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The synthesis and conformational analysis of e-caprolactams containing a —~COOMe group at the C-6 position
is described. The influence of different C-2, C-6 and N substituents on ring conformation was studied using
X-ray crystallography and NMR spectroscopy. The results provide evidence that all the analysed caprolactams
adopt a chair type conformation with a planar lactam. In the 6-substituted caprolactam, the —COOMe residue
prefers to reside in an equatorial position, but can be induced to occupy an axial orientation by the introduction
of a bulky tert-butyloxycarbonyl (BOC) group on the lactam nitrogen or by C-2/C-3 ring desaturation. The
BOC protected caprolactam was found to undergo exchange between two chair forms as detected by solution
NMR, one with the C-6 ester equatorial (30%) and the other with it in the axial position (70%); the latter was
observed by X-ray crystallography. For the C-2 dithiocarbamate substituted C-6 methyl ester seven-
membered rings, a single chair form is observed for cis-isomers with both substituents equatorial. The
analogous trans-isomers, however, exist as two chair forms in a 1:1 equilibrium ratio of tNc, and 4C1,N
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Introduction

e-Caprolactam, or hexahydro-2-azepinone, is an important
starting material in polymer chemistry; it is produced from
cyclohexanone by Beckmann rearrangement.’ e-Caprolactam
is used in nylon preparation,” and as such is the basis for
the manufacturing of many useful products. Derivatives of
g-caprolactam are of interest for the production of modified
nylons® and nanogels.* Azepinones and their unsaturated
and saturated analogues play an important role in medicinal
chemistry,” including in drugs (e.g. Benazepril,® Ivabradine,’
Telcagepant®), antibiotic research (e.g. capuramycin®), and as
simple models of cyclic peptides.'® Despite the importance of
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conformers, where either substituent can occupy axial or equatorial positions.

caprolactams, reports on the influence of substituents on the
conformations of caprolactam rings and the mutual influence
of different substituents are rare'" including with respect to the
solid state behavior of single component caprolactams and
respective co-crystals.'?

Although the influence of various substituents on the conforma-
tion of cyclohexanes has been studied in detail, analogous reports on
seven-membered rings are much less comprehensive. Based on
studies of the conformation at the cycloheptene ring,"* caprolactams
are predicted to exist in (pseudo) ‘chair’, ‘boat’ or a transition ‘twisted
boat’ or ‘twisted chair’ conformations. In the case of the ‘chair’ form,
two energetically favoured chair conformations can be identified
(*Cyin and "NC,), assuming the amide C-C(=0)-N-C segment is
planar™ (Scheme 1). Furthermore it is known, that axial substituents
on caprolactams are higher in energy than the equatorial substitu-
ents as shown for methyl and tert-butyl substituents at C-2 and C-6."
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Scheme 1 The two energetically favoured (pseudo) chair conformations
of g-caprolactam: *NC, and *C, . (For consistency we apply here the
reported numbering system.)
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Arising from studies on B-lactam antibiotic biosynthesis and
mode of action,'® we were interested in a caprolactam function-
alized at C-6 with a -COOMe group (1). For subsequent reactions
concerning the caprolactam core we were keen to alter the
conformation of the ring and position the methyl ester in an
axial position. For this purpose, the effects of a C-2 substituent
(adjacent to the rigid amide) and at the amide nitrogen on the
conformations of the respective caprolactam derivatives were
tested. Here we report solution NMR and crystallographic
structural studies on the effects of substituents on caprolactam
conformation.
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Results and discussion
Synthesis

For the preparation of methyl ester 1 we investigated several
different reactions. In contrast to the efficient y- and é-lactam
preparation, analogous cyclization of the respective racemic amino-
pimelic acid with subsequent methylation had little success when
using activating agents such as 3,4,5-trifluorobenzene boronic
acid' (no reaction) or Si0,'® (10% yield). However, preparation
of the dimethyl ester of aminopimelic acid followed by heating

in refluxing p-cymene'®*® gave 1 in reasonable yield (57%,

(o)
(o) (0]
(o)
NH N
COOH COOMe
2 3
LiOH, H,0,, Boc,O, DMAP
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Scheme 2 Synthesis of caprolactam derivatives 1-8.
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unoptimised). The free caprolactam acid 2 was obtained after
saponification of 1 (LiOH, aq. THF) (70%).

