U. Dechert and M. Krohn, J. Nat. Prod., 2005, 68, 1397-1399. - 250 H. Hayashi, T. Nakatani, Y. Inoue, S. Teraguchi, M. Nakayama and H. Nozaki, Tennen Yuki Kagobutsu Toronkai Koen Yoshishu, 1996, 38, 271-276. - 251 T. Liu, L. Zhang, Z. Li, Y. Wang, L. Tian, Y. Pei and H. Hua, Chem. Nat. Compd., 2012, 48, 771-773. - 252 F. A. Macias, R. M. Varela, A. M. Simonet, H. G. Cutler, S. J. Cutler, S. A. Ross, D. C. Dunbar, F. M. Dugan and R. A. Hill, Tetrahedron Lett., 2000, 41, 2683-2686. - 253 Y. Li, D. Ye, Z. Shao, C. Cui and Y. Che, Mar. Drugs, 2012, 10, 497-508. - 254 G. W. Kirby, D. J. Robins, M. A. Sefton and R. R. Talekar, J. Chem. Soc., Perkin Trans. 1, 1980, 119-121. - 255 G. Lowe, A. Taylor and L. C. Vining, J. Chem. Soc. C, 1966, 1799-1803. - 256 J. A. Mills, Aust. J. Exp. Biol. Med., 1946, 24, 136-138. - 257 G. W. Kirby, G. V. Rao and D. J. Robins, J. Chem. Soc., Perkin Trans. 1, 1988, 301-304. - 258 Y. Sun, K. Takada, Y. Takemoto, M. Yoshida, Y. Nogi, S. Okada and S. Matsunaga, J. Nat. Prod., 2012, 75, 111-114. - 259 P. Zhuang, X.-X. Tang, Z.-W. Yi, Y.-K. Qiu and Z. Wu, J. Asian Nat. Prod. Res., 2012, 14, 197-203. - 260 CAS 913690-73-0, SciFinder Database, accessed 26 September 2013. - 261 T. Kawahara, M. Takagi and K. Shin-ya, J. Antibiot., 2012, 65, 147-150. - 262 T. Haishi, K. Furuya, M. Nakajima, T. Kinoshita, T. Kagazaki and Y. Sakaida, Jpn. Kokai Tokkyo Koho, 1989, JP 01290667 A 19891122. - 263 Z. Chen, Z. Zheng, H. Huang, Y. Song, X. Zhang, J. Ma, B. Wang, C. Zhang and J. Ju, Bioorg. Med. Chem. Lett., 2012, 22, 3332-3335. - 264 F. He, Z. Liu, J. Yang, P. Fu, J. Peng, W.-M. Zhu and S.-H. Qi, Tetrahedron Lett., 2012, 53, 2280-2283. - 265 H. Gao, L. Zhang, T. Zhu, Q. Gu and D. Li, Chem. Pharm. Bull., 2012, 60, 1458-1460. - 266 L. Chen, T. Zhu, Y. Ding, I. A. Khan, Q. Gu and D. Li, Tetrahedron Lett., 2012, 53, 325-328. - 267 K. Krohn, Zia-Ullah, H. Hussain, U. Flörke, B. Schulz, S. Draeger, G. Pescitelli, P. Salvadori, S. Antus and T. Kurtán, Chirality, 2007, 19, 464-470. - 268 H. Oh, D. C. Swenson, J. B. Gloer and C. A. Shearer, J. Nat. Prod., 2003, 66, 73-79. - 269 Y. Lin, X. Wu, Z. Deng, J. Wang, S. Zhou, L. L. P. Vrijmoed and E. B. G. Jones, Phytochemistry, 2002, 59, 469-471. - 270 G. F. Zhang, W. B. Han, J. T. Cui, S. W. Ng, Z. K. Guo, R. X. Tan and H. M. Ge, *Planta Med.*, 2012, 78, 76–78. - 271 E. L. Kim, J. L. Li, B. Xiao, J. Hong, E. S. Yoo, W. D. Yoon and J. H. Jung, Chem. Pharm. Bull., 2012, 60, 1590-1593. - 272 E. L. Kim, J. L. Li, H. T. Dang, J. Hong, C.-O. Lee, D.-K. Kim, W. D. Yoon, E. Kim, Y. Liu and J. H. Jung, Bioorg. Med. Chem. Lett., 2012, 22, 3126-3129. - 273 E. L. Kim, J. L. Li, H. T. Dang, J. Hong, C.-O. Lee, D.-K. Kim, W. D. Yoon, E. Kim, Y. Liu and J. H. Jung, Bioorg. Med. Chem. Lett., 2012, 22, 5752. - 274 C. Almeida, Y. Hemberger, S. M. Schmitt, S. Bouhired, L. Natesan, S. Kehraus, K. Dimas, M. Gütschow, G. Bringmann and G. M. König, Chem.-Eur. J., 2012, 18, 8827-8834. - 275 N. Narasimhachari
and K. S. Gopalkrishnan, J. Antibiot., 1974, 27, 283-287. - 276 W.-L. Geng, X.-Y. Wang, T. Kurtán, A. Mándi, H. Tang, B. Schulz, P. Sun and W. Zhang, J. Nat. Prod., 2012, 75, 1828-1832. - 277 N. Khamthong, V. Rukachaisirikul, K. Tadpetch, Kaewpet, S. Phongpaichit, S. Preedanon and J. Sakayaroj, Arch. Pharmacal Res., 2012, 35, 461-468. - 278 W.-J. Lan, Y. Zhao, Z.-L. Xie, L.-Z. Liang, W.-Y. Shao, L.-P. Zhu, D.-P. Yang, X.-F. Zhu and H.-J. Li, Nat. Prod. Commun., 2012, 7, 1337-1340. - 279 M. Ishino, K. Kinoshita, K. Takahashi, T. Sugita, M. Shiro, K. Hasegawa and K. Koyama, *Tetrahedron*, 2012, 68, 8572– 8576. - 280 V. Rukachaisirikul, A. Rodglin, Y. Sukpondma, S. Phongpaichit, J. Buatong and J. Sakayaroj, *J. Nat. Prod.*, 2012, 75, 853–858. - 281 H. Gao, W. Liu, T. Zhu, X. Mo, A. Mándi, T. Kurtán, J. Li, J. Ai, Q. Gu and D. Li, *Org. Biomol. Chem.*, 2012, 10, 9501–9506. - 282 H. Wang, Z. Lu, H.-J. Qu, P. Liu, C. Miao, T. Zhu, J. Li, K. Hong and W. Zhu, Arch. Pharmacal Res., 2012, 35, 1387–1392. - 283 S. Li, M. Wei, G. Chen and Y. Lin, *Chem. Nat. Compd.*, 2012, **48**, 371–373. - 284 S. Cai, X. Kong, W. Wang, H. Zhou, T. Zhu, D. Li and Q. Gu, *Tetrahedron Lett.*, 2012, 53, 2615–2617. - 285 Y. Shen, J. Zou, D. Xie, H. Ge, X. Cao and J. Dai, *Chem. Pharm. Bull.*, 2012, **60**, 1437–1441. - 286 B. K. Joshi, J. B. Gloer and D. T. Wicklow, *J. Nat. Prod.*, 1999, **62**, 730–733. - 287 M. Isaka, P. Berkaew, K. Intereya, S. Komwijit and T. Sathitkunanon, *Tetrahedron*, 2007, **63**, 6855–6860. - 288 W. Ebrahim, J. Kjer, M. El Amrani, V. Wray, W. Lin, R. Ebel, D. Lai and P. Proksch, *Mar. Drugs*, 2012, **10**, 1081–1091. - 289 P. Chomcheon, S. Wiyakrutta, N. Sriubolmas, N. Ngamrojanavanich, S. Kengtong, C. Mahidol, S. Ruchirawat and P. Kittakoop, *Phytochemistry*, 2009, 70, 407–413. - 290 H. Chimura, T. Sawa, Y. Kumada, F. Nakamura, M. Matsuzaki, T. Takita, T. Takeuchi and H. Umezawa, *J. Antibiot.*, 1973, **26**, 618–620. - 291 W. Ebrahim, A. H. Aly, A. Mándi, F. Totzke, M. H. G. Kubbutat, V. Wray, W.-H. Lin, H. Dai, P. Proksch, T. Kurtán and A. Debbab, *Eur. J. Org. Chem.*, 2012, **18**, 3476–3484. - 292 L. Y. Zang, W. Wei, Y. Guo, T. Wang, R. H. Jiao, S. W. Ng, R. X. Tan and H. M. Ge, *J. Nat. Prod.*, 2012, 75, 1744– 1749. - 293 K. Shishido, T. Omodani and M. Shibuya, *J. Chem. Soc., Perkin Trans.* 1, 1991, 2285–2287. - 294 A. J. Aasen, C. H. G. Vogt and C. R. Enzell, *Acta Chem. Scand., Ser. B*, 1975, **29**, 51–55. - 295 M. N. Koltsa, G. N. Mironov, A. N. Aryku and P. F. Vlad, *Khim. Prir. Soedin.*, 1991, 43–50. - 296 H.-J. Yan, X.-M. Li, C.-S. Li and B.-G. Wang, *Helv. Chim. Acta*, 2012, **95**, 163–168. - 297 W.-L. Wang, Z.-Y. Lu, H.-W. Tao, T.-J. Zhu, Y.-C. Fang, Q.-Q. Gu and W.-M. Zhu, *J. Nat. Prod.*, 2007, **70**, 1558–1564. - 298 S. Inoue, J. Murata, N. Takamatsu, H. Nagano and Y. Kishi, *Yakugaku Zasshi*, 1977, **97**, 576–581. - 299 L. Ding, H.-M. Dahse and C. Hertweck, *J. Nat. Prod.*, 2012, 75, 617–621. - 300 Z. J. Vejdelek, V. Treka and M. Protiva, *J. Med. Pharm. Chem.*, 1961, 3, 427–40. - 301 J. D. Edwards, J. E. Page and M. Pianka, *J. Chem. Soc.*, 1964, 5200–5206. - 302 G. A. Zou, S. Mansur, S. C. Hu, H. A. Aisa and K. M. Shakhidoyatov, *Chem. Nat. Compd.*, 2012, 48, 635– 637 - 303 Z. Huang, J. Yang, Z. She and Y. Lin, *Nat. Prod. Res.*, 2012, **26**, 11–15. - 304 W.-L. Mei, B. Zheng, Y.-X. Zhao, H.-M. Zhong, X. L. W. Chen, Y.-B. Zeng, W.-H. Dong, J.-L. Huang, P. Proksch and H.-F. Dai, *Mar. Drugs*, 2012, **10**, 1993–2001. - 305 E. Molinar, N. Rios, C. Spadafora, E. A. Arnold, P. D. Coley, T. A. Kursar, W. H. Gerwick and L. Cubilla-Rios, *Tetrahedron Lett.*, 2012, 53, 919–922. - 306 W. H. Yuan, M. Liu, N. Jiang, Z. K. Guo, J. Ma, J. Zhang, Y. C. Song and X. R. Tan, Eur. J. Org. Chem., 2010, 33, 6348–6353. - 307 S. F. Brady, M. M. Wagenaar, M. P. Singh, J. E. Janso and J. Clardy, *Org. Lett.*, 2000, **2**, 4043–4046. - 308 J. Beau, N. Mahid, W. N. Burda, L. Harrington, L. N. Shaw, T. Mutka, D. E. Kyle, B. Barisic, A. van Olphen and B. J. Baker, *Mar. Drugs*, 2012, **10**, 762–774. - 309 D. Broadbent, R. P. Mabelis and H. Spencer, *Phytochemistry*, 1975, **14**, 2082–2083. - 310 Z. Shang, X.-M. Li, C.-S. Li and B.-G. Wang, *Chem. Biodiversity*, 2012, **9**, 1338–1348. - 311 C. G. Naik, P. Devi and E. Rodrigues, *U.S. Pat. Appl. Publ.*, 2005, US 20050143392, A1 20050630. - 312 P. Devi, C. Rodrigues, C. G. Naik and L. D'Souza, *Indian J. Microbiol.*, 2012, **52**, 617–623. - 313 J. F. Wang, Z. Y. Lu, P. P. Liu, Y. Wang, J. Li, K. Hong and W. M. Zhu, *Planta Med.*, 2012, **78**, 1861–1866. - 314 Y. Zhang, X.-M. Li, Z. Shang, C.-S. Li, N.-Y. Ji and B.-G. Wang, *J. Nat. Prod.*, 2012, 75, 1888–1895. - 315 T. Sassa, G. Niwa, H. Unno, M. Ikeda and Y. Miura, *Tetrahedron Lett.*, 1974, 3941–3942. - 316 K. Nonaka, T. Abe, M. Iwatsuki, M. Mori, T. Yamamoto, K. Shiomi, S. Omura and R. Masuma, *J. Antibiot.*, 2011, **64**, 769–774. - 317 K. Suzuki, K. Nozawa, S. Udagawa, S. Nakajima and K. Kawai, *Phytochemistry*, 1991, **30**, 2096–2098. - 318 H. Kawamura, T. Kaneko, H. Koshino, Y. Esumi, J. Uzawa and F. Sugawara, *Nat. Prod. Lett.*, 2000, **14**, 477–484. - 319 V. Rukachaisirikul, A. Rodglin, S. Phongpaichit, J. Buatong and J. Sakayaroj, *Phytochem. Lett.*, 2012, 5, 13–17. - 320 S. Klaiklay, V. Rukachaisirikul, K. Tadpetch, Y. Sukpondma, S. Phongpaichit, J. Buatong and J. Sakayaroj, *Tetrahedron*, 2012, **68**, 2299–2305. - 321 S. Klaiklay, V. Rukachaisirikul, S. Phongpaichit, C. Pakawatchai, S. Saithong, J. Buatong, S. Preedanon and J. Sakayaroj, *Phytochem. Lett.*, 2012, 5, 738–742. - 322 A. A. Freer, D. Gardner, D. Greatbanks, J. P. Poyser and G. A. Sim, *J. Chem. Soc.*, *Chem. Commun.*, 1982, 1160–1162. - 323 M. Izumikawa, T. Hosoya, M. Takagi and K. Shin-ya, *J. Antibiot.*, 2012, **65**, 41–43. - 324 X. Lu, L. Tian, G. Chen, Y. Xu, H.-F. Wang, Z.-Q. Li and Y.-H. Pei, *J. Asian Nat. Prod. Res.*, 2012, **14**, 647–651. - 325 S. Klaiklay, V. Rukachaisirikul, Y. Sukpondma, S. Phongpaichit, J. Buatong and B. Bussaban, Arch. Pharmacal Res., 2012, 35, 1127–1131. - 326 W. C. Tayone, S. Kanamaru, M. Honma, K. Tanaka, T. Nehira and M. Hashimoto, Biosci., Biotechnol., Biochem., 2011, 75, 2390-2393. - 327 Y.-X. Song, J. Wang, S.-W. Li, B. Cheng, L. Li, B. Chen, L. Liu, Y.-C. Lin and Y.-C. Gu, Planta Med., 2012, 78, 172-176. - 328 Y. Song, J. Wang, H. Huang, L. Ma, J. Wang, Y. Gu, L. Liu and Y. Lin, Mar. Drugs, 2012, 10, 340-348. - 329 L. A. McDonald, L. R. Barbieri, V. S. Bernan, J. Janso, P. Lassota and G. T. Carter, J. Nat. Prod., 2004, 67, 1565-1567. - 330 Y.-B. Zeng, H. Wang, W.-J. Zuo, B. Zheng, T. Yang, H.-F. Dai and W.-L. Mei, Mar. Drugs, 2012, 10, 598-603. - 331 M. El Amrani, A. Debbab, A. H. Aly, V. Wray, S. Dobretsov, W. E. G. Müller, W. Lin, D. Lai and P. Proksch, Tetrahedron Lett., 2012, 53, 6721-6724. - 332 S. P. Putri, H. Kinoshita, F. Ihara, Y. Igarashi and T. Nihira, J. Nat. Prod., 2009, 72, 544-1546. - 333 H. Choi, S. J. Mascuch, F. A. Villa, T. Byrum, M. E. Teasdale, J. E. Smith, L. B. Preskitt, D. C. Rowley, L. Gerwick and W. H. Gerwick, Chem. Biol., 2012, 19, 589-598. - 334 M. Morita, O. Ohno and K. Suenaga, Chem. Lett., 2012, 41, 165-167. - 335 T. Teruya, H. Sasaki, K. Kitamura, T. Nakayama and K. Suenaga, Org. Lett., 2009, 11, 2421-2424. - 336 M. Morita, O. Ohno, T. Teruya, T. Yamori, T. Inuzuka and K. Suenaga, Tetrahedron, 2012, 68, 5984-5990. - 337 J. H. Cardellina II, D. Dalietos, F. J. Marner, J. S. Mynderse and R. E. Moore, Phytochemistry, 1978, 17, 2091-2095. - 338 R. Montaser, V. J. Paul and H. Luesch, ChemBioChem, 2012, 13, 2676-2681. - 339 H. Choi, E. Mevers, T. Byrum, F. A. Valeriote and W. H. Gerwick, Eur. J. Org. Chem., 2012, 27, 5141-5150. - 340 J. Orjala and W. H. Gerwick, J. Nat. Prod., 1996, 59, 427-30. - 341 E. J. Kim, J. H. Lee, H. Choi, A. R. Pereira, Y. H. Ban, Y. J. Yoo, E. Kim, J. W. Park, D. H. Sherman, W. H. Gerwick and Y. J. Yoon, Org. Lett., 2012, 14, 5824-5827. - 342 M. J. Balunas, M. F. Grosso, F. A. Villa, N. Engene, K. L. McPhail, K. Tidgewell, L. M. Pineda, L. Gerwick, C. Spadafora, D. E. Kyle and W. H. Gerwick, Org. Lett., 2012, 14, 3878-3881. - 343 P. D. Boudreau, T. Byrum, W.-T. Liu, P. C. Dorrestein and W. H. Gerwick, J. Nat. Prod., 2012, 75, 1560-1570. - 344 K. L. Malloy, H. Choi, C. Fiorilla, F. A. Valeriote, T. Matainaho and W. H. Gerwick, Bioorg. Med. Chem. Lett., 2012, 22, 683-688. - 345 T. F. Molinski, K. A. Reynolds and B. I. Morinaka, J. Nat. Prod., 2012, 75, 425-431. - 346 A. R. Pereira, A. J. Kale, A. T. Fenley, T. Byrum, H. M. Debonsi, M. K. Gilson, F. A. Valeriote, B. S. Moore and W. H. Gerwick, ChemBioChem, 2012, 13, 810-817. - 347 J. K. Nunnery, N. Engene, T. Byrum, Z. Cao, S. V. Jabba, A. R. Pereira, T. Matainaho, T. F. Murray and W. H. Gerwick, J. Org. Chem., 2012, 77, 4198-4208. - 348 T. Inuzuka, Y. Yamamoto, K. Yamada and D. Uemura, Tetrahedron Lett., 2012, 53, 239-242. - 349 P. T. Holland, F. Shi, M. Satake, Y. Hamamoto, E. Ito, V. Beuzenberg, P. McNabb, R. Munday, L. Briggs, P. Truman, R. Gooneratne, P. Edwards and S. M. Pascal, Harmful Algae, 2012, 13, 47-57. - 350 Y. Hamamoto, K. Tachibana, P. T. Holland, F. Shi, V. Beuzenberg, Y. Itoh and M. Satake, J. Am. Chem. Soc., 2012, 134, 4963-4968. - 351 P. Ciminiello, C. Dell'Aversano, E. Fattorusso, M. Forino, L. Tartaglione, C. Grillo and N. Melchiorre, J. Am. Soc. Mass Spectrom., 2008, 19, 111-120. - 352 P. Ciminiello, C. Dell'Aversano, E. Dello Iacovo, E. Fattorusso, M. Forino, L. Grauso and L. Tartaglione, Chem.-Eur. J., 2012, 18, 16836-16843. - 353 P. Ciminiello, C. Dell'Aversano, E. Dello Iacovo, E. Fattorusso, M. Forino, L. Grauso, L. Tartaglione, F. Guerrini, L. Pezzolesi, R. Pistocchi and S. Vanucci, J. Am. Chem. Soc., 2012, 134, 1869-1875. - 354 P. Ciminiello, C. Dell'Aversano, E. Dello Iacovo, E. Fattorusso, M. Forino, L. Tartaglione, C. Battochi, R. Crinelli, E. Carloni, M. Magnani and A. Penna, Chem. Res. Toxicol., 2012, 25, 1243-1252. - 355 G. Guella, E. Callone, I. Mancini, F.