In order to introduce a sterically hindered tert-butyloxy-
carbonyl group at the amide nitrogen, 1 was reacted with (‘BuO-
CO),0 under basic conditions in toluene to give 3. For C-2
substitution, we first carried out bromination using molecular
bromine®" to yield an inseparable mixture of isomers (4). Sub-
sequent treatment with two different dithiocarbamate salts
yielded compounds 5 and 6, which could be separated into cis
and ¢rans isomers, with a significantly higher amount of the cis
isomer being formed. The dithiocarbamates were chosen as, in
general, they allow versatile consecutive reactions.”” After a
Tschugaev-like pyrolysis,> we obtained the C-2/C-3 unsaturated
caprolactam (7), together with the rearranged C3/C4 isomer (8) in
a 1:1 ratio® (Scheme 2).

Conformational analyses of monosubstituted caprolactams

Caprolactam derivatives 1, 2, 3, 5 cis, 5 trans and 6 cis and 7
were characterized by single-crystal X-ray diffraction. For
selected crystallographic and structural refinement parameters,
molecular torsion angles, and information regarding hydrogen
bond geometries see Tables 1 and 2 and Table S1 (ESIf). The
molecular overlay calculation data, rmsd (= root mean square of
the atomic distances) and maxd (the maximal atomic distance
difference of corresponding atoms) for the caprolactam moieties
with respect to e-caprolactam are listed in Table 3. Crystal
structures of e-caprolactam have been reported;>>*® the most
recently reported structure of caprolactam (published by Winkler
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and Dunitz in 1975), was used for comparison as it has the best
reported agreement factors (Cambridge Structural Database REF
CODE: CAPLAC).

Generally in monosubstituted caprolactams, axial substituents
are anticipated to be higher in energy than the equatorial ones, a
conclusion supported by molecular mechanics calculations carried
out on the C6 methyl ester (1). The *C, y form with the carboxylate
in the axial position is calculated to be 8 kecal mol " higher in
energy than the “NC, with the methyl ester in the equatorial
position (Fig. 1a). Indeed, the predicted lower energy form is
observed in our crystal structure of 1 (Fig. 1b) which reveals the
-COOMe moiety in an equatorial position and with the ester
carbonyl group (N1-C6-C7-O2) being almost coplanar with
respect to the amide (C6-N1-C1-C2) (Table 2). In the packing of
1, two molecules form hydrogen-bonded dimers via N-H-:--O
hydrogen bonds [d(N:--O) = 3.056(3) A] (Fig. 1c). The graph set
descriptor is R3(8), which is also seen in the e-caprolactam
(CAPLAC)*® and the C-2/C-6 dimethyl®” and C-2 phosphinoxide
derivatives.”®

In contrast to 1, in the solid state, caprolactam acid 2 has
three crystallographically independent molecules in the asym-
metric unit; these form a trimer arranged around an approxi-
mate non-crystallographic three fold axis. The molecules are
connected via three sets of strong NH- - -O and OH- - -O contacts
[d(N---0) = 2.970(4)-3.074(4) A; d(O- - -0) = 2.543(4)-2.555(4) A]
from the R3(8)-type (Table S1 (ESI}), Fig. 2a). Careful examina-
tion of the three crystallographically unique molecules in 2
shows they have two different configurations at the chiral C6.