Dini and G. Di Giuseppe, Eur. J. Org. Chem., 2012, 27, 5208-5216. - 356 M. I. Mitova, G. Lang, J. Wiese and J. F. Imhoff, J. Nat. Prod., 2008, 71, 824-827. - 357 Z. Yang, X. Jin, M. Guaciaro and B. F. Molino, J. Org. Chem., 2012, 77, 3191-3196. - 358 Z. Yang, X. Jin, M. Guaciaro, B. F. Molino, U. Mocek, R. Reategui, J. Rhea and T. Morley, Org. Lett., 2011, 13, 5436-5439. - 359 R. Raju, A. M. Piggott, L. X. Barrientos Diaz, Z. Khalil and R. J. Capon, Org. Lett., 2010, 12, 5158-5161. - 360 J. Schmidt and C. B. W. Stark, Org. Lett., 2012, 14, 4042-4045. - 361 S. Sato, F. Iwata, T. Mukai, S. Yamada, J. Takeo, A. Abe and H. Kawahara, J. Org. Chem., 2009, 74, 5502-5509. - 362 O. F. Jeker and E. M. Carreira, Angew. Chem., Int. Ed., 2012, 51, 3474-3477. - 363 X.-L. Li, M.-J. Xu, Y.-L. Zhao and J. Xu, Molecules, 2010, 15, 9298-9307. - 364 C. Tian, X. Jiao, X. Liu, R. Li, L. Dong, X. Liu, Z. Zhang, J. Xu, M. Xu and P. Xie, Tetrahedron Lett., 2012, 53, 4892-4895. - 365 C. Klemke, S. Kehraus, A. D. Wright and G. M. König, J. Nat. Prod., 2004, 67, 1058-1063. - 366 M. Gärtner, D. Kossler, D. Pflästerer and G. Helmchen, J. Org. Chem., 2012, 77, 4491-4495. - 367 Y. Usami, J. Yamaguchi and A. Numata, Heterocycles, 2004, 63, 1123-1129. - 368 N. Boyer and M. Movassaghi, Chem. Sci., 2012, 3, 1798- - 369 X. Li, Y. Yao, Y. Zheng, I. Sattler and W. Lin, Arch. Pharmacal Res., 2007, 30, 812-815. - 370 S. F. Tlais and G. B. Dudley, Org. Lett., 2010, 12, 4698-4701. 371 S. F. Tlais and G. B. Dudley, Beilstein J. Org. Chem., 2012, 8, - 1287-1292. - 372 Y. Lin, X. Wu, S. Feng, G. Jiang, S. Zhou, L. L. P. Vrijmoed and E. B. G. Jones, Tetrahedron Lett., 2001, 42, 449-451. - 373 S.-Y. Wang, Z.-L. Xu, H. Wang, C.-R. Li, L. W. Fu, J.-Y. Pang, J. Li, Z.-G. She and Y.-C. Lin, Helv. Chim. Acta, 2012, 95, 973-982. - 374 A. R. Pereira, Z. Cao, N. Engene, I. E. Soria-Mercado, T. F. Murray and W. H. Gerwick, Org. Lett., 2010, 12, 4490-4493. - 375 R. Tello-Aburto, E. M. Johnson, C. K. Valdez and W. A. Maio, Org. Lett., 2012, 14, 2150-2153. - 376 R. Tello-Aburto, T. D. Newar and W. A. Maio, J. Org. Chem., 2012, 77, 6271-6289. - 377 L. T. Tan, B. L. Marquez and W. H. Gerwick, J. Nat. Prod., 2002, 65, 925-928. - 378 A. ElMarrouni, R. Lebeuf, J. Gebauer, M. Heras, S. Arseniyadis and J. Cossy, *Org. Lett.*, 2012, **14**, 314–317. - 379 D. Webb, A. van den Heuvel, M. Kogl and S. V. Ley, Synlett, 2009, 2320-2324. - 380 H. Luesch, W. Y. Yoshida, G. G. Harrigan, J. P. Doom, R. E. Moore and V. J. Paul, J. Nat. Prod., 2002, 65, 1945-1948. - 381 L. A. Salvador, J. S. Biggs, V. J. Paul and H. Luesch, J. Nat. Prod., 2011, 74, 917-927. - 382 E. Mevers, W.-T. Liu, N. Engene, H. Mohimani, T. Byrum, P. A. Pevzner, P. C. Dorrestein, C. Spadafora and W. H. Gerwick, J. Nat. Prod., 2011, 74, 928-936. - 383 D. Wang, X. Jia and A. Zhang, Org. Biomol. Chem., 2012, 10, 7027-7030. - 384 K. N. Maloney, J. B. MacMillan, C. A. Kauffman, P. R. Jensen, A. G. Di Pasquale, A. L. Rheingold and W. Fenical, Org. Lett., 2009, 11, 5422-5424. - 385 T. Burckhardt, K. Harms and U. Koert, Org. Lett., 2012, 14, 4674-4677. - 386 A. Kanjana-opas, S. Panphon, H. K. Fun and S. Chantrapromma, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, 62, 2728-2730. - 387 Y. Sangnoi, O. Sakulkeo, S. Yuenyongsawad, A. Kanjanaopas, K. Ingkaninan, A. Plubrukarn K. Suwanborirux, Mar. Drugs, 2008, 6, 578-586. - 388 L. Ni, Z. Li, F. Wu, J. Xu, X. Wu, L. Kong and H. Yao, Tetrahedron Lett., 2012, 53, 1271-1274. - 389 J. C. Carlson, S. Li, D. A. Burr and D. H. Sherman, J. Nat. Prod., 2009, 72, 2076-2079. - 390 M. Chen and W. R. Roush, Org. Lett., 2012, 14, 426-428. - 391 W. Balk-Bindseil, E. Helmke, H. Weyland and H. Laatsch, Liebigs Ann., 1995, 1291-1294. - 392 Y. Liu, L. Zhang and Y. Jia, Tetrahedron Lett., 2012, 53, 684-687. - 393 D.-C. Oh, E. A. Gontang, C. A. Kauffman, P. R. Jensen and W. Fenical, J. Nat. Prod., 2008, 71, 570-575. - 394 P. Ramesh and H. M. Meshram, Tetrahedron, 2012, 68, 9289-9292. - 395 T. Yamada, K. Minoura, R. Tanaka and A. Numata, J. Antibiot., 2007, 60, 370-375. - 396 G. V. M. Sharma and P. S. Reddy, Eur. J. Org. Chem., 2012, 12, 2414-2421. - 397 D. P. Curran, M. K. Sinha, K. Zhang, J. J. Sabatini and D.-H. Cho, Nat. Chem., 2012, 4, 124-129. - 398 C. Takahashi, A. Numata, T. Yamada, K. Minoura, S. Enomoto, K. Konishi, M. Nakai, C. Matsuda and K. Nomoto, Tetrahedron Lett., 1996, 37, 655-658. - 399 K. Fujioka, H. Yokoe, M. Yoshida and K. Shishido, Org. Lett., 2012, 14, 244-247. - 400 Y. C. Park, S. P. Gunasekera, J. V. Lopez, P. J. McCarthy and A. E. Wright, J. Nat. Prod., 2006, 69, 580-584. - 401 Y. Kothapalli, R. K. Puthukanoori and S. R. Alapati, Tetrahedron Lett., 2012, 53, 1891-1893. - 402 K. C. Nicolaou, M. Lu, S. Totokotsopoulos, P. Heretsch, D. Giguère, Y.-P. Sun, D. Sarlah, T. H. Nguyen, I. C. Wolf, D. F. Smee, C. W. Day, S. Bopp and E. A. Winzeler, J. Am. Chem. Soc., 2012, 134, 17320-17332. - 403 M. A. M. Shushni, R. Singh, R. Mentel and U. Lindequist, Mar. Drugs, 2011, 9, 844-851. - 404 P. R. Krishna, S. Prabhakar and D. V. Ramana, Tetrahedron Lett., 2012, 53, 6843-6845. - 405 Y.-Y. Li, M.-Z. Wang, Y.-J. Huang and Y.-M. Shen, Mycology, 2010, 1, 254-261. - 406 P. Ramesh, B. C. Reddy and H. M. Meshram, Tetrahedron Lett., 2012, 53, 3735-3738. - 407 M. Isaka, A. Yangchum, S. Intamas, K. Kocharin, E. B. G. Jones, P. Kongsaeree and S. Prabpai, Tetrahedron, 2009, 65, 4396-4403. - 408 T.-Y. Yuen and M. A. Brimble, Org. Lett., 2012, 14, 5154-5157. - 409 M. Gutierrez, T. L. Suyama, N. Engene, J. S. Wingerd, T. Matainaho and W. H. Gerwick, J. Nat. Prod., 2008, 71, 1099-1103. - 410 B. D. Robertson, S. E. Wengryniuk and D. M. Coltart, Org. Lett., 2012, 14, 5192-5195. - 411 J. C. Kwan, E. A. Eksioglu, C. Liu, V. J. Paul and H. Luesch, J. Med. Chem., 2009, 52, 5732-5747. - 412 S. Yang, W. Zhang, N. Ding, J. Lo, Y. Liu, M. J. Clare-Salzler, H. Luesch and Y. Li, Bioorg. Med. Chem., 2012, 20, 4774-4780. - 413 H. Nagai, M. Murata, K. Torigoe, M. Satake and T. Yasumoto, J. Org. Chem., 1992, 57, 5448-5453. - 414 H. Fuwa, K. Ishigai, K. Hashizume and M. Sasaki, J. Am. Chem. Soc., 2012, 134, 11984-11987. - 415 H. Fuwa, K. Ishigai, T. Goto, A. Suzuki and M. Sasaki, J. Org. Chem., 2009, 74, 4024-4040. - 416 J. Kobayashi, M. Tsuda, M. Ishibashi, H. Shigemori, T. Yamasu, H. Hirota and T. Sasaki, J. Antibiot., 1991, 44, 1259-1261. - 417 S. Mahapatra and R. G. Carter, Angew. Chem., Int. Ed., 2012, 51, 7948-7951. - 418 R. D. Charan, G. Schlingmann, J. Janso, V. Bernan, X. Feng and G. T. Carter, J. Nat. Prod., 2004, 67, 1431-1433. - 419 U. R. Abdelmohsen, M. Szesny, E. M. Othman, T. Schirmeister, S. Grond, H. Stopper and U. Hentschel, Mar. Drugs, 2012, 10, 2208-2221. - 420 H. H. Wasserman, J. E. McKeon, L. Smith and P. Forgione, I. Am. Chem. Soc., 1960, 82, 506-507. - 421 I. D. B. Arthaud, F. A. R. Rodrigues, P. C. Jimenez, R. C. Montenegro, A. L. Angelim, V. M. M. Maciel, E. R. Silveira, H. P. S. Freitas, T. S. Sousa, O. D. L. Pessoa, T. M. C. Lotufo and L. V. Costa-Lotufo, Chem. Biodiversity, 2012, 9, 418-427. - 422 W. Qin, Q. Kong, Z. Fan, X. Su and L. Li, Zhongcaoyao, 1984, 15, 490-492. - 423 F. Caesar, K. Jansson and E. Mutschler, Pharmaceutica Acta Helvetiae, 1969, 44, 676-690. - 424 J. Y. Cho, J. Y. Kang, Y. K. Hong, H. H. Baek, H. W. Shin and M. S. Kim, Biosci., Biotechnol., Biochem., 2012, 76, 1116-1121. - 425 M. Bernart and W. H. Gerwick, Phytochemistry, 1990, 29, 3697-3698. - 426 Y. Chen, A. Zeeck, Z. Chen and H. Zahner, J. Antibiot., 1983, 36, 913-915. - 427 S. Martínez-Luis, J. F. Gómez, C. Spadafora, H. M. Guzmán and M. Gutiérrez, Molecules, 2012, 17, 11146-11155. - 428 V. Bultel-Ponce, J.-P. Berge, C. Debitus, J.-L. Nicolas and M. Guyot, Mar. Biotechnol., 1999, 1, 384-390. - 429 M. Chu, R. Mierzwa, L. Xu, L. He, J. Terracciano, M. Patel, W. Zhao, T. A. Black and T.-M. Chan, J. Antibiot., 2002, 55, 215-218. - 430 F. Kong, M. P. Singh and G. T. Carter, J. Nat. Prod., 2005, 68, 920-923. - 431 J. Y. Cho, Biosci., Biotechnol., Biochem., 2012, 76, 1452- - 432 C. V. Minh, P. V. Kiem, X. N. Nguyen, X. C. Nguyen, P. T. Nguyen, H. N. Nguyen, L. T. A. Hoang, D. C. Thung, D. T. T. Thuy, H.-K. Kang, H. D. Jang and Y. H. Kim, Bioorg. Med. Chem. Lett., 2011, 21, 2155-2159. - 433 J. Y. Cho and M. S. Kim, Biosci., Biotechnol., Biochem., 2012, 76, 1849-1854. - 434 C. C. Hughes, A. Prieto-Davo, P. R. Jensen and W. Fenical, Org. Lett., 2008, 10, 629-631. - 435 C. C. Hughes, C. A. Kauffman, P. R. Jensen and W. Fenical, J. Org. Chem., 2010, 75, 3240-3250. - 436 K. Yamanaka, K. S. Ryan, T. A. M. Gulder, C. C. Hughes and B. S. Moore, J. Am. Chem. Soc., 2012, 134, 12434-12437. - 437 G. Strobel, J. Y. Li, F. Sugawara, H. Koshino, J. Harper and W. M. Hess, Microbiology (Reading, U.K.), 1999, 145, 3557-3564. - 438 J. J. Levenfors, R. Hedman, C. Thaning, B. Gerhardson and C. J. Welch, Soil Biol. Biochem., 2004, 36, 677-685. - 439 N. Takada, H. Sato, K. Suenaga, H. Arimoto, K. Yamada, K. Ueda and D. Uemura, Tetrahedron Lett., 1999, 40, 6309-6312. - 440 K. Ueda and Y. Hu, Tetrahedron Lett., 1999, 40, 6305-6308. - 441 M. A. Matilla, H. Stöckmann, F. J. Leeper and G. P. C. Salmond, J. Biol. Chem., 2012, 287, 39125-39138. - 442 C. E. Meyer, J. Antibiot., 1971, 24, 558-560. - 443 Z. Yu, S. Vodanovic-Jankovic, N. Ledeboer, S.-X. Huang, S. R. Rajski, M. Kron and B. Shen, Org. Lett., 2011, 13, 2034-2037. - 444 X. Mo, J. Ma, H. Huang, B. Wang, Y. Song, S. Zhang, C. Zhang and J. Ju, J. Am. Chem. Soc., 2012, 134, 2844-2847. - 445 P. Fu, S.-X. Wang, K. Hong, X. Li, P.-P. Liu, Y. Wang and W.-M. Zhu, J. Nat. Prod., 2011, 74, 1751-1756. - 446 X. Qu, B. Pang, Z. Zhang, M. Chen, Z. Wu, Q. Zhao, Q. Zhang, Y. Wang, Y. Liu and W. Liu, J. Am. Chem. Soc., 2012, 134, 9038-9041. - 447 A. M. do Rosario Marinho, E. Rodrigues-Filho, M. d. L. R. Moitinho and L. S. Santos, J. Braz. Chem. Soc., 2005, 16, 280-283. - 448 K. Arai, K. Kimura, T. Mushiroda and Y. Yamamoto, Chem. Pharm. Bull., 1989, 37, 2937-2939. - 449 Y. Tsuda, M. Kaneda, A. Tada, K.
Nitta, Y. Yamamoto and Y. Iitaka, J. Chem. Soc., Chem. Commun., 1978, 160-161. - 450 F. P. Covne, H. Raistrick and R. Robinson, Philos. Trans. R. Soc. London, Ser. B, 1931, B220, 297-300. - 451 Y.-J. Chai, C.-B. Cui, C.-W. Li, C.-J. Wu, C.-K. Tian and W. Hua, Mar. Drugs, 2012, 10, 559-582. - 452 G. Xie, X. Zhu, Q. Li, M. Gu, Z. He, J. Wu, J. Li, Y. Lin, M. Li, Z. She and J. Yuan, Br. J. Pharmacol., 2010, 159, 689-697. - 453 C. Niu, M. Cai, Y. Zhang and X. Zhou, Biotechnol. Lett., 2012, 34, 2119-2124. - 454 P. Moya, A. Cantin, M.-A. Castillo, J. Primo, M. A. Miranda and E. Primo-Yufera, J. Org. Chem., 1998, 63, 8530-8535. - F. Pimenta, A. M. Vita-Marques, A. Tininis, M. H. R. Seleghim, L. D. Sette, K. Veloso, A. G. Ferreira, D. E. Williams, B. O. Patrick, D. S. Dalisay, R. J. Andersen and R. G. S. Berlinck, J. Nat. Prod., 2010, 73, 1821-1832. - 456 S. Romminger, E. F. Pimenta, E. S. Nascimento, A. G. Ferreira and R. G. S. Berlinck, J. Braz. Chem. Soc., 2012, 23, 1783-1788. - 457 R. Liu, W. Zhu, Y. Zhang, T. Zhu, H. Liu, Y. Fang and Q. Gu, J. Antibiot., 2006, 59, 362-365. - 458 I. Kurobane, L. C. Vining and A. G. McInnes, J. Antibiot., 1979, 32, 1256-1266. - 459 A. Krick, S. Kehraus, C. Gerhaüser, K. Klimo, M. Nieger, A. Maier, H.-H. Fiebig, I. Atodiresei, G. Raabe, J. Fleischhauer and G. M. König, J. Nat. Prod., 2007, 70, 353-360. - 460 J. Lin, S. Liu, B. Sun, S. Niu, E. Li, X. Liu and Y. Che, J. Nat. Prod., 2010, 73, 905-910. - 461 M. A. Schätzle, S. M. Husain, S. Ferlaino and M. Müller, J. Am. Chem. Soc., 2012, 134, 14742-14745. - 462 J. M. Finefield, T. J. Greshock, D. H. Sherman, S. Tsukamoto and R. M. Williams, Tetrahedron Lett., 2011, 52, 1987-1989. - 463 Y. Ding, J. R. de Wet, J. Cavalcoli, S. Li, T. J. Greshock, K. A. Miller, J. M. Finefield, J. D. Sunderhaus, T. J. McAfoos, S. Tsukamoto, R. M. Williams and D. H. Sherman, J. Am. Chem. Soc., 2010, 132, 12733–12740. - 464 S. Li, J. M. Finefield, J. D. Sunderhaus, T. J. McAfoos, R. M. Williams and D. H. Sherman, J. Am. Chem. Soc., 2012, 134, 788-791. - 465 S. Li, J. M. Finefield, J. D. Sunderhaus, T. J. McAfoos, R. M. Williams and D. H. Sherman, J. Am. Chem. Soc., 2012, 134, 20565-20565. 466 L. Ding, G. Peschel and C. Hertweck, *ChemBioChem*, 2012, 13, 2661–2664. - 467 M. Yamazaki, M. Izumikawa, K. Tachibana, M. Satake, Y. Itoh and M. Hashimoto, *J. Org. Chem.*, 2012, 77, 4902–4906 - 468 P. G. Cruz, A. H. Daranas, J. J. Fernández, M. L. Souto and M. Norte, *Toxicon*, 2006, 47, 920–924. - 469 T. S. Vilches, M. Norte, A. H. Daranas and J. J. Fernández, *Mar. Drugs*, 2012, **10**, 2234–2245. - 470 M. Tsukimoto, M. Nagaoka, Y. Shishido, J. Fujimoto, F. Nishisaka, S. Matsumoto, E. Harunari, C. Imada and T. Matsuzaki, *J. Nat. Prod.*, 2011, 74, 2329–2331. - 471 Y. Xu, R. D. Kersten, S.-J. Nam, L. Lu, A. M. Al-Suwailem, H. Zheng, W. Fenical, P. C. Dorrestein, B. S. Moore and P.-Y. Qian, *J. Am. Chem. Soc.*, 2012, 134, 8625–8632. - 472 J.-L. Zhang, H.-Y. Tian, J. Li, L. Jin, C. Luo, W.-C. Ye and R.-W. Jiang, *Fitoterapia*, 2012, **83**, 973–978. - 473 D.-Q. Liu, S.-C. Mao, X.-Q. Yu, L.-H. Feng and X.-P. Lai, *Heterocycles*, 2012, **85**, 661–666. - 474 M. B. Miller, B. A. Haubrich, Q. Wang, W. J. Snell and W. D. Nes, *J. Lipid Res.*, 2012, **53**, 1636–1645. - 475 N. R. P. V. Macedo, M. S. Ribeiro, R. C. Villaça, W. Ferreira, A. M. Pinto, V. L. Teixeira, C. Cirne-Santos, I. C. N. P. Paixão and V. Giongo, *Rev. Bras. Farmacogn.*, 2012, 22, 861–867. - 476 Y.-V. Tang, S.-M. Phang, W.-L. Chu, A. Ho, S. H. Teo and H.-B. Lee, *J. Appl. Phycol.*, 2012, 24, 783–790. - 477 D. Kelman, E. K. Posner, K. J. McDermid, N. K. Tabandera, P. R. Wright and A. D. Wright, *Mar. Drugs*, 2012, 10, 403–416. - 478 S.-M. Sun, G.-H. Chung and T.-S. Shin, *J. Appl. Phycol.*, 2012, 24, 1003–1013. - 479 H. Choi, P. J. Proteau, T. Byrum and W. H. Gerwick, *Phytochemistry*, 2012, 73, 134–141. - 480 H. Choi, P. J. Proteau, T. Byrum, A. R. Pereira and W. H. Gerwick, *Phytochemistry*, 2012, **78**, 197–197. - 481 Q. Göthel, J. Muñoz and M. Köck, *Phytochem. Lett.*, 2012, 5, 693–695. - 482 Q. Göthel, E. Lichte and M. Köck, *Tetrahedron Lett.*, 2012, **53**, 1873–1877. - 483 C. Francisco, G. Combaut, J. Teste and M. Prost, *Phytochemistry*, 1978, 17, 1003–1005. - 484 G. Culioli, M. Daoudi, V. Mesguiche, R. Valls and L. Piovetti, *Phytochemistry*, 1999, **52**, 1447–1454. - 485 A. Ortalo-Magne, G. Culioli, R. Valls, B. Pucci and L. Piovetti, *Phytochemistry*, 2005, **66**, 2316–2323. - 486 L. Hougaard, U. Anthoni, C. Christopherson and P. H. Nielsen, *Phytochemistry*, 1991, **30**, 3049–3051. - 487 R. Valls, L. Piovetti, B. Banaigs, A. Archavlis and M. Pellegrini, *Phytochemistry*, 1995, **39**, 145–149. - 488 R. Valls, B. Banaigs, L. Piovetti, A. Archavlis and J. Artaud, *Phytochemistry*, 1993, 34, 1585–1588. - 489 F. Bohlmann, A. Adler, J. Jakupovic, R. M. Kings and H. Robinson, *Phytochemistry*, 1982, **21**, 1349–1355. - 490 E. Ioannou, A. Quesada, M. M. Rahman, S. Gibbons, C. Vagias and V. Roussis, *Eur. J. Org. Chem.*, 2012, 5177–5186. - 491 H. Zhang, X. Xiao, M. M. Conte, Z. Khalil and R. J. Capon, *Org. Biomol. Chem.*, 2012, **10**, 9671–9676. - 492 C. Kim, I.-K. Lee, G. Y. Cho, K.-H. Oh, Y. W. Lim and B.-S. Yun, *J. Antibiot.*, 2012, **65**, 87–89. - 493 H. Nozaki, S. Ohira, D. Takaoka, N. Senda and M. Nakayama, *Chem. Lett.*, 1995, 24, 331–331. - 494 Y. Kawamura-Konishi, N. Watanabe, M. Saito, N. Nakajima, T. Sakaki, T. Katayama and T. Enomoto, *J. Agric. Food Chem.*, 2012, **60**, 5565–5570. - 495 R. P. Gregson and J. J. Daly, Aust. J. Chem., 1982, 35, 649-657. - 496 S.-H. Lee, S.-M. Kang, S.-C. Ko, D.-H. Lee and Y.-J. Jeon, *Biochem. Biophys. Res. Commun.*, 2012, **420**, 576–581. - 497 S.-M. Kang, S.-J. Heo, K.-N. Kim, S.-H. Lee and Y.-J. Jeon, *J. Funct. Foods*, 2012, **4**, 158–166. - 498 E. Ioannou, C. Vagias and V. Roussis, *Tetrahedron Lett.*, 2011, **52**, 3054–3056. - 499 G. Genta-Jouve, E. Ioannou, V. Mathieu, C. Bruyère, F. Lefranc, O. P. Thomas, R. Kiss and V. Roussis, *Phytochem. Lett.*, 2012, 5, 747–751. - 500 A. G. González, J. Darias and J. D. Martín, *Tetrahedron Lett.*, 1971, **12**, 2729–2732. - 501 A. G. González, J. Darias, J. D. Martín and C. Pascual, Tetrahedron, 1973, 29, 1605–1609. - 502 W. H. Gerwick and W. Fenical, *J. Org. Chem.*, 1981, **46**, 22–27. - 503 M. A. Muñoz, C. Areche, J. Rovirosa, A. San Martin, B. Gordillo-Román and P. Joseph-Nathan, *Heterocycles*, 2012, 85, 1961–1973. - 504 K. C. Pullaiah, R. K. Surapaneni, C. B. Rao, K. F. Albizati, B. W. Sullivan, D. J. Faulkner, H. Cun-heng and J. Clardy, J. Org. Chem., 1985, 50, 3665–3666. - 505 B. Defaut, T. B. Parsons, N. Spencer, L. Male, B. M. Kariuki and R. S Grainger, *Org. Biomol. Chem.*, 2012, **10**, 4926– 4932. - 506 D. D. Dixon, J. W. Lockner, Q. Zhou and P. S. Baran, *J. Am. Chem. Soc.*, 2012, **134**, 8432–8435. - 507 T. Kajikawa, S. Okumura, T. Iwashita, D. Kosumi, H. Hashimoto and S. Katsumura, *Org. Lett.*, 2012, **14**, 808–811. - 508 J. C. De-Paula, D. N. Cavalcanti, Y. Yoneshigue-Valentin and V. L. Teixeira, *Rev. Bras. Farmacogn.*, 2012, 22, 736– 740. - 509 V. Amico, F. Cunsolo, M. Piatelli and G. Ruberto, *Phytochemistry*, 1984, 23, 2017–2020. - 510 C. Jégou, G. Culioli and V. Stiger-Pouvreau, *Biochem. Syst. Ecol.*, 2012, **44**, 202–204. - 511 G. Blunden, M. D. Guiry, L. D. Druehl, K. Kogame and H. Kawai, *Nat. Prod. Commun.*, 2012, 7, 863–865. - 512 K. H. Jang, B. H. Lee, B. W. Choi, H.-S. Lee and J. Shin, *J. Nat. Prod.*, 2005, **68**, 710–723. - 513 W.-J. Yoon, S.-J. Heo, S.-C. Han, H.-J. Lee, G.-J. Kang, H.-K. Kang, J.-W. Hyun, Y.-S. Koh and E.-S. Yoo, *Arch. Pharmacal Res.*, 2012, 35, 1421–1430. - 514 W.-J. Yoon, S.-J. Heo, S.-C. Han, H.-J. Lee, G.-J. Kang, E.-J. Yang, S.-S. Park, H.-K. Kang and E.-S. Yoo, *Food Chem. Toxicol.*, 2012, 50, 3273–3279. - 515 S.-H. Lee, M.-H. Park, S.-J. Heo, S.-M. Kang, S.-C. Ko, J.-S. Han and Y.-J. Jeon, *Food Chem. Toxicol.*, 2010, 48, 2633–2637. - 516 S.-M. Kang, S.-J. Heo, K.-N. Kim, S.-H. Lee, H.-M. Yang, A.-D. Kim and Y.-J. Jeon, *Bioorg. Med. Chem.*, 2012, **20**, 311–316. - 517 N. Ragubeer, J. L. Limson and D. R. Beukes, *Food Chem.*, 2012, **131**, 286–290. - 518 T. Kamada and C. S. Vairappan, *Molecules*, 2012, **17**, 2119–2125. - 519 X.-D. Li, F.-P. Miao, K. Li and N.-Y. Ji, *Fitoterapia*, 2012, **83**, 518–522. - 520 Y. Liang, X.-M. Li, C.-M. Cui, C.-S. Li, H. Sun and B.-G. Wang, *Mar. Drugs*, 2012, **10**, 2817–2825. - 521 M. A. Timmers, D. A. Dias and S. Urban, *Mar. Drugs*, 2012, 10, 2089–2102. - 522 S. Naylor, L. V. Manes and P. Crews, *J. Nat. Prod.*, 1985, **48**, 72–75. - 523 X.-D. Li, W. Ding, F.-P. Miao and N.-Y. Ji, *Magn. Reson. Chem.*, 2012, **50**, 174–177. - 524 X.-D. Li, F.-P. Miao, X.-L. Yin, J.-L. Liu and N.-Y. Ji, *Fitoterapia*, 2012, **83**, 1191–1195. - 525 W. M. Alarif, S. S. Al-Lihaibi, S.-E. N. Ayyad, M. H. Abdel-Rhman and F. A. Badria, *Eur. J. Med. Chem.*, 2012, 55, 462–466. - 526 L. R. De Carvalho, M. T. Fujii, N. F. Roque and J. H. G. Largo, *Phytochemistry*, 2006, **67**, 1331–1335. - 527 M. T. Crimmins and C. O. Hughes, *Org. Lett.*, 2012, **14**, 2168–2171. - 528 M. E. Teasdale, T. L. Shearer, S. Engel, T. S. Alexander, C. R. Fairchild, J. Prudhomme, M. Torres, K. Le Roch, W. Aalbersberg, M. E. Hay and J. Kubanek, *J. Org. Chem.*, 2012, 77, 8000–8006. - 529 W. M. Alarif, S.-E. N. Ayyad, S. M. El-Assouli and S. S. Al-Lihaibi, *Nat. Prod. Res.*, 2012, **26**, 785–791. - 530 F. Cen-Pacheco, F. Mollinedo, J. A. Villa-Pulgarín, M. Norte, J. J. Fernández and A. H. Daranas, *Tetrahedron*, 2012, 68, 7275–7279. - 531 A. R. B. Ola, A.-M. Babey, C. Moti and B. F. Bowden, *Aust. J. Chem.*, 2010, **63**, 907–914. - 532 K. Li, X.-M. Li, J. B. Gloer and B.-G. Wang, *Food Chem.*, 2012, **135**, 868–872. - 533 X. Xu, L. Yin, N. Fang, X. Fan and F. Song, *Chem. Nat. Compd.*, 2012, **48**, 622–624. - 534 X. Xu, A. M. Piggott, L. Yin, R. J. Capon and F. Song, *Tetrahedron Lett.*, 2012, **53**, 2103–2106. - 535 L. M. de Souza,
G. L. Sassaki, M. T. V. Romanos and E. Barreto-Bergter, *Mar. Drugs*, 2012, **10**, 918–931. - 536 A. Campos, C. B. Souza, C. Lhullier, M. Falkenberg, E. P. Schenkel, R. M. Ribeiro-do-Valle and J. M. Siqueira, J. Pharm. Pharmacol., 2012, 64, 1146–1154. - 537 L. H. A. Cavalcante-Silva, C. B. B. da Matta, M. V. D. de Araújo, J. M. Barbosa-Filho, D. P. de Lira, B. V. de Oiliveira Santos, G. E. C. de Miranda and M. S. Alexandre-Moreira, *Mar. Drugs*, 2012, 10, 1977–1992. - 538 S.-H. Park, J.-H. Song, T. Kim, W.-S. Shin, G. M. Park, S. Lee, Y.-J. Kim, P. Choi, H. Kim, H.-S. Kim, - D.-H. Kwon, H.-J. Choi and J. Ham, *Mar. Drugs*, 2012, **10**, 2222–2233. - 539 A. Abbas, M. Josefson, G. M. Nylund, H. Pavia and K. Abrahamsson, *Anal. Chim. Acta*, 2012, 737, 37–44. - 540 I. Kuroda, M. Musman, I. I. Ohtani, T. Ichiba, J. Tanaka, D. Garcia Gravalos and T. Higa, *J. Nat. Prod.*, 2002, **65**, 1505–1506. - 541 H. Yoo, Y. S. Lee, S. Lee, S. Kim and T.-Y. Kim, *Phytother. Res.*, 2012, **26**, 1927–1933. - 542 L. G. Meimetis, D. E. Williams, N. R. Mawji, C. A. Banuelos, A. A. Lal, J. J. Park, A. H. Tien, J. G. Fernandez, N. J. de Voogd, M. D. Sadar and R. J. Andersen, J. Med. Chem., 2012, 55, 503–514. - 543 S. Tsukamoto, T. Takeuchi, H. Rotinsulu, R. E. P. Mangindaan, R. W. M. van Soest, K. Ukai, H. Kobayashi, M. Namikoshi, T. Ohta and H. Yokosawa, *Bioorg. Med. Chem. Lett.*, 2008, 24, 6319–6320. - 544 G. Chianese, E. Fattorusso, M. Y. Putra, B. Calcinai, G. Bavestrello, A. S. Moriello, L. De Petrocellis, V. Di Marzo and O. Taglialatela-Scafati, *Mar. Drugs*, 2012, 10, 2435–2447. - 545 K. H. Jang, Y. Lee, C. J. Sim, K.-B. Oh and J. Shin, *Bioorg. Med. Chem. Lett.*, 2012, 22, 1078–1081. - 546 F. Farokhi, G. Wielgosz-Collin, A. Robic, C. Debitus, M. Malleter, C. Roussakis, J.-M. Kornprobst and G. Barnathan, Eur. J. Med. Chem., 2012, 49, 406–410. - 547 S. Ankisetty and M. Slattery, *Mar. Drugs*, 2012, **10**, 1037–1043. - 548 G. Nuzzo, M. L. Ciavatta, G. Villani, E. Manzo, A. Zanfardino, M. Varcamonti and M. Gavagnin, *Tetrahedron*, 2012, **68**, 754–760. - 549 J. Kobayashi, S. Takeuchi, M. Ishibashi, H. Shigemori and T. Sasaki, *Tetrahedron Lett.*, 1992, 33, 2579–2580. - 550 A. Qureshi, C. S. Stevenson, C. L. Albert, R. S. Jacobs and D. J. Faulkner, J. Nat. Prod., 1999, 62, 1205–1207. - 551 E. Bourcet, L. Kaufmann, S. Arzt, A. Bihlmeier, W. Klopper, U. Schepers and S. Bräse, *Chem.-Eur. J.*, 2012, **18**, 15004–15020. - 552 A. Bihlmeier, E. Bourcet, S. Arzt, T. Muller, S. Bräse and W. Klopper, *J. Am. Chem. Soc.