Table 1 Crystallographic and structure refinement data of the compounds studied

Compound 1 2 3 5 cis 5 trans 6 cis 7
Empirical formula CgH;3NO; C,H{1N;0; C13H,1NOs C11H15N,05S, C11H15N,05S, C13H,0N,05S, CgH;1NO;
Formula weight (g m0171) 171.19 157.17 271.31 290.40 290.40 316.44 169.18
Crystal system Triclinic Triclinic Monoclinic Monoclinic Triclinic Monoclinic Triclinic
Space group P1 Pi P24/n P2,/c Pi P2,/n Pi
a (A) 5.2735(2) 10.5713(8) 6.27304(11)  7.54965(8) 7.9432(6) 7.71325(7) 6.2079(4)
b (A) 8.6164(4) 10.6265(5) 8.13334(11)  7.8511(1) 8.4258(6) 8.16076(7) 7.7139(7)
N 9.3766(4) 11.0705(7) 27.2810(5) 23.3724(3) 11.2990(8) 23.7540(2) 8.6278(8)
o« (9) 97.6974(18)  72.339(5) 90 90 89.703(6) 90 82.686(8)
B 93.5064(18)  78.005(6) 91.0045(16)  95.6507(11) 71.855(6) 94.6857(8) 88.718(7)
7 () 95.8677(19)  80.552(5) 90 90 73.959(6) 90 89.279(6)
Vv (A% 418.80(3) 1152.29(13)  1391.68(4) 1378.62(3) 687.92(9) 1490.22(2) 409.68(6)
zZ 2 6 4 4 2 4 2
D. (Mg m’3) 1.358 1.359 1.295 1.399 1.402 1.410 1.371
n (mmfl) 0.104 0.896 0.826 3.539 0.389 3.323 0.884
Data collection
Temperature (K) 150 150 150 150 150 150 150
Wavelength (A) 0.71073 1.54184 1.54184 1.54184 0.71073 1.54180 1.54184
No. of collected reflections 7659 10066 13198 11617 6132 19616 3072
Ommax (©) 27.408 76.407 76.124 76.330 30.707 76.356 75.764
Completeness to Opmay (%) 98.6 98.1 95.6 99.0 83.0 99.3 97.3
No. of unique reflections 1882 4752 2770 2866 3550 3107 1671
R(int) 0.028 0.023 0.028 0.025 0.037 0.021 0.011
No. of refined parameters 109 298 172 163 163 181 109
No. reflections [I > 2a(I)] 918 3278 2364 2866 2530 2987 1592
Final R-indices
R, [I > 20(D)] (%) 4.24 5.83 3.49 2.77 5.65 2.57 3.27
WR [I > 20(1)] (%) 10.79 15.18 8.54 7.18 9.53 10.49 8.83
S (= Goodness of fit on FZ) 0.9467 0.9925 0.9877 0.9588 1.0097 0.9997 1.0124
Final Apmax/Apmin (€ A7%) 0.28, —0.28  1.03, —0.32  0.33, —0.23  0.30, —0.21 0.66, —0.67 0.29, —0.21 0.23, —0.18
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Table 2 Torsion angles (°) for ring atoms in the caprolactam structures®
Atoms 1 2(1) 2(2) 2(3) 3 5 cis 5 trans 6 cis 7
C1-C2-C3-C4 82.8(3) —80.8(3) —79.3(3) 81.7(3) 84.34(17) 83.88(12) —84.3(3) 84.96(10) —2.1(2)
C2-C3-C4-C5 —61.4(3) 64.7(4) 59.4(3) —64.1(4) —60.79(17) —67.42(14) 67.6(3) —67.75(12) 1.29(18)
C3-C4-C5-C6 59.3(3) —62.0(4) —61.6(3) 61.9(3) 60.03(17) 63.95(15) —60.0(3) 63.48(12) —44.53(15)
C4-C5-C6-N1 —-77.3(3) 75.9(3) 81.4(2)  —77.2(3)  —79.65(16)  —75.49(14) 69.1(3)  —75.44(12) 80.94(14)
C1-N1-C6-C5 66.5(3) —66.1(3) —65.1(3) 66.2(4) 65.01(15) 62.76(16) —63.2(4) 62.63(14) —54.82(15)
C6-N1-C1-C2 —0.4(3) 5.0(4) —4.8(3) —2.5(4) —0.49(16) 0.93(18) 5.2(4) 1.65(15) —2.02(15)
N1-C1-C2-C3 —68.0(3) 61.5(3) 70.3(3) —63.9(4) —67.95(16) —66.95(14) 62.5(3) —67.75(11) 25.22(18)
N1-C6-C7-02 -7.3(3) 5.9(3) 0.3(3) 4.4(4) 14.50(16) —11.24(14) —9.6(4) —10.46(14) 15.92(15)
¢ General numbering scheme for compound 3:
o1 ‘«
|
C1 VAl
04
c2” N
L e
s/
c3 / 6\C7
C4—C5 \
03 cs
Although this gives a ratio of 2:1 within the asymmetric unit,
as the space group is centrosymmetric, the overall crystal is
racemic,” i.e. the final ratio of the two (S) and (R) forms on C6 & B
of the molecules is 1: 1. Converting the three crystallographically o e =
independent molecules to the same configuration (i.e. inverting l
one) demonstrates that their molecular geometries are very ¢
similar. Hence, the loss of the methyl ester from 1 to 2, does
not substantially influence the conformation (Table 2). The ¢
carboxylic acid function of 2 is in the equatorial position as 1NC, 4Cyp

observed for the -COOMe ester in 1 (Fig. 2b).