*, 2012, **134**, 2154–2160. - 553 M. Varoglu, B. M. Peters and P. Crews, *J. Nat. Prod.*, 1995, 58, 27–36. - 554 A. Rudi, R. Afanii, L. Garcia Gravalos, M. Aknin, E. Gaydou, J. Vacelet and Y. Kashman, *J. Nat. Prod.*, 2003, **66**, 682–685. - 555 A. Qureshi, J. Salvá, M.-K. Harper and D. J. Faulkner, *J. Nat. Prod.*, 1998, **61**, 1539–1542. - 556 K. W. L. Yong, B. Barnych, J. J. De Voss, J.-M. Vatèle and M. J. Garson, *J. Nat. Prod.*, 2012, 75, 1792–1797. - 557 B. Barnych and J.-M. Vatèle, Org. Lett., 2012, 14, 564-567. - 558 K. W. L. Yong, L. K. Lambert, P. Y. Hayes, J. J. De Voss and M. J. Garson, *J. Nat. Prod.*, 2012, 75, 351–360. - 559 G. Chianese, E. Fattorusso, F. Scala, R. Teta, B. Calcinai, G. Bavestrello, H. A. Dien, M. Kaiser, D. Tasdemir and O. Taglialatela-Scafati, *Org. Biomol. Chem.*, 2012, 10, 7197–7207. - 560 V. Venturi, C. Davies, A. J. Singh, J. H. Matthews, D. S. Bellows, P. T. Northcote, R. A. Keyzers and P. H. Teesdale-Spittle, J. Biochem. Mol. Toxicol., 2012, 26, 94–100. - 561 H.-B. Yu, X.-F. Liu, Y. Xu, J.-H. Gan, W.-H. Jiao, Y. Shen and H.-W. Lin, *Mar. Drugs*, 2012, **10**, 1027–1036. - 562 X.-F. Liu, Y. Shen, F. Yang, M. T. Hamann, W.-H. Jiao, H.-J. Zhang, W.-S. Chen and H.-W. Lin, *Tetrahedron*, 2012, **68**, 4635–4640. - 563 C. Festa, G. Lauro, S. De Marino, M. V. D'Auria, M. C. Monti, A. Casapullo, C. D'Amore, B. Renga, A. Mencarelli, S. Petek, G. Bifulco, S. Fiorucci and A. Zampella, *J. Med. Chem.*, 2012, 55, 8303–8317. - 564 C. Festa, S. De Marino, M. V. D'Auria, E. Deharo, G. Gonzalez, C. Deyssard, S. Petek, G. Bifulco and A. Zampella, *Tetrahedron*, 2012, 68, 10157–10163. - 565 V. Costantino, E. Fattorusso, A. Mangoni, C. Perinu, R. Teta, E. Panza and A. Ianaro, *J. Org. Chem.*, 2012, 77, 6377–6383. - 566 J. Dai, Y. Liu, Y.-D. Zhou and D. G. Nagle, *J. Nat. Prod.*, 2007, **70**, 1824–1826. - 567 E. E. Podlesny and M. C. Kozlowski, *J. Nat. Prod.*, 2012, 75, 1125–1129. - 568 L. Du, F. Mahdi, S. Datta, M. B. Jekabsons, Y.-D. Zhou and D. G. Nagle, *J. Nat. Prod.*, 2012, 75, 1553–1559. - 569 Y.-J. Lee, C.-K. Kim, S.-K. Park, J. S. Kang, J. S. Lee, H. J. Shin and H.-S. Lee, *Heterocycles*, 2012, **85**, 895–901. - 570 R. Kumar, R. Subramani, K.-D. Feussner and W. Aalbersberg, *Mar. Drugs*, 2012, **10**, 200–208. - 571 Y. Feng, R. A. Davis, M. L. Sykes, V. M. Avery and R. J. Quinn, *Bioorg. Med. Chem. Lett.*, 2012, 22, 4873–4876. - 572 G. R. Pettit, J.-P. Xu, J.-C. Chapuis, R. K. Pettit, L. P. Tackett, D. L. Doubek, J. N. A. Hooper and J. M. Schmidt, *J. Med. Chem.*, 2004, 47, 1149–1152. - 573 C. H. An, A. T. Hoye and A. B. Smith III, *Org. Lett.*, 2012, **14**, 4350–4353. - 574 W. D. Clark, T. Corbett, F. Valeriote and P. Crews, *J. Am. Chem. Soc.*, 1997, **119**, 9285–9286. - 575 B. K. Rubio, S. J. Robinson, C. E. Avalos, F. A. Valeriote, N. J. de Voogd and P. Crews, *J. Nat. Prod.*, 2008, 71, 1475–1478. - 576 J. M. Garcia, S. S. Curzon, K. R. Watts and J. P. Konopelski, *Org. Lett.*, 2012, **14**, 2054–2057. - 577 P. Cheruku, A. Plaza, G. Lauro, J. Keffer, J. R. Lloyd, G. Bifulco and C. A. Bewley, *J. Med. Chem.*, 2012, 55, 735–742. - 578 M. Kimura, T. Wakimoto, Y. Egami, K. C. Tan, Y. Ise and I. Abe, *J. Nat. Prod.*, 2012, 75, 290–294. - 579 M. Arai, Y. Yamano, M. Fujita, A. Setiawan and M. Kobayashi, *Bioorg. Med. Chem. Lett.*, 2012, 22, 1818–1821. - 580 C. Festa, S. De Marino, M. V. D'Auria, M. C. Monti, M. Bucci, V. Vellecco, C. Debitus and A. Zampella, *Tetrahedron*, 2012, 68, 2851–2857. - 581 T. D. Tran, N. B. Pham, G. Fechner, D. Zencak, H. T. Vu, J. N. A. Hooper and R. J. Quinn, *J. Nat. Prod.*, 2012, 75, 2200–2208 - 582 Y. Yamano, M. Arai and M. Kobayashi, *Bioorg. Med. Chem. Lett.*, 2012, 22, 4877–4881. - 583 J. Sorres, M.-T. Martin, S. Petek, H. Levaique, T. Cresteil, S. Ramos, O. Thoison, C. Debitus and A. Al-Mourabit, *J. Nat. Prod.*, 2012, 75, 759–763. - 584 I. Paterson, S. M. Dalby, J. C. Roberts, G. J. Naylor, E. A. Guzmán, R. Isbrucker, T. P. Pitts, P. Linley, D. Divlianska, J. K. Reed and A. E. Wright, *Angew. Chem.*, *Int. Ed.*, 2011, 50, 3219–3223. - 585 A. Zampella, M. V. D'Auria, L. Minale and C. Debitus, *Tetrahedron*, 1997, **53**, 3243–3248. - 586 J. Willwacher, N. Kausch-Busies and A. Fürstner, *Angew. Chem.*, *Int. Ed.*, 2012, **51**, 12041–12046. - 587 J. R. Frost, C. M. Pearson, T. N. Snaddon, R. A. Booth and S. V. Ley, *Angew. Chem., Int. Ed.*, 2012, **51**, 9366–9371. - 588 A. Bishara, A. Rudi, M. Aknin, D. Neumann, N. Ben-Califa and Y. Kashman, *Tetrahedron Lett.*, 2008, **49**, 4355–4358. - 589 N. Ben-Califa, A. Bishara, Y. Kashman and D. Neumann, *Invest. New Drugs*, 2012, **30**, 98–104. - 590 D. E. Williams, M. Roberge, R. Van Soest and R. J. Andersen, J. Am. Chem. Soc., 2003, 125, 5296–5297. - 591 D. E. Williams, M. Lapawa, X. Feng, T. Tarling, M. Roberge and R. J. Andersen, *Org. Lett.*, 2004, **6**, 2607–2610. - 592 K. Warabi, D. E. Williams, B. O. Patrick, M. Roberge and R. J. Andersen, *J. Am. Chem. Soc.*, 2007, **129**, 508–509. - 593 M. Suzuki, R. Ueoka, K. Takada, S. Okada, S. Ohtsuka, Y. Ise and S. Matsunaga, *J. Nat. Prod.*, 2012, 75, 1192– 1195. - 594 Y. Hirata and D. Uemura, *Pure Appl. Chem.*, 1986, **58**, 701–710. - 595 A. Yamamoto, A. Ueda, P. Bremond, P. S. Tiseni and Y. Kishi, *J. Am. Chem. Soc.*, 2012, **134**, 893–896. - 596 N. K. Utkina and V. B. Krasokhin, Chem. Nat. Compd., 2012, 48, 715–716. - 597 S. Shen, D. Liu, C. Wei, P. Proksch and W. Lin, *Bioorg. Med. Chem.*, 2012, 20, 6924–6928. - 598 L.-M. Zheng, Y. Zhu, S.-J. Yan and J.-Y. Su, *Heterocycles*, 1998, **14**, 426–427. - 599 Y.-W. Liang, X.-J. Liao, C.-J. Wang, J.-Z. Guo, S. Li and S.-H. Xu, *J. Chem. Res.*, 2012, **12**, 736–737. - 600 C. Cychon, G. Schmidt, T. Mordhorst and M. Köck, *Z. Naturforsch.*, *B: J. Chem. Sci.*, 2012, **67**, 944–950. - 601 M. Ilias, M. A. Ibrahim, S. I. Khan, M. R. Jacob, B. L. Tekwani, L. A. Walker and V. Samoylenko, *Planta Med.*, 2012, 78, 1690–1697. - 602 S. J. Wratten, D. J. Faulkner, K. Hirotsu and J. Clardy, Tetrahedron Lett., 1978, 4345–4348. - 603 M. L. Ciavatta, A. Fontana, R. Puliti, G. Scognamiglio and G. Cimino, *Tetrahedron*, 1999, 55, 12629–12636. - 604 A. M. S. Mayer, E. Avilés and A. D. Rodríguez, *Bioorg. Med. Chem.*, 2012, **20**, 279–282. - 605 E. Quiñoà, M. Adamczeski, P. Crews and G. J. Bakus, *J. Org. Chem.*, 1986, **51**, 4494–4497. - 606 T. A. Johnson, J. Sohn, Y. M. Vaske, K. N. White, T. L. Cohen, H. C. Vervoort, K. Tenney, F. A. Valeriote, L. F. Bjeldanes and P. Crews, *Bioorg. Med. Chem.*, 2012, 20, 4348–4355. - 607 A. E. Wahba, Y. Fromentin, Y. Zou and M. T. Hamann, *Tetrahedron Lett.*, 2012, **53**, 6329–6331. - 608 B. S. Hwang, J. S. Oh, E. J. Jeong, C. J. Sim and J.-R. Rho, *Org. Lett.*, 2012, **14**, 6154–6157. - 609 N. Saito, M. Yoshino, K. Charupant and K. Suwanborirux, *Heterocycles*, 2012, **84**, 309–314. - 610 M. Tatsukawa, L. L. C. Punzalan, H. D. S. Magpantay, I. M. Villaseñor, G. P. Concepcion, K. Suwanborirux, M. Yokoya and N. Saito, *Tetrahedron*, 2012, 68, 7422–7428. - 611 M. Menna, A. Aiello, F. D'Aniello, E. Fattorusso, C. Imperatore, P. Luciano and R. Vitalone, *Mar. Drugs*, 2012, **10**, 2509–2518. - 612 T. Nishi, T. Kubota, J. Fromont, T. Sasaki and J. Kobayashi, *Tetrahedron*, 2008, **64**, 3127–3132. - 613 S. G. Davies, J. A. Lee, P. M. Roberts, R. S. Shah and J. E. Thomson, *Chem. Commun.*, 2012, **48**, 9236–9238. - 614 Y. Lee, K. H. Jang, J.-E. Jeon, W.-Y. Yang, C. J. Sim, K.-B. Oh and
J. Shin, *Mar. Drugs*, 2012, **10**, 2126–2137. - 615 G. Schmidt, C. Timm and M. Köck, *Org. Biomol. Chem.*, 2009, 7, 3061–3064. - 616 A. Grube, C. Timm and M. Köck, Eur. J. Org. Chem., 2006, 1285–1295. - 617 G. Schmidt, C. Timm, A. Grube, C. A. Volk and M. Köck, *Chem.-Eur. J.*, 2012, **18**, 8180–8189. - 618 M. Lunder, G. Drevenšek, S. Hawlina, K. Sepčić and L. Žiberna, *Toxicon*, 2012, **60**, 1041–1048. - 619 R.-P. Wang, H.-W. Lin, L.-Z. Li, P.-Y. Gao, Y. Xu and S.-J. Song, *Biochem. Syst. Ecol.*, 2012, **43**, 210–213. - 620 H. Prawat, C. Mahidol, W. Kaweetripob, S. Wittayalai and S. Ruchirawat, *Tetrahedron*, 2012, **68**, 6881–6886. - 621 M. Tsuda, N. Kawasaki and J. Kobayashi, *Tetrahedron Lett.*, 1994, **35**, 4387–4388. - 622 H. Ishiyama, Y. Mori, T. Matsumoto and J. Kobayashi, *Heterocycles*, 2012, **86**, 1009–1014. - 623 R. Yamanokuchi, K. Imada, M. Miyazaki, H. Kato, T. Watanabe, M. Fujimuro, Y. Saeki, S. Yoshinaga, H. Terasawa, N. Iwasaki, H. Rotinsulu, F. Losung, R. E. P. Mangindaan, M. Namikoshi, N. J. de Voogd, H. Yokosawa and S. Tsukamoto, *Bioorg. Med. Chem.*, 2012, 20, 4437–4442. - 624 T. Abe, A. Kukita, K. Akiyama, T. Naito and D. Uemura, *Chem. Lett.*, 2012, **41**, 728–729. - 625 E. G. Lyakhova, S. A. Kolesnikova, A. I. Kalinovsky, S. S. Afiyatullov, S. A. Dyshlovoy, V. B. Krasokhin, C. V. Minh and V. A. Stonik, *Tetrahedron Lett.*, 2012, 53, 6119–6122. - 626 Y. Takahashi, N. Tanaka, T. Kubota, H. Ishiyama, A. Shibazaki, T. Gonoi, J. Fromont and J. Kobayashi, *Tetrahedron*, 2012, 68, 8545–8550. - 627 C. Liu, X. Tang, P. Li and G. Li, *Org. Lett.*, 2012, **14**, 1994–1997. - 628 F. Yang, M. T. Hamann, Y. K. Zou, M.-Y. Zhang, X.-B. Gong, J.-R. Xiao, W.-S. Chen and H.-W. Lin, *J. Nat. Prod.*, 2012, 75, 774–778. - 629 T. D. Nguyen, X. C. Nguyen, A. Longeon, A. Keryhuel, M. H. Le, Y. H. Kim, V. M. Chau and M.-L. Bourguet-Kondracki, *Tetrahedron*, 2012, 68, 9256–9259. - 630 M. A. Fouad, A. Debbab, V. Wray, W. E. G. Müller and P. Proksch, *Tetrahedron*, 2012, **68**, 10176–10179. - 631 R. G. Linington, D. E. Williams, A. Tahir, R. van Soest and R. J. Andersen, *Org. Lett.*, 2003, 5, 2735–2738. - 632 G. W. Carlile, R. A. Keyzers, K. A. Teske, R. Robert, D. E. Williams, R. G. Linington, C. A. Gray, R. M. Centko, L. Yan, S. M. Anjos, H. M. Sampson, D. Zhang, J. Liao, J. W. Hanrahan, R. J. Andersen and D. Y. Thomas, *Chem. Biol.*, 2012, 19, 1288–1299. - 633 M. Fujita, Y. Nakao, S. Matsunaga, M. Seiki, Y. Itoh, J. Yamashita, R. W. M. van Soest and N. Fusetani, *J. Am. Chem. Soc.*, 2003, 125, 15700–15701. - 634 U. Bickmeyer, Mar. Drugs, 2012, 10, 223-233. - 635 D. C. Radisky, E. S. Radisky, L. R. Barrows, B. R. Copp, R. A. Kramer and C. M. Ireland, *J. Am. Chem. Soc.*, 1993, 115, 1632–1638. - 636 T. Oshiyama, T. Satoh, K. Okano and H. Tokuyama, *Tetrahedron*, 2012, **68**, 9376–9383. - 637 R. A. Davis, M. S. Buchanan, S. Duffy, V. M. Avery, S. A. Charman, W. N. Charman, K. L. White, D. M. Shackleford, M. D. Edstein, K. T. Andrews, D. Camp and R. J. Quinn, *J. Med. Chem.*, 2012, 55, 5851–5858. - 638 S. Bondu, G. Genta-Jouve, M. Leiròs, C. Vale, J. M. Guigonis, L. M. Botana and O. P. Thomas, *RSC Adv.*, 2012, 2, 2828–2835. - 639 S. Takishima, A. Ishiyama, M. Iwatsuki, K. Otoguro, H. Yamada, S. Omura, H. Kobayashi, R. W. M. van Soest and S. Matsunaga, *Org. Lett.*, 2009, **11**, 2655–2658. - 640 N. R. Babij and J. P. Wolfe, *Angew. Chem., Int. Ed.*, 2012, **51**, 4128–4130. - 641 T. N. Makarieva, K. M. Tabakmaher, A. G. Guzii, V. A. Denisenko, P. S. Dmitrenok, A. S. Kuzmich, H.-S. Lee and V. A. Stonik, *Tetrahedron Lett.*, 2012, 53, 4228–4231. - 642 W. Hassan, R. Edrada, R. Ebel, V. Wray, A. Berg, R. van Soest, S. Wiryowidagdo and P. Proksch, *J. Nat. Prod.*, 2004, **67**, 817–822. - 643 J. Das, P. B. Koswatta, J. D. Jones, M. Yousufuddin and C. J. Lovely, *Org. Lett.*, 2012, **14**, 6210–6213. - 644 J. B. Gibbons, K. M. Gligorich, B. E. Welm and R. E. Looper, *Org. Lett.*, 2012, **14**, 4734–4737. - 645 H. Zhang, M. M. Conte, X.-C. Huang, Z. Khalil and R. J. Capon, *Org. Biomol. Chem.*, 2012, **10**, 2656–2663. - 646 H. Zhang, M. M. Conte, Z. Khalil, X.-C. Huang and R. J. Capon, *RSC Adv.*, 2012, **2**, 4209–4214. - 647 T. Kubota, A. Araki, T. Yasuda, M. Tsuda, J. Fromont, K. Aoyama, Y. Mikami, M. R. Wälchli and J. Kobayashi, *Tetrahedron Lett.*, 2009, **50**, 7268–7270. - 648 T. Endo, M. Tsuda, T. Okada, S. Mitsuhasi, H. Shima, K. Kikuchi, Y. Mikami, J. Fromont and J. Kobayashi, *J. Nat. Prod.*, 2004, **67**, 1262–1267. - 649 S. Forenza, L. Minale, R. Riccio and E. Fattorusso, *J. Chem. Soc. Chem. Commun.*, 1971, 1129–1130. - 650 E. P. Stout, B. I. Morinaka, Y.-G. Wang, D. Romo and T. F. Molinski, *J. Nat. Prod.*, 2012, 75, 527–530. - 651 E. P. Stout, Y.-G. Wang, D. Romo and T. F. Molinski, *Angew. Chem., Int. Ed.*, 2012, **51**, 4877–4881. - 652 J. Kobayashi, M. Tsuda, T. Murayama, H. Nakamura, Y. Ohizumi, M. Ishibashi, M. Iwamura, T. Ohta and S. Nozoe, *Tetrahedron*, 1990, 46, 5579–5586. 