The introduction of a double bond between C2 and C3 of
caprolactam ester 1 as in 7 “flattens” the seven membered ring
chair conformation (Table 2 and Fig. 2¢). However, the carbonyl
group and the double bond are not fully coplanar, with a
dihedral angle of 22.49(7)°. Notably, the placement of the
-COOMe substituent on C6 has a different influence on the

Table 3 Overlay of the caprolactam moiety (e.g. N1, O1, C1, C2, C3, C4,
C5 and C6) of the investigated structures. “rmsD": root mean square of the
atomic distances, “maxD": the largest atomic distance difference of
corresponding atoms

Compared structures rmsD maxD
CAPLAC 1 0.0391 0.0668
1 2(1)* 0.0856 0.1817
1 2(2) 0.0925 0.1907
1 2(3)* 0.0626 0.1150
1 3 0.0429 0.0786
1 5 cis 0.0302 0.0489
1 6 cis” 0.0290 0.0437
1 7¢ 0.2273 0.4423
2(1)* 2(2) 0.0734 0.1227
2(1)" 2(3)" 0.1223 0.2196
2(2) 2(3)" 0.0894 0.2149
5 cis 6 cis” 0.0084 0.0136

% Structure is inverted related to the received one or related to the other
molecule present in the asymmetric unit.

5908 | New J. Chem., 2014, 38, 5905-5917

a)

Fig. 1 (a) Caprolactam 1 in its two chair forms. *Cy y is 8 kcal mol™ higher
in energy than *C, as calculated by molecular modelling using Macro-
Model. (b) Displacement ellipsoid plot of 1 from single crystal diffraction
data and (c) dimer formation in 1 showing the R3(8) hydrogen bonding motif.

saturated and unsaturated compounds respectively i.e. it switches
from an equatorial to an axial position, however, the dimer
formation via R3(8) hydrogen bonds [d(N---O) = 2.8618(16) A] of
7 is observed again.

Conformational analyses of disubstituted caprolactams

Crystallographic studies. On N-substitution at the amide of 1
with the tert-butyloxycarbonyl (BOC) group to give 3, the
caprolactam ring conformation is slightly changed (Table 2
and Fig. 2d). The carbonyl groups of -COOMe at C-6 and the

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014
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b)
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Fig. 2 The pseudo threefold symmetry of the three crystallographic independent molecules in the asymmetric unit of 2 (a) and the structures of
caprolactam acid 2 (only one molecule of the asymmetric unit is displayed for clarity) (b), the desaturated lactam 7 (c), the N-functionalized lactam 3 (d)
and the dithiocarbamates 5 cis (e), 6 cis (f) and 5 trans (g) from single crystal diffraction studies. Displacement ellipsoids are drawn at the 50% probability
level and hydrogen atoms (except those illustrating hydrogen bonding interactions) are omitted for clarity.

—-COOC(CHj3); at N-1 are trans relative to each other, with the
BOC carbonyl being approximately coplanar with the amide
segment (C1-N1-C9-O4 = 8.38(17)°). Presumably due to the
steric demand of the BOC group, the C-6 ester (which is in the
equatorial position in the structures previously described),
preferentially adopts the normally energetically disfavoured,

axial position. As the amide proton is missing, no intramolecular
dimer formation is observed. Instead, C6-H61- - -O2 weak inter-
molecular contacts apparently enable dimeric interactions.

The disubstituted lactams 5 and 6 were obtained as pairs of
cis/trans-diastereomers. We were able to grow single crystals
from the cis isomers of both 5 and 6 and the trans isomer of 5.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014 New J. Chem., 2014, 38, 5905-5917 | 5909
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Atoms C-2 and C-6 of the cis-dithiocarbamates (5, 6) have the
same configuration and crystallise in centrosymmetric space
groups (making them racemic). In each case, both substituents
adopt equatorial positions and neither the presence of the
more flexible dimethyl group nor the preorganized pyrroldine
dithiocarbamate group substantially influence the caprolactam
ring conformation (Table 2 and Fig. 2e and f). The C2 sub-
stituent of 6 does not have a significant effect on the ring
conformation as shown by the low cell similarity index (r)** of
0.03324 for 5 and 6. Superimposing all 18 heavy atoms of 5 with
the corresponding atoms of 6, the root mean square of the
atomic distances rmsd = 0.008, the largest atomic distance
difference of corresponding atoms maxd = 0.014, which is
lowest for all structures compared herein (Table 3).

In contrast to the literature structure of caprolactam,
and the structures of 1 and 7 herein, no stereotypical N-H- - -O

25,26

Table 4
caprolactams investigated
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amide dimers are seen for the cis diastereoisomers of the
dithiocarbamate derivatives 5 and 6 in the crystalline state.
This is interesting because the N-H of the amide of 5 and 6 do
not form any hydrogen bonds at all. The strong N-H:--O
hydrogen bonds are apparently replaced by weaker C-H:--O
interactions to the amide oxygen O1 and short contacts
between the ester oxygen and the dithiocarbamate. It is possible
that, C-H---S,>! N-H---$*> and S---S*® contacts are relevant
(Fig. S1, ESI).

In the ¢trans-diastereomer of 5 the chair is again the favoured
conformation of the caprolactam core with one substituent
adopting an axial orientation (C6) whilst the other (C-2) adopting
an equatorial position (Fig. 2g). Likely for steric reasons, the C-2
dithiocarbamate residue is in the equatorial position forcing the
C-6 methyl ester into the axial position. Consequently, this leads
to a rather short intermolecular distance of 2.424(3) A between

Influence of one and two substituents on their relative position on the ring and the CO--:NH bonding pattern in the solid state of the

C(6) substituent 2nd substituent

H bonding pattern®*

CAPLAC — — — — R3(8)
1 -COOMe Equatorial — — R5(8)
2 -COOMe Equatorial — — R3(8)
3 -COOMe Axial N-BOC Lactam and N-BOC carbonyls coplanar —
5 cis -COOMe Equatorial C2-5(S)C-N(Me), Equatorial —
5 trans -COOMe Axial C2-S(S)C-N(Me), Equatorial R3(8)
6 cis -COOMe Equatorial C2-5(S)C-N(CHy),4 Equatorial —
7 -COOMe Axial — — R3(8)
temp=298 K
J_J\ T w__/dbl"“ A/ &'\_ M KI\LL,J_ ———
temp=263 K
\l | J’\ '{ I
f | 1Y \ !
- J .z’l I\_ -_J’ o ,/Awt J'n\. /(NL - ,’ '\ “"; ‘r A
temp=193 K
l !\ 3 {1
I | A ~\ i\
AN . . AN\ ’ I
temp=183 K }
l |
| | B
| { \/’\ i\
AN - VAV, N A U U .
I ] I I I 1 I I I I
55 5.0 45 4.0 35 3.0 25 20 15 1.0 ppm

Fig. 3 'H NMR spectra of the N-Boc protected C-6 substituted methyl ester (3) at different temperatures (183-298 K) in CD,Cl.
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70 % (similar to X-ray structure) 30 % 3)
Mo UEA
| i Hy
H;COOC%‘ H,
HN
b)
g S
S%
N—R
/
R
100 % (5 cis)
100 % (6 cis)
COOCH,
~
How ./ H COOCH;
— N
HN -
c) o
S i
He
N/R
/ N
R R R
4C1,N 1,NC4
53 % 47 % (5 trans)
57 % 43 % (6 trans)

Fig. 4 Conformational isomers of the caprolactams 3 (a), 5 cis, 6 cis (b), 5 trans and 6 trans (c). Within caprolactam 3 and trans dithiocarbamates 5 and 6,
INC,4 and *Cy y are in fast conformational exchange at room temperature in either CD,Cl, or CgDg. Observed NOEs, indicated by dotted red arrows, are
consistent with both forms being present in solution (spectral overlap for H4’ negated its irradiation in either CD,Cl, or CgDg).

the carbonyl of the methyl ester and the facing methylene
hydrogen. In the packing of 5 trans, amide dimers featuring
the R3(8) motif are the most striking feature (Table 4).

NMR solution studies. To investigate the influence of a
substitution on caprolactam conformation in solution, NMR
studies were carried out initially on the N-BOC protected C-6
substituted methyl ester 3 at different temperatures (183-298 K)
in CD,CI, (Fig. 3). The "H NMR spectrum of 3 was sharp and well
resolved at 298 K, but exhibited broadening as the temperature
was lowered, suggesting dynamic conformational exchange.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

At 183 K, the signals were too broad to obtain meaningful
J-coupling or NOE information.