653 X. Wang, X. Wang, X. Tan, J. Lu, K. W. Cormier, Z. Ma and C. Chen, *J. Am. Chem. Soc.*, 2012, **134**, 18834–18842. - 654 H. Zhang, Z. Khalil, M. M. Conte, F. Plisson and R. J. Capon, *Tetrahedron Lett.*, 2012, 53, 3784–3787. - 655 J. Munoz, C. Moriou, J.-F. Gallard, P. D. Marie and A. Al-Mourabit, *Tetrahedron Lett.*, 2012, 53, 5828–5832. - 656 M. D'Ambrosio, A. Guerriero, P. Traldi and F. Pietra, *Tetrahedron Lett.*, 1982, 23, 4403–4406. - 657 G. M. Sharma and P. R. Burkholder, *Tetrahedron Lett.*, 1976, 17, 4147–4150. - 658 E. A. Santalova, Nat. Prod. Commun., 2012, 7, 617-619. - 659 L. A. Shaala, D. T. A. Youssef, M. Sulaiman, F. A. Behery, A. I. Foudah and K. A. El Sayed, *Mar. Drugs*, 2012, **10**, 2492– 2508. - 660 Y. Feng, B. F. Bowden and V. Kapoor, *Bioorg. Med. Chem. Lett.*, 2012, 22, 3398–3401. - 661 T. Kubota, S. Watase, H. Mukai, J. Fromont and J. Kobayashi, *Chem. Pharm. Bull.*, 2012, **60**, 1599–1601. - 662 M. Xu, R. A. Davis, Y. Feng, M. L. Sykes, T. Shelper, V. M. Avery, D. Camp and R. J. Quinn, *J. Nat. Prod.*, 2012, 75, 1001–1005. - 663 S. Yin, R. A. Davis, T. Shelper, M. L. Sykes, V. M. Avery, M. Elofsson, C. Sundin and R. J. Quinn, *Org. Biomol. Chem.*, 2011, 9, 6755–6760. - 664 J. M. Hillgren, C. T. Öberg and M. Elofsson, *Org. Biomol. Chem.*, 2012, **10**, 1246–1254. - 665 C. Jimenez and P. Crews, *Tetrahedron*, 1991, 47, 2097–2102. - 666 N. Fusetani, Y. Masuda, Y. Nakao, S. Matsunaga and R. W. M. van Soest, *Tetrahedron*, 2001, 57, 7507–7511. - 667 S. K. Kottakota, M. Benton, D. Evangelopoulos, J. D. Guzman, S. Bhakta, T. D. McHugh, M. Gray, P. W. Groundwater, E. C. L. Marrs, J. D. Perry and J. J. Harburn, *Org. Lett.*, 2012, 14, 6310–6313. - 668 R. Xynas and R. J. Capon, *Aust. J. Chem.*, 1989, **42**, 1427–1433. - 669 T. Evan, A. Rudi, M. Ilan and Y. Kashman, *J. Nat. Prod.*, 2001, **64**, 226–227. - 670 M. R. Kernan, R. C. Cambie and P. R. Bergquist, *J. Nat. Prod.*, 1990, **53**, 720–723. - 671 S. Tilvi, C. Rodrigues, C. G. Naik, P. S. Parameswaran and S. Wahidhulla, *Tetrahedron*, 2004, **60**, 10207–10215. - 672 M. Tsuda, Y. Sakuma and J. Kobayashi, *J. Nat. Prod.*, 2001, **64**, 980–982. - 673 S. K. Kottakota, D. Evangelopoulos, A. Alnimr, S. Bhakta, T. D. McHugh, M. Gray, P. W. Groundwater, E. C. L. Marrs, J. D. Perry, C. D. Spilling and J. J. Harburn, J. Nat. Prod., 2012, 75, 1090–1101. - 674 J. Kobayashi, K. Honma, T. Sasaki and M. Tsuda, *Chem. Pharm. Bull.*, 1995, **43**, 403–407. - 675 G. Cimino, S. De Rosa, S. De Stefano, R. Self and G. Sodano, *Tetrahedron Lett.*, 1983, **24**, 3029–3032. - 676 A. A. Salim, Z. G. Khalil and R. J. Capon, *Tetrahedron*, 2012, 68, 9802–9807. - 677 A. D. Wright, P. J. Schupp, J.-P. Schrör, A. Engemann, S. Rohde, D. Kelman, N. de Voogd, A. Carroll and C. A. Motti, *J. Nat. Prod.*, 2012, 75, 502–506. - 678 L. Mani, V. Jullian, B. Mourkazel, A. Valentin, J. Dubois, T. Cresteil, E. Folcher, J. N. A. Hooper, D. Erpenbeck, W. Aalbersberg and C. Debitus, *Chem. Biodiversity*, 2012, 9, 1436–1451. - 679 I. W. Mudianta, T. Skinner-Adams, K. T. Andrews, R. A. Davis, T. A. Hadi, P. Y. Hayes and M. J. Garson, *J. Nat. Prod.*, 2012, 75, 2132–2143. - 680 L. Calcul, W. D. Inman, A. A. Morris, K. Tenney, J. Ratnam, J. H. McKerrow, F. A. Valeriote and P. Crews, *J. Nat. Prod.*, 2010, 73, 365–372. - 681 S. Pérez-Rodriguez, R. Pereira-Cameselle and Á. R. de Lera, Org. Biomol. Chem., 2012, 10, 6945–6950. - 682 L. K. Shubina, A. I. Kalinovsky, T. N. Makarieva, S. N. Fedorov, S. A. Dyshlovoy, P. S. Dmitrenok, I. I. Kapustina, E. Mollo, N. K. Utkina, V. B. Krasokhin, V. A. Denisenko and V. A. Stonik, *Nat. Prod. Commun.*, 2012, 7, 487–490. - 683 W.-H. Jiao, X.-J. Huang, J.-S. Yang, F. Yang, S.-J. Piao, H. Gao, J. Li, W.-C. Ye, X.-S. Yao, W.-S. Chen and H.-W. Lin, *Org. Lett.*, 2012, 14, 202–205. - 684 V. J. R. V. Mukku, R. A. Edrada, F. J. Schmitz, M. K. Shanks, B. Chaudhuri and D. Fabbro, *J. Nat. Prod.*, 2003, **66**, 686–689. - 685 E. Alvarez-Manzaneda, R. Chahboun, E. Alvarez, A. Fernández, R. Alvarez-Manzaneda, A. Haidour, J. M. Ramos and A. Akhaouzan, *Chem. Commun.*, 2012, 48, 606–608. - 686 H.-S. Lee, Y.-J. Lee, J. W. Lee, H. J. Shin, J. S. Lee, K.-N. Kim, W.-J. Yoon, S.-J. Heo and H.-K. Kim, *Heterocycles*, 2012, **85**, 1437–1446. - 687 A. Fukami, Y. Ikdea, S. Kondo, H. Naganawa, T. Takeuchi, S. Furuya, Y. Hirabashi, K. Shimoike, S. Hosaka, Y. Watanabe and K. Umezawa, *Tetrahedron Lett.*, 1997, 38, 1201–1202. - 688 H. Hosoi, N. Kawai, H. Hagiwara, T. Suzuki, A. Nakazaki, K. Takao, K. Umezawa and S. Kobayashi, *Chem. Pharm. Bull.*, 2012, **60**, 137–143. - 689 D. E. Williams, A. Steino, N. J. de Voogd, A. G. Mauk and R. J. Andersen, *J. Nat. Prod.*, 2012, **75**, 1451–1458. - 690 R. J. Clark, B. L. Stapleton and M. J. Garson, *Tetrahedron*, 2000, **56**, 3071–3076. - 691 A. D. Wright, Comp. Biochem. Physiol., 2003, 134A, 307–313. - 692 H. Mitome, N. Shirato, H. Miyaoka, Y. Yamada and R. W. M. van Soest, *J. Nat. Prod.*, 2004, **67**, 833–837. - 693 K.
Nishikawa, T. Umezawa, M. J. Garson and F. Matsuda, *J. Nat. Prod.*, 2012, 75, 2232–2235. - 694 N. Tanaka, S. Suto, H. Ishiyama, T. Kubota, A. Yamano, M. Shiro, J. Fromont and J. Kobayashi, *Org. Lett.*, 2012, 14, 3498–3501. - 695 M. S. Butler and R. J. Capon, *Aust. J. Chem.*, 1992, **45**, 1705–1743. - 696 S. De Rosa, R. Puliti, A. Crispino, A. De Giulio, C. De Sena, C. Iodice and C. A. Mattia, *Tetrahedron*, 1995, 51, 10731– 10736 - 697 P. S. Deore and N. P. Argade, *J. Org. Chem.*, 2012, 77, 739–746. - 698 Y. Xu, J.-H. Lang, W.-H. Jiao, R.-P. Wang, Y. Peng, S.-J. Song, B.-H. Zhang and H.-W. Lin, *Mar. Drugs*, 2012, 10, 1445–1458. - 699 Y. Xu, N. Li, W.-H. Jiao, R.-P. Wang, Y. Peng, S.-H. Qi, S.-J. Song, W.-S. Chen and H.-W. Lin, *Tetrahedron*, 2012, 68, 2876–2883. - 700 C. W. J. Chang, A. Patra, D. M. Roll, P. J. Scheuer, G. K. Matsumoto and J. Clardy, *J. Am. Chem. Soc.*, 1984, 106, 4644–4646. - 701 H. Miyako, M. Shimomura, H. Kimura and Y. Yamada, *Tetrahedron*, 1998, **54**, 13467–13474. - 702 C. W. J. Chang, A. Patra, J. A. Baker and P. J. Scheuer, *J. Am. Chem. Soc.*, 1987, **109**, 6119–6123. - 703 H. Miyaoka, Y. Abe, N. Sekiya, H. Mitome and E. Kawashima, *Chem. Commun.*, 2012, **48**, 901–903. - 704 H. Miyaoka, Y. Abe and E. Kawashima, Chem. Pharm. Bull., 2012, 60, 1224–1226. - 705 R. Kazlauskas, P. T. Murphy, R. J. Wells and J. F. Blount, *Tetrahedron Lett.*, 1980, 21, 315–318. - 706 S. V. Pronin and R. A. Shenvi, *J. Am. Chem. Soc.*, 2012, **134**, 19604–19606. - 707 N. Chanthathamrongsiri, S. Yuenyongsawad, C. Wattanapiromsakul and A. Plubrukarn, *J. Nat. Prod.*, 2012, 75, 789–792. - 708 S. Tang, R. Xu, W. Lin and H. Duan, *Rec. Nat. Prod.*, 2012, 6, 398–401. - 709 M. H. Uddin, M. K. Hossain, M. Nigar, M. C. Roy and J. Tanaka, *Chem. Nat. Compd.*, 2012, **48**, 412–415. - 710 P. L. Katavic, P. Jumaryatno, J. N. A. Hooper, J. T. Blanchfield and M. J. Garson, *Aust. J. Chem.*, 2012, 65, 531–538. - 711 P. Gupta, U. Sharma, T. C. Schulz, A. B. McLean, A. J. Robins and L. M. West, *J. Nat. Prod.*, 2012, 75, 1223–1227. - 712 E. P. Stout, L. C. Yu and T. F. Molinski, *Eur. J. Org. Chem.*, 2012, 27, 5131–5135. - 713 T. Kubota, T. Iwai, A. Takahashi-Nakaguchi, J. Fromont, T. Gonoi and J. Kobayashi, *Tetrahedron*, 2012, **68**, 9738–9744. - 714 W. He, X. Lin, T. Xu, J. H. Jung, H. Yin, B. Yang and Y. Liu, *Chem. Nat. Compd.*, 2012, **48**, 208–210. - 715 S. R. M. Ibrahim, Nat. Prod. Commun., 2012, 7, 9-12. - 716 R. Forestieri, C. E. Merchant, N. J. de Voogd, T. Matainaho, T. J. Kieffer and R. J. Andersen, *Org. Lett.*, 2009, **11**, 5166–5169. - 717 J. Huang, J. R. Yang, J. Zhang and J. Yang, *J. Am. Chem. Soc.*, 2012, **134**, 8806–8809. - 718 M. Xuan, I. Paterson and S. M. Dalby, *Org. Lett.*, 2012, **14**, 5492–5495. - 719 W. Wang, Y. Lee, T. G. Lee, B. Mun, A. G. Giri, J. Lee, H. Kim, D. Hahn, I. Yang, J. Chin, H. Choi, S.-J. Nam and H. Kang, *Org. Lett.*, 2012, 14, 4486–4489. - 720 T. Diyabalanage, R. Ratnayake, H. R. Bokesch, T. T. Ransom, C. J. Henrich, J. A. Beutler, J. B. McMahon and K. R. Gustafson, *J. Nat. Prod.*, 2012, 75, 1490–1494. - 721 Y.-C. Chang, S.-W. Tseng, L.-L. Liu, Y. Chou, Y.-S. Ho, M.-C. Lu and J.-H. Su, *Mar. Drugs*, 2012, **10**, 987–997. - 722 G. Cimino, S. De Stefano and L. Minale, *Experientia*, 1974, **30**, 846–847. - 723 L. Margarucci, M. C. Monti, M. G. Chini, A. Tosco, R. Riccio, G. Bifulco and A. Casapullo, *ChemBioChem*, 2012, 13, 2259–2264. - 724 C. Festa, S. De Marino, M. V. D'Auria, G. Bifulco, B. Renga, S. Fiorucci, S. Petek and A. Zampella, *J. Med. Chem.*, 2011, 54, 401–405. - 725 V. Sepe, R. Ummarino, M. V. D'Auria, B. Renga, S. Fiorucci and A. Zampella, *Eur. J. Org. Chem.*, 2012, 27, 5187– 5194. - 726 R. Teta, G. Della Sala, B. Renga, A. Mangoni, S. Fiorucci and V. Costantino, *Mar. Drugs*, 2012, **10**, 1383–1390. - 727 S. V. S. Govindam, B.-K. Choi, Y. Yoshioka, A. Kanamoto, T. Fujiwara, T. Okamoto and M. Ojika, *Biosci., Biotechnol., Biochem.*, 2012, **76**, 999–1002. - 728 V. Sepe, R. Ummarino, M. V. D'Auria, M. G. Chini, G. Bifulco, B. Renga, C. D'Amore, C. Debitus, S. Fiorucci and A. Zampella, *J. Med. Chem.*, 2012, 55, 84–93. - 729 M. G. Chini, C. R. Jones, A. Zampella, M. V. D'Auria, B. Renga, S. Fiorucci, C. P. Butts and G. Bifulco, *J. Org. Chem.*, 2012, 77, 1489–1496. - 730 S. De Marino, R. Ummarino, M. V. D'Auria, M. G. Chini, G. Bifulco, C. D'Amore, B. Renga, A. Mencarelli, S. Petek, S. Fiorucci and A. Zampella, *Steroids*, 2012, 77, 484–495. - 731 J.-K. Guo, C.-Y. Chiang, M.-C. Lu, W.-B. Chang and J.-H. Su, *Mar. Drugs*, 2012, **10**, 1536–1544. - 732 F. Berrué, M. W. B. McCulloch, P. Boland, S. Hart, M. K. Harper, J. Johnston and R. Kerr, *J. Nat. Prod.*, 2012, 75, 2094–2100. - 733 S. Ushiyama, H. Umaoka, H. Kato, Y. Suwa, H. Morioka, H. Rotinsulu, F. Losung, R. E. P. Mangindaan, N. J. de Voogd, H. Yokosawa and S. Tsukamoto, *J. Nat. Prod.*, 2012, 75, 1495–1499. - 734 W. Zhang and C. Che, J. Nat. Prod., 2001, 64, 1489-1492. - 735 F. W. K. Cheung, J. Guo, Y.-H. Ling, C.-T. Che and W.-K. Liu, *Mar. Drugs*, 2012, **10**, 465–476. - 736 J.-H. Lee, J.-E. Jeon, Y.-J. Lee, H.-S. Lee, C. J. Sim, K.-B. Oh and J. Shin, *J. Nat. Prod.*, 2012, 75, 1365–1372. - 737 J. Li, H. J. Zhu, J. Ren, Z. Deng, N. J. de Voogd, P. Proksch and W. Lin, *Tetrahedron*, 2012, **68**, 559–565. - 738 V. Costantino, G. D. Sala, A. Mangoni, C. Perinu and R. Teta, *Eur. J. Org. Chem.*, 2012, 27, 5171–5176. - 739 M. Y. Putra, A. Ianaro, E. Panza, G. Bavestrello, C. Cerrano, E. Fattorusso and O. Taglialatela-Scafati, *Bioorg. Med. Chem. Lett.*, 2012, 22, 2723–2725. - 740 M. Y. Putra, A. Ianaro, E. Panza, G. Bavestrello, C. Cerrano, E. Fattorusso and O. Taglialatela-Scafati, *Tetrahedron Lett.*, 2012, 53, 3937–3939. - 741 J. G. L. Almeida, A. I. V. Maia, D. V. Wilke, E. R. Silveira, R. Braz-Filho, J. J. La Clair, L. V. Costa-Lotufo and O. D. L. Pessoa, *Mar. Drugs*, 2012, 10, 2846–2860. - 742 A. Alfonso, A. Fernandez-Araujo, C. Alfonso, B. Carames, A. Tobio, M. C. Louzao, M. R. Vieytes and L. M. Botana, *Anal. Biochem.*, 2012, **424**, 64–70. - 743 S.-K. Wang, Y.-S. Lee and C.-Y. Duh, *Mar. Drugs*, 2012, **10**, 1528–1535. 744 H. Shi, S. Yu, D. Liu, L. van Ofwegen, P. Proksch and W. Lin, *Mar. Drugs*, 2012, **10**, 1331–1344. - 745 D. Chen, S. Yu, L. van Ofwegen, P. Proksch and W. Lin, *J. Agric. Food Chem.*, 2012, **60**, 112–123. - 746 N. Gören, A. Ulubelen, J. Jakupovic, F. Bohlmann and M. Grenz, *Phytochemistry*, 1984, 23, 2281–2284. - 747 C.-H. Lee, C.-Y. Kao, S.-Y. Kao, C.-H. Chang, J.-H. Su, T.-L. Hwang, Y.-H. Kuo, Z.-H. Wen and P.-J. Sung, *Mar. Drugs*, 2012, **10**, 427–438. - 748 P.-J. Sung, S.-Y. Kao, C.-Y. Kao, Y.-C. Chang, Y.-H. Chen and Y.-D. Su, *Biochem. Syst. Ecol.*, 2012, **40**, 53–55. - 749 L.-S. Huang, F. He, H. Huang, X.-Y. Zhang and S.-H. Qi, *Beilstein J. Org. Chem.*, 2012, **8**, 170–176. - 750 J.-H. Su, C.-Y. Huang, P.-J. Li, Y. Lu, Z.-H. Wen, Y.-H. Kao and J.-H. Sheu, *Arch. Pharmacal Res.*, 2012, **35**, 779–784. - 751 Y.-J. Tseng, K.-P. Shen, H.-L. Lin, C.-Y. Huang, C.-F. Dai and J.-H. Sheu, *Mar. Drugs*, 2012, **10**, 1572–1581. - 752 J.-R. Zhang, P.-L. Li, X.-L. Tang, X. Qi and G.-Q. Li, *Chem. Biodiversity*, 2012, **9**, 2218–2224. - 753 R. A. Keyzers, C. A. Gray, M. H. Schleyer, C. E. Whibley, D. T. Hendricks and M. T. Davies-Coleman, *Tetrahedron*, 2006, 62, 2200–2206. - 754 H. Sorek, A. Rudi, Y. Benayahu, N. Ben-Califa, D. Neumann and Y. Kashman, *J. Nat. Prod.*, 2007, 70, 1104–1109. - 755 L.-G. Yao, H.-Y. Zhang, L.-F. Liang, X.-J. Guo, S.-C. Mao and Y.-W. Guo, *Helv. Chim. Acta*, 2012, **95**, 235–239. - 756 E. Tello, L. Castellanos, C. Arévalo-Ferro and C. Duque, *J. Nat. Prod.*, 2012, 75, 1637–1642. - 757 Y.-S. Lin, N.-L. Lee, M.-C. Lu and J.-H. Su, *Molecules*, 2012, 17, 5422–5429. - 758 S.-K. Wang, M.-K. Hsieh and C.-Y. Duh, *Mar. Drugs*, 2012, **10**, 1433–1444. - 759 M. Qin, X. Li and B. Wang, *Chin. J. Chem.*, 2012, **30**, 1278–1282. - 760 W.-H. Yen, L.-C. Hu, J.-H. Su, M.-C. Lu, W.-H. Twan, S.-Y. Yang, Y.-C. Kuo, C.-F. Weng, C.-H. Lee, Y.-H. Kuo and P.-J. Sung, *Molecules*, 2012, 17, 14058–14066. - 761 B. Yang, X. Zhou, H. Huang, X.-W. Yang, J. Liu, X. Lin, X. Li, Y. Peng and Y. Liu, Mar. Drugs, 2012, 10, 2023–2032. - 762 R. Kazlauskas, P. T. Murphy, R. J. Wells, P. Schönholzer and J. C. Coll, *Aust. J. Chem.*, 1978, 31, 1817–1824. - 763 H.-J. Shih, Y.-J. Tseng, C.-Y. Huang, Z.-H. Wen, C.-F. Dai and J.-H. Sheu, *Tetrahedron*, 2012, **68**, 244–249. - 764 N. P. Thao, N. H. Nam, N. X. Cuong, T. H. Quang, P. T. Tung, B. H. Tai, B. T. T. Luyen, D. Chae, S. Kim, Y.-S. Koh, P. V. Kiem, C. V. Minh and Y. H. Kim, *Chem. Pharm. Bull.*, 2012, **60**, 1581–1589. - 765 M.-E. F. Hegazy, A. M. G. Eldeen, A. A. Shahat, F. F. Abdel-Latif, T. A. Mohamed, B. R. Whittlesey and P. W. Pare, *Mar. Drugs*, 2012, **10**, 209–222. - 766 J.-y. Su, S.-j. Yan and L.-m. Zeng, Chem. J. Chin. Univ., 2001, 22, 1515–1517. - 767 D. Czarkie, S. Carmely, A. Groweiss and Y. Kashman, *Tetrahedron*, 1985, 41, 1049–1056. - 768 S.-K. Wang and C.-Y. Duh, *Mar. Drugs*, 2012, **10**, 306–318. - 769 W.-Y. Lin, Y. Lu, B.-W. Chen, C.-Y. Huang, J.-H. Su, Z.-H. Wen, C.-F. Dai, Y.-H. Kuo and J.-H. Sheu, *Mar. Drugs*, 2012, 10, 617–626. - 770 S.-P. Chen, B.-W. Chen, C.-F. Dai, P.-J. Sung, Y.-C. Wu and J.-H. Sheu, *Bull. Chem. Soc. Jpn.*, 2012, **85**, 920–922. - 771 M. Kobayashi and T. Hirase, *Chem. Pharm. Bull.*, 1990, 38, 2442–2445. - 772 S.-T. Lin, S.-K. Wang and C.-Y. Duh, *Mar. Drugs*, 2011, 9, 2705–2716. - 773 S. Shen, H. Zhu, D. Chen, D. Liu, L. van Ofwegen, P. Proksch and W. Lin, *Tetrahedron Lett.*, 2012, 53, 5759– 5762. - 774 J.-Y. Chang, A. E. Fazary, Y.-C. Lin, T.-L. Hwang and Y.-C. Shen, *Chem. Biodiversity*, 2012, **9**, 654–661. - 775 D. Chen, D. Liu, S. Shen, W. Cheng and W. Lin, *Chin. J. Chem.*, 2012, **30**, 1459–1463. - 776 A. D. Wright, J. L. Nielson, D. M. Tapiolas, C. H. Liptrot and C. A. Motti, *Mar. Drugs*, 2012, **10**, 1619–1630. - 777 D. H. Marchbank and R.
G. Kerr, *Tetrahedron*, 2011, **67**, 3053–3061. - 778 D. H. Marchbank, F. Berrue and R. G. Kerr, *J. Nat. Prod.*, 2012, 75, 1289–1293. - 779 S. V. S. Govindam, Y. Yoshioka, A. Kanamoto, T. Fujiwara, T. Okamoto and M. Ojika, *Bioorg. Med. Chem.*, 2012, **20**, 687–692. - 780 R. W. Dunlop and R. J. Wells, *Aust. J. Chem.*, 1979, 32, 1345–1351. - 781 X. Wei, K. Nieves and A. D. Rodríguez, *Pure Appl. Chem.*, 2012, **84**, 1847–1855. - 782 S. A. Look, W. Fenical, Z. Qi-tai and J. Clardy, *J. Org. Chem.*, 1984, **49**, 1417–1423. - 783 H.-J. Su, N.-L. Lee, M.-C. Lu and J.-H. Su, *Nat. Prod. Commun.*, 2012, 7, 479–480. - 784 C.-H. Cheng, Y.-S. Lin, Z.-H. Wen and J.-H. Su, *Molecules*, 2012, 17, 10072–10078. - 785 P. K. Roy, W. Maarisit, S. R. Roy, J. Taira and K. Ueda, *Heterocycles*, 2012, **85**, 2465–2472. - 786 P. K. Roy, W. Maarisit, M. C. Roy, J. Taira and K. Ueda, *Mar. Drugs*, 2012, **10**, 2741–2748. - 787 D. Lai, D. Liu, Z. Deng, L. van Ofwegen, P. Proksch and W. Lin, *J. Nat. Prod.*, 2012, **75**, 1595–1602. - 788 S.-L. Wu, J.-H. Su, C.-Y. Huang, C.-J. Tai, P.-J. Sung, C.-C. Liaw and J.-H. Sheu, *Mar. Drugs*, 2012, **10**, 1203–1211. - 789 B.-W. Chen, Y.-C. Wu, M. Y. Chiang, J.-H. Su, W.-H. Wang, T.-Y. Fan and J.-H. Sheu, *Tetrahedron*, 2009, **65**, 7016–7022. - 790 Y.-H. Chen, T.-L. Hwang, Y.-D. Su, Y.-C. Chang, Y.-H. Chen, P.-H. Hong, L.-C. Hu, W.-H. Yen, H.-Y. Hsu, S.-J. Huang, Y.-H. Kuo and P.-J. Sung, *Chem. Pharm. Bull.*, 2012, **60**, 160–163. - 791 Y.-H. Chen, C.-Y. Tai, T.-L. Hwang and P.-J. Sung, *Nat. Prod. Commun.*, 2012, 7, 481–484. - 792 J. F. Gómez-Reyes, A. Salazar, H. M. Guzmán, Y. González, P. L. Fernández, A. Ariza-Castolo and M. Gutiérrez, *Mar. Drugs*, 2012, 10, 2608–2617. - 793 S.-T. Ishigami, Y. Goto, N. Inoue, S.-I. Kawazu, Y. Matsumoto, Y. Imahara, M. Tarumi, H. Nakai, - N. Fusetani and Y. Nakao, *J. Org. Chem.*, 2012, 77, 10962–10966. - 794 H.-M. Chung, L.-C. Hu, W.-H. Yen, J.-H. Su, M.-C. Lu, T.-L. Hwang, W.-H. Wang and P.-J. Sung, *Mar. Drugs*, 2012, 10, 2246–2253. - 795 C.-H. Cheng, H.-M. Chung, T.-L. Hwang, M.-C. Lu, Z.-H. Wen, Y.-H. Kuo, W.-H. Wang and P.-J. Sung, *Molecules*, 2012, 17, 9443–9450. - 796 H.-M. Chung, P.-H. Hong, J.-H. Su, T.-L. Hwang, M.-C. Lu, L.-S. Fang, Y.-C. Wu, J.-J. Li, J.-J. Chen, W.-H. Wang and P.-J. Sung, *Mar. Drugs*, 2012, **10**, 1169–1179. - 797 K. Ota, N. Okamoto, H. Mitome and H. Miyaoka, *Heterocycles*, 2012, **85**, 135–145. - 798 P.-H. Hong, Y.-D. Su, N.-C. Lin, Y.-H. Chen, Y.-H. Kuo, T.-L. Hwang, W.-H. Wang, J.-J. Chen, J.-H. Sheu and P.-J. Sung, *Tetrahedron Lett.*, 2012, 53, 1710–1712. - 799 P.-H. Hong, Y.-D. Su, J.-H. Su, Y.-H. Chen, T.-L. Hwang, C.-F. Weng, C.-H. Lee, Z.-H. Wen, J.-H. Sheu, N.-C. Lin, Y.-H. Kuo and P.-J. Sung, *Mar. Drugs*, 2012, 10, 1156–1168. - 800 Y.-D. Su, T.-L. Hwang, N.-C. Lin, Y.-H. Chen, Y.-C. Wu, J.-H. Sheu and P.-J. Sung, *Bull. Chem. Soc. Jpn.*, 2012, 85, 1031–1036. - 801 T.-T. Yeh, S.-K. Wang, C.-F. Dai and C.-Y. Duh, *Mar. Drugs*, 2012, **10**, 1019–1026. - 802 S.-K. Wang, T.-T. Yeh and C.-Y. Duh, *Mar. Drugs*, 2012, **10**, 2103–2110. - 803 C. Li, M.-P. La, H. Tang, W.-H. Pan, P. Sun, K. Krohn, Y.-H. Yi, L. Li and W. Zhang, *Bioorg. Med. Chem. Lett.*, 2012, 22, 4368–4372. - 804 J.-Y. Chang, C.-C. Liaw, A. E. Fazary, T.-L. Hwang and Y.-C. Shen, *Mar. Drugs*, 2012, **10**, 1321–1330. - 805 S.-H. Qi, S. Zhang, P.-Y. Qian, Z.-H. Xiao and M.-Y. Li, *Tetrahedron*, 2006, **62**, 9123–9130. - 806 R. J. Meginley, P. Gupta, T. C. Schulz, A. B. McLean, A. J. Robins and L. M. West, *Mar. Drugs*, 2012, **10**, 1662– 1670. - 807 B. S. Mootoo, R. Ramsewak, R. Sharma, W. F. Tinto, A. J. Lough, S. McLean, W. F. Reynolds, J.-P. Yang and M. Yu, *Tetrahedron*, 1996, 52, 9953–9962. - 808 C.-H. Chao, K.-J. Chou, C.-Y. Huang, Z.-H. Wen, C.-H. Hsu, Y.-C. Wu, C.-F. Dai and J.-H. Sheu, *Mar. Drugs*, 2012, **10**, 439–450. - 809 X.-Y. Chai, J.-F. Sun, L.-Y. Tang, X.-W. Yang, Y.-Q. Li, H. Huang, X.-F. Zhou, B. Yang and Y. Liu, *Chem. Pharm. Bull.*, 2010, 58, 1391–1394. - 810 P. Sun, Y. Xu, T. Liu, H. Tang, Y. Yi, K. Krohn, L. Li and W. Zhang, *Helv. Chim. Acta*, 2012, **95**, 522–527. - 811 X.-J. Liao, L.-D. Tang, Y.-W. Liang, S.-L. Jian, S.-H. Xu and Y.-H. Liu, *Chem. Biodiversity*, 2012, **9**, 370–375. - 812 K. Shin, J. Chin, D. Hahn, J. Lee, H. Hwang, D. H. Won, J. Ham, H. Choi, E. Kang, H. Kim, M. K. Ju, S.-J. Nam and H. Kang, *Steroids*, 2012, 77, 355–359. - 813 D. Lai, S. Yu, L. van Ofwegen, F. Totzke, P. Proksch and W. Lin, *Bioorg. Med. Chem.*, 2011, 19, 6873–6880. - 814 M. Y. Putra, G. Bavestrello, C. Cerrano, B. Renga, C. D'Amore, S. Fiorucci, E. Fattorusso and O. Taglialatela-Scafati, *Steroids*, 2012, 77, 433–440. - 815 S.-K. Wang, S.-Y. Puu and C.-Y. Duh, *Mar. Drugs*, 2012, **10**, 1288–1296. - 816 R. Li, C.-L. Shao, X. Qi, X.-B. Li, J. Li, L.-L. Sun and C.-Y. Wang, *Mar. Drugs*, 2012, **10**, 1422–1432. - 817 J.-H. Su, Y.-J. Tseng, H.-H. Huang, A. F. Ahmed, C.-K. Lu, Y.-C. Wu and J.-H. Sheu, *J. Nat. Prod.*, 2006, **69**, 850–852. - 818 C.-Y. Huang, J.-H. Su, C.-Y. Duh, B.-W. Chen, Z.-H. Wen, Y.-H. Kuo and J.-H. Sheu, *Bioorg. Med. Chem. Lett.*, 2012, 22, 4373–4376. - 819 P. Sun, L.-Y. Meng, H. Tang, B.-S. Liu, L. Li, Y. Yi and W. Zhang, *J. Nat. Prod.*, 2012, 75, 1656–1659. - 820 H.-Y. Fang, C.-C. Liaw, C.-H. Chao, Z.-H. Wen, Y.-C. Wu, C.-H. Hsu, C.-F. Dai and J.-H. Sheu, *Tetrahedron*, 2012, 68, 9694–9700. - 821 K. O. Hanssen, B. Schuler, A. J. Williams, T. B. Demissie, E. Hansen, J. H. Anderson, J. Svenson, K. Blinov, M. Repisky, F. Mohn, G. Meyer, J.-S. Svendsen, K. Ruud, M. Elyashberg, L. Gross, M. Jaspars and J. Isaksson, *Angew. Chem., Int. Ed.*, 2012, 51, 12238–12241. - 822 T. Řezanka and V. M. Dembitsky, *Tetrahedron*, 2001, 57, 8743–8749. - 823 B. M. Trost and A. Quintard, Org. Lett., 2012, 14, 4698-4700. - 824 J.-H. Su, Y. Lu, W.-Y. Lin, W.-H. Wang, P.-J. Sung and J.-H. Sheu, *Chem. Lett.*, 2010, **39**, 172–173. - 825 A. Groweiss, Y. Kashman, D. J. Vanderah, B. Tursch, P. Cornet, J. C. Braekman and D. Daloze, *Bull. Soc. Chim. Belg.*, 1978, **87**, 277–283. - 826 J.-H. Su, Y. Lu, W.-Y. Lin, W.-H. Wang, P.-J. Sung and J.-H. Sheu, *Chem. Lett.*, 2012, 41, 340–340. - 827 H.-M. Chung, Y.-H. Chen, M.-R. Lin, J.-H. Su, W.-H. Wang and P.-J. Sung, *Tetrahedron Lett.*, 2010, **51**, 6025–6027. - 828 H.-M. Chung, Y.-H. Chen, T.-L. Hwang, L.-F. Chuang, W.-H. Wang and P.-J. Sung, *Tetrahedron Lett.*, 2010, 51, 2734–2736. - 829 T. Hirokawa, T. Nagasawa and S. Kuwahara, *Tetrahedron Lett.*, 2012, 53, 705–706. - 830 T. Hirokawa and S. Kuwahara, *Tetrahedron*, 2012, **68**, 4581–4587. - 831 G. G. de Souza, T. S. Oliveira, J. A. Takahashi, I. G. Collado, A. J. Macias-Sanchez and R. Hernandez-Galan, *Org. Biomol. Chem.*, 2012, **10**, 3315–3320. - 832 A. J. Weinheimer, J. A. Matson, M. B. Hossain and D. van der Helm, *Tetrahedron Lett.*, 1977, 2923–2926. - 833 S.-Y. Huang, N.-F. Chen, W.-F. Chen, H.-C. Hung, H.-P. Lee, Y.-Y. Lin, H.-M. Wang, P.-J. Sung, J.-H. Sheu and Z.-H. Wen, *Mar. Drugs*, 2012, **10**, 1899–1919. - 834 M. Herin and B. Tursch, *Bull. Soc. Chim. Belg.*, 1976, **85**, 707–719. - 835 T.-R. Su, F.-J. Tsai, J.-J. Lin, H. H. Huang, C.-C. Chiu, J.-H. Su, Y.-T. Yang, J. Y.-F. Chen, B.-S. Wong and Y.-J. Wu, *Mar. Drugs*, 2012, 10, 1883–1898. - 836 W.-F. Chen, C. Chakraborty, C.-S. Sung, C.-W. Feng, Y.-H. Jean, Y.-Y. Lin, H.-C. Hung, T.-Y. Huang, S.-Y. Huang, T.-M. Su, P.-J. Sung, J.-H. Sheu and Z.-H. Wen, *Naunyn-Schmiedebergs Arch. Pharmacol.*, 2012, 385, 265–275. 837 B. Tursch, J. C. Braekman, D. Daloze, M. Herin, R. Karlsson and D. Losman, Tetrahedron, 1975, 31, 129- 838 C.-A. Neoh, R. Y.-L. Wang, Z.-H. Din, J.-H. Su, Y.-K. Chen, F.-J. Tsai, S.-H. Weng and Y.-J. Wu, Mar. Drugs, 2012, 10, - 2893-2911. 839 Y. Uchio, S. Eguchi, M. Nakayama and T. Hase, Chem. Lett., 1982, 3, 277-278. - 840 J.-Y. Hong, H.-J. Boo, J.-I. Kang, M.-K. Kim, E.-S. Yoo, J.-W. Hyun, Y.-S. Koh, G. Y. Kim, Y. H. Maeng, C. L. Hyun, W. Y. Chang, Y. H. Kim, Y. R. Kim and H.-K. Kang, Biol. Pharm. Bull., 2012, 35, 1054-1063. - 841 P. T. Szymanski, B. Kuppast, S. A. Ahmed, S. Khalifa and H. Fahmy, Mar. Drugs, 2012, 10, 1-19. - 842 W. F. Tinto, R. S. Laydoo, S. L. Miller, W. F. Reynolds and S. McLean, J. Nat. Prod., 1995, 58, 1975-1977. - 843 A. D. Rodríguez and J. J. Soto, Chem. Pharm. Bull., 1996, 44, 91-94. - 844 A. S. Kate, K. Richard, B. Ramanathan and R. G. Kerr, Can. J. Chem., 2010, 88, 318-322. - 845 H. Weinstabl, T. Gaich and J. Mulzer, Org. Lett., 2012, 14, 2834-2837. - 846 R. Jia, Y.-W. Guo, P. Chen, Y.-M. Yang, E. Mollo, M. Gavagnin and G. Cimino, J. Nat. Prod., 2007, 70, 1158-1166. - 847 Y. Li, A.-H. Gao, H. Huang, J. Li, E. Mollo, M. Gavagnin, G. Cimino, Y.-C. Gu and Y.-W. Guo, Helv. Chim. Acta, 2009, 92, 1341-1348. - 848 A. Bishara, A. Rudi, Y. Benayahu and Y. Kashman, J. Nat. Prod., 2007, 70, 1951-1954. - 849 A. C. Coleman and R. G. Kerr, *Tetrahedron*, 2000, **56**, 9569– 9574. - 850 M. Nasuda, M. Ohmori, K. Ohyama and Y. Fujimoto, Chem. Pharm. Bull., 2012, 60, 681-685. - 851 H. Correa, P. Zorro, C. Arevalo-Ferro, M. Puyana and C. Duque, J. Chem. Ecol., 2012, 38, 1190-1202. - 852 A. D. Rodríguez, C. Ramirez, I. I. Rodríguez and E. González, Org. Lett., 1999, 1, 527-530. - 853 I. I. Rodríguez and A. D. Rodríguez, J. Nat. Prod., 2003, 66, 855-857. - 854 M. W. B. McCulloch, B. Haltli, D. H. Marchbank and R. G. Kerr, Mar. Drugs, 2012, 10, 1711-1728. - 855 M. J. Martín, R. Fernández, A. Francesch, P. Amade, S. S. de Matos-Pita, F. Reyes and C. Cuevas, Org. Lett., 2010, 12, 912-914. - 856 V. Sio, J. G. Harrison and D. J. Tantillo, Tetrahedron Lett., 2012, 53, 6919-6922. - 857 J. Li, Z. Zhang, Z. Xia, C. Ni and Y. Wu, Acta Chim. Sinica, 1987, 45, 558-561. - 858 Z.-Y. Yang, H.-Z. Liao, K. Sheng, Y.-F. Chen and Z.-J. Yao, Angew. Chem., Int. Ed., 2012, 51, 6484-6487. - 859 C. Li, M.-P. La, L. Li, X.-B. Li, H. Tang, B.-S. Liu, K. Krohn, P. Sun, Y.-H. Yi and W. Zhang, J. Nat. Prod., 2011, 74, 1658-1662. - 860 C. Li, M.-P. La, L. Li, X.-B.