NOE experiments on 3 at room temperature, however, were
consistent with both »NC, and “C, y forms being present in
solution due to the presence of a medium strength NOE
between the methyl ester and H2' in “C,y and strong-
medium NOEs between H6 and H2 and H6 and H4 in “NC,.
These two groups of mutually exclusive NOEs can only be
observed if the two chair forms *NC, and 4C1,N are present in
fast exchange (Fig. 4a) at room temperature.
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Conformational averaging is also reflected in the vicinal
J-couplings at room temperature, for example *J(H6,H5) = 6.3 Hz,
*J(H6,H5") = 3.0 Hz (values for *J(Hox,Hay) = ~11.0 Hz, *J(HoHeg) =
2-5 Hz and °*J(HeqHeq) = 2-4 Hz* in conformationally ‘frozen’
forms; see later section on cis-isomer of dithiocarbamates 5 and 6).
Assuming for 3 the existence of the two chair conformers in
dynamic exchange at room temperature, it is possible to calculate
the conformer populations of *™C, and 4cl,N from the averaged
vicinal coupling constants®®*” and the literature values of *J
couplings in conformers with distinct conformations in similar
systems.*® For the BOC protected methylester 3, a ratio of 70: 30
was calculated with the higher populated chair form having the
ester substituent in an axial position, thus minimising the steric
bulk of the BOC group; the latter is as observed in the X-ray
structure, see Fig. 2d. The NMR observations are consistent with
the molecular dynamics calculations, where simulations commen-
cing with the equatorial methyl ester "C,, proceed to yield twisted
chairs, boat and finally the more stable axial methyl ester 4C17N
conformation (by energy difference ~8 kcal mol ' in favour of
“Cy ). The less populated conformer of 3 is less favoured energe-
tically due to steric clash between the equatorial ester function
being in close proximity to the BOC substituent.

The NMR results for cis isomers of dithiocarbamates 5 and 6
are apparently unambiguous and irrespective of solvent (e.g.
CD,Cl, or C¢Dg). The proton resonances are sharp indicating a
predominant conformer with both j-couplings and the NOEs
consistent with a chair *C, y species containing both 6- and
2-substituents in equatorial positions, see Fig. 4b below. The
solution analyses are thus consistent with both X-ray struc-
tures. An unusual feature of the spectra for 5 and 6 (both cis) is
the low coupling constant for *J(H2,H3) which approaches zero
(1.0-1.8 Hz), see Table 5, suggesting a close to 90° dihedral
angle for H2,-C2-C3-H3.q this angle is 79° in the X-ray
structure and the energy minimised structure predicts an angle
of 81°, also consistent with the observed vicinal coupling
constant. The other vicinal coupling constant for the corre-
sponding protons on the other side of the seven-membered
ring, *J(H6,H5) is ‘normal’ for *J(Hay,Heq) Of 4.5-5.2 Hz corre-
sponding to a smaller dihedral angle; in this case the X-ray
structure reveals this angle is 68.5° as does the calculated value.
An explanation for the unusual small coupling constant for
3](H2ax,H3eq) and 80° dihedral angle may reside in the bulky
partially delocalised dithiocarbamate group, sterically forcing
the dihedral angle containing the equatorial proton Hj, to twist
in order to accommodate it.

The flipping of the ring of the *C; y to the "C, chair of 5 cis
and 6 cis would mean both C-2 and C-6 substituents are in the
axial position, which is not favoured energetically. Molecular
dynamics simulations suggest the energy difference between
the favoured di-equatorial 4C1,N species and the di-axial NG,
conformation is ~ 20 kcal mol ', which is presumably why the
later form is not observed in solution by NMR.