Li, H. Tang, B.-S. Liu, K. Krohn, P. Sun, Y.-H. Yi and W. Zhang, J. Nat. Prod., 2012, 75, 2047-2047. - 861 Y.-C. Chang, T.-L. Hwang, S.-K. Huang, L.-W. Huang, M.-R. Lin and P.-J. Sung, Heterocycles, 2010, 81, 991-996. - 862 X. Huang, Z. Deng, X. Zhu, L. van Ofwegen, P. Proksch and W. Lin, Helv. Chim. Acta, 2006, 89, 2020-2026. - 863 L.-Q. Shen, S.-Y. Huang, Y. Tang and F.-H. Lei, Steroids, 2012, 77, 1398-1402. - 864 W. Wang, J.-S. Lee, T. Nakazawa, K. R. E. P. Mangindaan, D. S. Wewengkang, H. Rotinsulu, H. Kobayashi, S. Tsukamoto and M. Namikoshi, Steroids, 2009, 74, 758-760. - 865 G. G. Mellado, E. Zubía, M. J. Ortega and P. J. López-González, J. Nat. Prod., 2005, 68, 1111-1115. - 866 R. Saini, S. Boland, O. Kataeva, A. W. Schmidt, T. V. Kurzchalia and H.-J. Knolker, Org. Biomol. Chem., 2012, 10, 4159-4163. - 867 J. S. Oliveira, D. Fuentes-Silva and G. F. King, Toxicon, 2012, 60, 539-550. - 868 I. Urbarova, B. O. Karlsen, S. Okkenhaug, O. M. Seternes, S. D. Johansen and A. Emblem, Mar. Drugs, 2012, 10, 2265-2279 - 869 N. Cachet, G. Genta-Jouve, E. L. Regalado, R. Mokrini, P. Amade, G. Culioli and O. P. Thomas, J. Nat. Prod., 2009, 72, 1612-1615. - 870 E. Manzo, D. Pagano, G. Nuzzo, M. Gavagnin and M. L. Ciavatta, Tetrahedron Lett., 2012, 53, 7083-7084. - 871 A. R. Carroll, S. J. Wild, S. Duffy and V. M. Avery, Tetrahedron Lett., 2012, 53, 2873-2875. - 872 A. J. Blackman and R. D. Green, Aust. J. Chem., 1987, 40, 1655-1662. - 873 A. R. Carroll, S. Duffy, M. Sykes and V. M. Avery, Org. Biomol. Chem., 2011, 9, 604-609. - 874 F. A. Khan and S. Ahmad, J. Org. Chem., 2012, 77, 2389-2397. - 875 C. K. Narkowicz, A. J. Blackman, E. Lacey, J. H. Gill and K. Heiland, J. Nat. Prod., 2002, 65, 938-941. - 876 M. Watanabe, H. Fuda, S. Jin, T. Sakurai, F. Ohkawa, S.-P. Hui, S. Takeda, T. Watanabe, T. Koike and H. Chiba, J. Agric. Food Chem., 2012, 60, 830-835. - 877 X.-L. Xu, X. Fan, F.-H. Song and J.-G. Shi, Haiyang Kexue, 2004, 28, 40-43. - 878 L. Bigot, C. Zatylny-Gaudin, F. Rodet, B. Bernay, P. Boudry and P. Favrel, Peptides, 2012, 34, 303-310. - 879 P. McCarron, J. Kilcoyne, C. O. Miles and P. Hess, J. Agric. Food Chem., 2009, 57, 160-169. - 880 J. Kilcoyne, A. Keogh, G. Clancy, P. LeBlanc, I. Burton, M. A. Quilliam, P. Hess and C. O. Miles, J. Agric. Food Chem., 2012, 60, 2447-2455. - 881 P. McCarron, W. A. Rourke, W. Hardstaff, B. Pooley and M. A. Quilliam, J. Agric. Food Chem., 2012, 60, 1437–1446. - 882 M. Silva, J. Azevedo, P. Rodriguez, A. Alfonso, L. M. Botana and V. Vasconcelos, Mar. Drugs, 2012, 10, 712-726. - 883 A. Franco, S. N. Kompella, K. B. Akondi, C. Melaun, N. L. Daly, C. W. Luetje, P. F. Alewood, D. J. Craik, D. J. Adams and F. Mari, Biochem. Pharmacol., 2012, 83, 419-426. - 884 A. Van Der Haegen, S. Peigneur, N. Dyubankova, C. Möller, F. Marí, E. Diego-García, R. Naudé, E. Lescrinier, P. Herdewijn and J. Tytgat, Peptides, 2012, 34, 106-113. - 885 M. Ye, K. K. Khoo, S. Xu, M. Zhou, N. Boonyalai, M. A. Perugini, X. Shao, C. Chi, C. A. Galea, C. Wang and R. S. Norton, *J. Biol. Chem.*, 2012, 287, 14973–14983. - 886 P. Favreau, E. Benoit, H. G. Hocking, L. Carlier, D. D'hoedt, E. Leipold, R. Markgraf, S. Schlumberger, M. A. Córdova, H. Gaertner, M. Paolini-Bertrand, O. Hartley, J. Tytgat, S. H. Heinemann, D. Bertrand, R. Boelens, R. Stöcklin and J. Molgó, *Br. J. Pharmacol.*, 2012, 166, 1654–1668. - 887 I. Vetter, Z. Dekan, O. Knapp, D. J. Adams, P. F. Alewood and R. J. Lewis, *Biochem. Pharmacol.*, 2012, **84**, 540–548. - 888 A. Violette, D. Biass, S. Dutertre, D. Koua, D. Piquemal, F. Pierrat, R. Stocklin and P. Favreau, *J. Proteomics*, 2012, 75, 5215–5225. - 889 H. Safavi-Hemami, D. G. Gorasia, A. M. Steiner, N. A. Williamson, J. A. Karas, J. Gajewiak, B. M. Olivera, G. Bulaj and A. W. Purcell, *J. Biol. Chem.*, 2012, **287**, 34288–34303. - 890 C. L. Bromley, W. L. Popplewell, S. C. Pinchuck, A. N. Hodgson and M. T. Davies-Coleman, *J. Nat. Prod.*, 2012, 75, 497–501. - 891 A. San-Martín, J. Rovirosa, M. Bacho, K. Gaete and J. Ampuero, *Bol. Latinoam. Caribe Plant. Med. Aromat.*, 2012, **11**, 520–525. - 892 J. T. Blanchfield, D. J. Brecknell, I. M. Brereton, M. J. Garson and D. D. Jones, *Aust. J. Chem.*, 1994, **47**, 2255–2269. - 893 F. Becerril-Jimenez and D. E. Ward, *Org. Lett.*, 2012, **14**, 1648–1651. - 894 M. Carbone, M. Gavagnin, C. A. Mattia, C. Lotti, F. Castelluccio, B. Pagano, E. Mollo, Y.-W. Guo and G. Cimino, *Tetrahedron*, 2009, **65**, 4404–4409. - 895 J.-R. Wang, M. Carbone, M. Gavagnin, A. Mandi, S. Antus, L.-G. Yao, G. Cimino, T. Kurtan and Y.-W. Guo, *Eur. J. Org. Chem.*, 2012, 1107–1111. - 896 M. L. Ciavatta, M. Gavagnin, R. Puliti, G. Cimino, E. Martinez, J. Ortea and C. A. Mattia, *Tetrahedron*, 1996, 52, 12831–12838. - 897 C. Jimenez-Romero, K. Gonzalez and A. D. Rodriguez, *Tetrahedron Lett.*, 2012, **53**, 6641–6645. - 898 R. H. Currie and J. M. Goodman, *Angew. Chem., Int. Ed.*, 2012, **51**, 4695–4697. - 899 M. Tori, K. Nakashima and Y. Asakawa, *Phytochemistry*, 1995, **38**, 651–653. - 900 A. R. Diaz-Marrero, J. M. de la Rosa, I. Brito, J. Darias and M. Cueto, *J. Nat. Prod.*, 2012, 75, 115–118. - 901 M. J. Somerville, P. L. Katavic, L. K. Lambert, G. K. Pierens, J. T. Blanchfield, G. Cimino, E. Mollo, M. Gavagnin, M. G. Banwell and M. J. Garson, *J. Nat. Prod.*, 2012, 75, 1618–1624. - 902 M. Ojika, H. Kigoshi, K. Suenaga, Y. Imamura, K. Yoshikawa, T. Ishigaki, A. Sakakura, T. Mutou and K. Yamada, *Tetrahedron*, 2012, 68, 982–987. - 903 K. Yamada, M. Ojika, T. Ishigaki, Y. Yoshida, H. Ekimoto and M. Arakawa, J. Am. Chem. Soc., 1993, 115, 11020–11021. - 904 M. Kita, Y. Hirayama, K. Yamagishi, K. Yoneda, R. Fujisawa and H. Kigoshi, *J. Am. Chem. Soc.*, 2012, **134**, 20314–20317. - 905 N. Fusetani, K. Yasumuro, S. Matsunaga and K. Hashimoto, *Tetrahedron Lett.*, 1989, **30**, 2809–2812. - 906 K. Kobayashi, Y. Fujii, Y. Hirayama, S. Kobayashi, I. Hayakawa and H. Kigoshi, *Org. Lett.*, 2012, **14**, 1290–1293. - 907 R. R. Vardaro, V. Di Marzo, A. Marin and G. Cimino, Tetrahedron, 1992, 48, 9561–9566. - 908 A. Cutignano, G. Villani and A. Fontana, *Org. Lett.*, 2012, **14**, 992–995. - 909 M. S. C. Pedras and P. B. Chumala, *Phytochemistry*, 2005, **66**, 81–87. - 910 Y. Takada, M. Umehara, Y. Nakao and J. Kimura, *Tetrahedron Lett.*, 2008, **49**, 1163–1165. - 911 Y. Nakao, W. Y. Yoshida, Y. Takada, J. Kimura, L. Yang, S. L. Mooberry and P. J. Scheuer, *J. Nat. Prod.*, 2004, 67, 1332–1340. - 912 Y. Takada, M. Umehara, R. Katsumata, Y. Nakao and J. Kimura, *Tetrahedron*, 2012, **68**, 659–669. - 913 M. Umehara, T. Negishi, T. Tashiro, Y. Nakao and J. Kimura, *Bioorg. Med. Chem. Lett.*, 2012, 22, 7422–7425. - 914 M. L. Ciavatta, E. Manzo, G. Nuzzo, G. Villani, G. Cimino, J. L. Cervera, M. A. E. Malaquias and M. Gavagnin, *Tetrahedron Lett.*, 2009, **50**, 527–529. - 915 O. Geiseler and J. Podlech, Tetrahedron, 2012, 68, 7280-7287. - 916 M. Carbone, Y. Li, C. Irace, E. Mollo, F. Castelluccio, A. Di Pascale, G. Cimino, R. Santamaria, Y.-W. Guo and M. Gavagnin, *Org. Lett.*, 2011, 13, 2516–2519. - 917 H.-Y. Lin and B. B. Snider, *J. Org. Chem.*, 2012, 77, 4832–4836 - 918 E. Manzo, D. Pagano, M. Carbone, M. L. Ciavatta and M. Gavagnin, *ARKIVOC*, 2012, 220–228. - 919 T. Vasskog, J. H. Andersen, E. Hansen and J. Svenson, *Mar. Drugs*, 2012, **10**, 2676–2690. - 920 G. Cimino, A. Spinella and G. Sodano, *Tetrahedron Lett.*, 1989, 30, 5003-5004. - 921 G. D. Sala, A. Cutignano, A. Fontana, A. Spinella, G. Calabrese, A. D. Coll, G. d'Ippolito, C. D. Monica and G. Cimino, *Tetrahedron*, 2007, **63**, 7256–7263. - 922 A. Cutignano, C. Avila, A. Rosica, G. Romano, B. Laratta, A. Domenech-Coll, G. Cimino, E. Mollo and A. Fontana, *ChemBioChem*, 2012, **13**, 1759–1766. - 923 M. Gavagnin, E. Mollo, G. Cimino and J. Ortea, *Tetrahedron Lett.*, 1996, 37, 4259–4262. - 924 P. Sharma, N. Griffiths and J. E. Moses, *Org. Lett.*, 2008, **10**, 4025–4027. - 925 K. J. Powell, P. Sharma, J. L. Richens, B. M. Davis, J. E. Moses and P. O'Shea, *Phys. Chem. Chem. Phys.*, 2012, 14, 14489–14491. - 926 M. Ronci, D. Rudd, T. Guinan, K. Benkendorff and N. H. Voelcker, *Anal. Chem.*, 2012, **84**, 8996–9001. - 927 I. Surowiec, W. Nowik and T. Moritz, *Dyes Pigm.*, 2012, **94**, 363–369. - 928 T. Diyabalanage, K. B. Iken, J. B. McClintock, C. D. Amsler and B. J. Baker, *J. Nat. Prod.*, 2010, 73, 416–421. - 929 J. A. Maschek, E. Mevers, T. Diyabalanage, L. Chen, Y. Ren, J. B. McClintock, C. D. Amsler, J. Wu and B. J. Baker, *Tetrahedron*, 2012, **68**, 9095–9104. - 930 P. Karuso and W. C. Taylor, Aust. J. Chem., 1986, 39, 1629-1641. - 931 G. Cimino, D. De Rosa, S. De Stefano and L. Minale, Tetrahedron, 1974, 30, 645-649. - 932 P. L. Katavic, P. Jumaryatno, J. N. A. Hooper, J. T. Blanchfield and M. J. Garson, Aust. J. Chem., 2012, **65**, 531-538. - 933 G. Nuzzo, M. L. Ciavatta, R. Kiss, V. Mathieu, H. Leclercqz, E. Manzo, G. Villani, E. Mollo, F. Lefranc, L. D'Souza, M. Gavagnin and G. Cimino, Mar. Drugs, 2012, 10, 1799-1811. - 934 B. Carte and D. J. Faulkner, J. Org. Chem., 1983, 48, 2314-2318. - 935 N. Lindquist and W. Fenical, Experientia, 1991, 47, 504-506. - 936 A. Franks, P. Haywood, C. Holmström, S. Egan, S. Kjelleberg and N. Kumar, Molecules, 2005, 10, 1286-1291. - 937 P. I. Hernandez, D. Moreno, A. A. Javier, T. Torroba, R. Perez-Tomas and R. Quesada, Chem. Commun., 2012, 48, 1556-1558. - 938 D. S. Dalisay, E. W. Rogers, A. S. Edison and T. F. Molinski, J. Nat. Prod., 2009, 72, 732-738. - 939 D. S. Nielsen, H. N. Hoang, R.-J. Lohman, F. Diness and D. P. Fairlie, Org. Lett., 2012, 14, 5720-5723. - 940 E. K. Singh, D. M. Ramsey and S. R. McAlpine, Org. Lett., 2012, 14, 1198-1201. - 941 A. Fontana, P. Cavaliere, S. Wahidulla, C. G. Naik and G. Cimino, Tetrahedron, 2000, 56, 7305-7308. - 942 W. Liu, X. Liao, W. Dong, Z. Yan, N. Wang and Z. Liu, Tetrahedron, 2012, 68, 2759-2764. - 943 C. Imperatore, A. Aiello, F. D'Aniello, P. Luciano, R. Vitalone, R. Meli, G. M. Raso and M. Menna, Molecules, 2012, 17,
12642-12650. - 944 A. Aiello, E. Fattorusso, C. Imperatore, P. Luciano, M. Menna and R. Vitalone, Mar. Drugs, 2012, 10, 51-63. - 945 S. Miao and R. J. Andersen, J. Org. Chem., 1991, 56, 6275- - 946 J. Sikorska, S. Parker-Nance, M. T. Davies-Coleman, O. B. Vining, A. E. Sikora and K. L. McPhail, J. Nat. Prod., 2012, 75, 1824-1827. - 947 W. Wang, H. Kim, S.-J. Nam, B. J. Rho and H. Kang, J. Nat. Prod., 2012, 75, 2049-2054. - 948 C. J. Smith, R. L. Hettich, J. Jompa, A. Tahir, M. V. Buchanan and C. M. Ireland, J. Org. Chem., 1998, 63, 4147-4150. - 949 T. H. Won, J.-E. Jeon, S.-H. Kim, S.-H. Lee, B. J. Rho, D.-C. Oh, K.-B. Oh and J. Shin, J. Nat. Prod., 2012, 75, 2055-2061. - 950 T. H. Won, J. Jeon, S.-H. Lee, B. J. Rho, K.-B. Oh and J. Shin, Bioorg. Med. Chem., 2012, 20, 4082-4087. - 951 N. P. Tale, A. V. Shelke, G. B. Tiwari, P. B. Thorat and N. N. Karade, Helv. Chim. Acta, 2012, 95, 852-857. - 952 J. Sikorska, A. M. Hau, C. Anklin, S. Parker-Nance, M. T. Davies-Coleman, J. E. Ishmael and K. L. McPhail, J. Org. Chem., 2012, 77, 6066-6075. - 953 J. Sikorska, A. M. Hau, C. Anklin, S. Parker-Nance, M. T. Davies-Coleman, J. E. Ishmael and K. L. McPhail, J. Org. Chem., 2013, 78, 2812-2812. - 954 K. L. McPhail, personal communication. - 955 M. Carbone, L. Núñez-Pons, M. Paone, F. Castelluccio, C. Avila and M. Gavagnin, *Tetrahedron*, 2012, **68**, 3541–3544. - 956 M. Carbone, L. Núñez-Pons, M. Paone, F. Castelluccio, C. Avila and M. Gavagnin, Tetrahedron, 2012, 68, 8515- - 957 D. R. Appleton, C. S. Chuen, M. V. Berridge, V. L. Webb and B. R. Copp, J. Org. Chem., 2009, 74, 9195-9198. - 958 L. Núñez-Pons, M. Carbone, J. Vázquez, J. Rodríguez, R. M. Nieto, M. M. Varela, M. Gavagnin and C. Avila, Mar. Drugs, 2012, 10, 1741-1764. - 959 A. R. Carroll, B. D. Nash, S. Duffy and V. M. Avery, J. Nat. Prod., 2012, 75, 1206-1209. - 960 A. R. Carroll and V. M. Avery, J. Nat. Prod., 2009, 72, 696-699. - 961 H. Yamazaki, D. S. Wewengkang, T. Nishikawa, H. Rotinsulu, R. E. P. Mangindaan and M. Namikoshi, Mar. Drugs, 2012, 10, 349-357. - 962 J. L. Li, S. C. Han, E. S. Yoo, S. Shin, J. Hong, Z. Cui, H. Li and J. H. Jung, J. Nat. Prod., 2011, 74, 1792-1797. - 963 J. L. Li, B. Xiao, M. Park, E. S. Yoo, S. Shin, J. Hong, H. Y. Chung, H. S. Kim and J. H. Jung, J. Nat. Prod., 2012, 75, 2082-2087. - 964 J. L. Li, B. Xiao, M. Park, E. S. Yoo, S. Shin, J. Hong, H. Y. Chung, H. S. Kim and J. H. Jung, J. Nat. Prod., 2013, 76, 815-815. - 965 Z. Lu, M. K. Harper, C. D. Pond, L. R. Barrows, C. M. Ireland and R. M. van Wagoner, J. Nat. Prod., 2012, 75, 1436-1440. - 966 M. S. Donia, W. F. Fricke, J. Ravel and E. W. Schmidt, PLoS One, 2011, 6(3), e17897. - 967 M. D. B. Tianero, M. S. Donia, T. S. Young, P. G. Schultz and E. W. Schmidt, J. Am. Chem. Soc., 2012, 134, 418-425. - 968 F. Plisson, X.-C. Huang, H. Zhang, Z. Khalil and R. J. Capon, Chem.-Asian J., 2012, 7, 1616-1623. - 969 F. Plisson, M. Conte, Z. Khalil, X.-C. Huang, A. M. Piggott and R. J. Capon, ChemMedChem, 2012, 7, 983-990. - 970 P. C. Jimenez, D. V. Wilke, E. G. Ferreira, R. Takeara, M. O. de Moraes, E. R. Silveira, T. M. C. Lotufo, N. P. Lopes and L. V. Costa-Lotufo, Mar. Drugs, 2012, 10, 1092-1102. - 971 B. Baker, T. Diyabalanage, J. B. McClintock and C. D. Amsler, WO 200703573 A2, 2007. - 972 G. J. Florence and J. Wlochal, Chem.-Eur. J., 2012, 18, 14250-14254. - 973 L. Garrido, E. Zubía, M. J. Ortega and J. Salvá, J. Org. Chem., 2003, 68, 293-299. - 974 M. Matveenko, G. Liang, E. M. W. Lauterwasser, E. Zubía and D. Trauner, J. Am. Chem. Soc., 2012, 134, 9291-9295. - 975 J. F. Biard, S. Guyot, C. Roussakis, J. F. Verbist, J. Vercauteren, J. F. Weber and K. Boukef, Tetrahedron Lett., 1994, 35, 2691-2694. - 976 M.-P. Sauviat, J. Vercauteren, N. Grimaud, M. Jugé, M. Nabil, J.-Y. Petit and J.-F. Biard, J. Nat. Prod., 2006, 69, 558-562. - 977 M. A. Perry, M. D. Morin, B. W. Slafer and S. D. Rychnovsky, J. Org. Chem., 2012, 77, 3390-3400. Review - 978 M. Tadesse, M. B. Strøm, J. Svenson, M. Jaspars, B. F. Milne, V. Tørfoss, J. H. Andersen, E. Hansen, K. Stensvåg and T. Haug, *Org. Lett.*, 2010, 12, 4752– 4755. - 979 M. Tadesse, J. Svenson, M. Jaspars, M. B. Strøm, M. H. Abdelrahman, J. H. Andersen, E. Hansen, P. E. Kristiansen, K. Stensvåg and T. Haug, *Tetrahedron Lett.*, 2011, 52, 1804–1806. - 980 K. H. Hopmann, J. Šebestík, J. Novotná, W. Stensen, M. Urbanová, J. Svenson, J. S. Svendsen, P. Bouř and K. Ruud, *J. Org. Chem.*, 2012, 77, 858–869. - 981 Y. Takahasi, H. Ishiyama, T. Kubota and J. Kobayashi, *Bioorg. Med. Chem. Lett.*, 2010, 20, 4100-4103. - 982 T. Suzuki, T. Kubota and J. Kobayashi, *Bioorg. Med. Chem. Lett.*, 2011, **21**, 4220–4223. - 983 H. Ishiyama, K. Yoshizawa and J. Kobayashi, *Tetrahedron*, 2012, **68**, 6186–6192. - 984 J. Sun, Y. Dou, H. Ding, R. Yang, Q. Sun and Q. Xiao, *Mar. Drugs*, 2012, **10**, 881–889. - 985 P. Margiastuti, T. Ogi, T. Teruya, J. Taira, K. Suenaga and K. Ueda, *Chem. Lett.*, 2008, **37**, 448–449. - 986 P. Margiastuti, T. Ogi, T. Teruya, J. Taira, K. Suenaga and K. Ueda, *Chem. Lett.*, 2008, 37, 670–670. - 987 A. Aiello, E. Fattorusso, P. Luciano, A. Macho, M. Menna and E. Munoz, *J. Med. Chem.*, 2005, **48**, 3410–3416. - 988 A. Carbone, C. L. Lucas and C. J. Moody, *J. Org. Chem.*, 2012, 77, 9179–9189. - 989 I. M. Khalil, D. Barker and B. R. Copp, *J. Nat. Prod.*, 2012, 75, 2256–2260. - 990 A. R. Carroll, S. Duffy and V. M. Avery, *J. Org. Chem.*, 2010, 75, 8291–8294. - 991 J. P. Mahajan, Y. R. Suryawanshi and S. B. Mhaske, *Org. Lett.*, 2012, **14**, 5804–5807. - 992 J. D. Panarese and C. W. Lindsley, *Org. Lett.*, 2012, **14**, 5808–5810. - 993 B. C. M. Potts, D. J. Faulkner, J. A. Chan, G. C. Simolike, P. Offen, M. E. Hemling and T. A. Francis, *J. Am. Chem. Soc.*, 1991, 113, 6321–6322. - 994 F.-M. Zhang, L. Peng, H. Li, A.-J. Ma, J.-B. Peng, J.-J. Guo, D. T. Yang, S.-H. Hou, Y.-Q. Tu and W. Kitching, *Angew. Chem.*, *Int. Ed.*, 2012, 51, 10846–10850. - 995 L.-P. La, C. Li, L. Li, P. Sun, H. Tang, B.-S. Liu, W. Gong, H. Han, Y.-H. Yi and W. Zhang, *Chem. Biodiversity*, 2012, 9, 1166–1171. - 996 M.-P. La, J.-J. Shao, J. Jiao and Y.-H. Yi, *Chin. J. Nat. Med.*, 2012, **10**, 105–109. - 997 F. Kisa, K. Yamada, M. Kaneko, M. Inagaki and R. Higuchi, *Chem. Pharm. Bull.*, 2005, **53**, 382–386. - 998 L. Du, Z.-J. Li, J.-F. Wang, Y. Xue, C.-H. Xue, K. Takahashi and Y.-M. Wang, *J. Oleo Sci.*, 2012, **61**, 321–330. - 999 K. Pan, C. Tanaka, M. Inagaki, R. Higuchi and T. Miyamoto, *Mar. Drugs*, 2012, **10**, 2467–2480. - 1000 E. V. Levina, A. I. Kalinovskii, S. P. Ermakova and P. S. Dmitrenok, *Russ. J. Bioorg. Chem.*, 2012, 38, 520–525 - 1001 A. O. Kaihil, M. S. Diop and A. Samb, *Chem. Nat. Compd.*, 2012, 47, 932–934. - 1002 A. A. Kicha, N. V. Ivanchina, T. V. Malyarenko, A. I. Kalinovskii and P. S. Dmitrenok, *Chem. Nat. Compd.*, 2012, 48, 806–809. - 1003 N. V. Ivanchina, A. I. Kalinovsky, A. A. Kicha, T. V. Malyarenko, P. S. Dmitrenok, S. P. Ermakova and V. A. Stonik, *Nat. Prod. Commun.*, 2012, 7, 853–858. - 1004 A. S. Silchenko, A. I. Kalinovsky, S. A. Avilov, P. V. Andryjaschenko, P. S. Dmitrenok, E. A. Martyyas and V. I. Kalinin, *Nat. Prod. Commun.*, 2012, 7, 1157–1162. - 1005 A. S. Silchenko, A. I. Kalinovsky, S. A. Avilov, P. V. Andryjaschenko, P. S. Dmitrenok, E. A. Martyyas and V. I. Kalinin, *Nat. Prod. Commun.*, 2012, 7, 517–525. - 1006 A. S. Silchenko, A. I. Kalinovsky, S. A. Avilov, P. V. Andryjaschenko, P. S. Dmitrenok, E. A. Martyyas and V. I. Kalinin, *Nat. Prod. Commun.*, 2012, 7, 845–852. - 1007 A. S. Silchenko, A. I. Kalinovsky, S. A. Avilov, P. V. Andryjashchenko, P. S. Dmitrenok, V. I. Kalinin and V. A. Stonik, *Biochem. Syst. Ecol.*, 2012, 44, 53–60. - 1008 S. S. Afiyatullov, L. Y. Tishenko, V. A. Stonik, A. I. Kalinovskii and G. B. Elyakov, Khim. Prir. Soedin., 1985, 244–248. - 1009 V. I. Kalinin, S. A. Avilov, A. I. Kalinovskii and V. A. Stonik, *Khim. Prir. Soedin.*, 1992, 729–730. - 1010 S. A. Avilov, V. I. Kalinin, T. N. Makarieva, V. A. Stonik, A. I. Kalinovsky, Y. W. Rashkes and Y. M. Milgrom, *J. Nat. Prod.*, 1994, 57, 1166–1171. - 1011 V. I. Kalinin, S. A. Avilov, A. I. Kalinovskii, V. A. Stonik, Y. M. Mil'grom and Y. V. Rashkes, *Khim. Prir. Soedin.*, 1992, 691–694. - 1012 Y.-C. Zhan, Y. Sun, W. Li, Y. Lin, Y. Sha and Y.-H. Pei, *J. Asian Nat. Prod. Res.*, 2006, **8**, 631–636. - 1013 A. S. Silchenko, A. I. Kalinovsky, S. A. Avilov, P. V. Andryjaschenko, P. S. Dmitrenok, E. A. Yurchenko and V. I. Kalinin, *Nat. Prod. Res.*, 2012, **26**, 1765–1774. - 1014 Z. Wang, H. Zhang, W. Yuan, W. Gong, H. Tang, B. Liu, K. Krohn, L. Li, Y. Yi and W. Zhang, *Food Chem.*, 2012, 132, 295–300. - 1015 Z. Wang, W. Gong, G. Sun, H. Tang, B. Liu, L. Li, Y. Yi and W. Zhang, *Nat. Prod. Commun.*, 2012, 7, 1431–1434. - 1016 I. Kitagawa, M. Kobayashi, M. Hori and Y. Kyogoku, *Chem. Pharm. Bull.*, 1989, **37**, 61–67. - 1017 V. Lakshmi, S. Srivastava, S. K. Mishra and P. K. Shukla, *Nat. Prod. Res.*, 2012, **26**, 913–918. - 1018 I. Kitagawa, T. Inamoto, M. Fuchida, S. Okada, M. Kobayashi, T. Nishino and Y. Kyogoku, *Chem. Pharm. Bull.*, 1980, 28, 1651–1653. - 1019 F. R. Melek, M. M. Tadros, F. Yousif, M. A. Selim and M. H. Hassan, *Pharm. Biol.*, 2012, 50, 490-496. - 1020 Q. Zhao, Y. Xue, J.-F. Wang, H. Li, T.-T. Long, Z. Li, Y.-M. Wang, P. Dong and C.-H. Xue, J. Sci. Food Agric., 2012, 92, 965–974. - 1021 S. A. Avilov, A. I. Kalinovskii and V. A. Stonik, *Khim. Prir. Soedin.*, 1990, 53–57. - 1022 P. Yibmantasiri, D. C. Leahy, B. P. Busby, S. A. Angermayr, A. G. Sorgo, K. Boeger, R. Heathcott, J. M. Barber, G. Moraes, J. H. Matthews, P. T. Northcote, P. H. Atkinson and D. S. Bellows, *Mol. BioSyst.*, 2012, 8, 902–912. - 1023 H.-L. Liu, X.-Y. Huang, J. Li, G.-R. Xin and Y.-W. Guo, *Chirality*, 2012, 24, 459–462. - 1024 M. G. Ponnapalli, S. C. V. A. R. Annam, S. Ravirala, S. Sukki, M. Ankireddy and V. R. Tuniki, *J. Nat. Prod.*, 2012, 75, 275–279. - 1025 Y. Li, S. Yu, D. Liu, P. Proksch and W. Lin, *Bioorg. Med. Chem. Lett.*, 2012, 22,
1099–1102. - 1026 D. A. Okorie and D. A. H. Taylor, *Phytochemistry*, 1968, 7, 1683–1686. - 1027 J. Li, M.-Y. Li, G. Feng, J. Zhang, M. Karonen, J. Sinkkonen, T. Satyanandamurty and J. Wu, *J. Nat. Prod.*, 2012, 75, 1277–1283. - 1028 J. Li, M.-Y. Li, T. Bruhn, D. C. G. Götz, Q. Xiao, T. Satyanandamurty, J. Wu and G. Bringmann, *Chem. – Eur. J.*, 2012, **18**, 14342–14351. - 1029 D. Noutsias and G. Vassilikogiannakis, *Org. Lett.*, 2012, **14**, 3565–3567. - 1030 X.-L. Chen, H.-L. Liu, J. Li, G.-R. Xin and Y.-W. Guo, *Org. Lett.*, 2011, **13**, 5032–5035. - 1031 K. Mondo, N. Hammerschlag, M. Basile, J. Pablo, S. A. Banack and D. C. Mash, *Mar. Drugs*, 2012, **10**, 509– 520. - 1032 J. Henry, C. Zatylny and E. Boucaud-Camou, *Peptides*, 1999, **20**, 1061–1070. - 1033 M. Laurencin, B. Legrand, E. Duval, J. Henry, M. Baudy-Floc'h, C. Zatylny-Gaudin and A. Bondon, *J. Med. Chem.*, 2012, **55**, 2025–2034. - 1034 http://www.chem.canterbury.ac.nz/marinlit/marinlit.shtml Accessed 28 October 2013. - 1035 Email: marinlit@rsc.org.