In the case of the trans dithiocarbamates caprolactams trans-5
and trans-6, the NMR studies reveal that at room temperature
there is fast conformational exchange between the two chair
forms, “NC, and C, n, irrespective of the type of dithiocarbamate
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Table 5 Observed *J-coupling constants (3J,y 4 in Hz) for caprolactams 3,
5and 6

. CD,CL, CeDs
Coupling atoms E— —_—
298 K 298 K
3(1
H2-H3 7.0 —
H2-H3' 2.7 —
H6-H5 6.3 —
H6-H5' 3.2 —
5 (cis)
H2-H3’ 11.6 11.4
H2-H3 <1.0 1.7
H6-HS5 10.8 10.8
H6-H5' 5.2 4.9
6 (cis)
H2-H3' 11.4 11.2
H2-H3 1.8 1.8
H6-H5' 10.9 11.0
H6-H5 4.5 5.2
. CD,Cl CeD
Coupling atoms s —_
229 K
298 K? LNG, ‘Cin 298 K*
5 (trans)
H2-H3' 8.3 10.5 ¢ 9.8
H2-H3 2.5 0 ¢ 2.0
H6-H5 5.9 ¢ 10.4 “
H6-H5' 2.9 ¢ ¢ “
. CD,Cl CeD
Coupling atoms 22 —_
198 K
298 K? NG, ‘Cin 298 K*
6 (trans)
H2-H3' 8.0 10.2 ¢ 10.1
H2-H3 2.5 0 ¢ 2.0
H6-H5 7.0 ¢ 10.8
H6-H5' 2.4 ¢ 3.9 “

“ Signals broadened by dynamic conformational averaging.? Sharp
signal, fast conformational exchange. ¢ J-coupling indiscernible due
to line broadening from conformational exchange or signal overlap.

substituent. The *J(H2,H3), *J(H2,H3'), *J(H6,H5) and *J(H6,H5’)
values (Table 4) represent conformationally averaged ensembles
of the two forms, although the conformer distribution may be
more biased towards *C;  in C¢Ds since *J(H2,H3') tends towards
values for axial H, compared to CD,Cl, solutions (compare
3J(H2,H3') of 9.8 to 10 Hz in Ce¢Dg versus 8.0 to 8.3 Hz in CD,Cl,).
The observed NOEs are also consistent with both forms being
present from the NOEs between H2 and the Me ester (*C, x) and
H6 and the dithiocarbamate NMe or NCH, substituent (*"'C,). In
this situation, where either substituent can occupy an axial
orientation, the steric clash between them is minimised. The
energy differences between “NC, and *C,y conformers is
predicted to be low 5-8 keal mol " in favour of *C, y, unlike
the cis isomer, where only one species is observed in solution.

For trans 5 and 6, at 198 K-229 K in CD,Cl,, both 4C1,N and
bNC, forms are clearly observed in the proton spectra, in a ratio
of 1:0.9, a slight excess of *C; . The NOESY spectrum of 5 trans

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014
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Fig. 5 *H NMR NOESY spectrum of 5 trans (CD,Cl,, 500 MHz, mixing time 800 ms, 224 K); resonance labelling follows Scheme 1. Black cross peaks
indicate dynamic exchange peaks between conformers *C, \ and *NC,, red cross peaks indicated inter-proton NOEs. Note the NOE between H6 and the
NMe; is not visible in the figure shown, but is present at higher contour levels, modelling suggests inter-proton distances >3.2 A.

(Fig. 5), reveals conformational exchange is evident even at
198 K, as shown from the exchange cross peaks which are of
opposite phase to those of the NOEs. The NOEs, however, were
also consistent with both *C;y and “NC, forms present in
dynamic exchange.

Conclusions

Overall, the conformational analyses reveal that the investigated
caprolactams prefer to adopt a chair conformation featuring a
planar arrangement of the lactam group (C2-C1-N1-C6). The
positions of the attached substituents relative to the ring are
summarized in Table 5. Bond lengths and torsion angles of
the caprolactam ring differ only slightly with C2-, Cé6- or
N-substitution as shown by the X-ray data. Formation of amide
‘dimers’ were observed crystallographically in four of the six
possible cases. The introduction of unsaturation, ie. a C-2/C-3
alkene, has a considerable effect resulting in the seven membered
ring chair conformation being partially flat along the -C1-
C2=—=C3-C4- portion of the molecule. There is no residual solvent
accessible void in any of the structures of the presented
e-caprolactams, which is promoted by weak C-H---O contacts.
Interestingly, in almost all structures, the slightly acidic proton at

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

C-6 may be involved in these interactions. For the caprolactams 1, 5
(cis) and 6 (cis), the -COOMe residue occupies an equatorial position,
but is forced into the axial position by the introduction of a BOC
group at a neighbouring atom (3) or by ring desaturation (7).

The NMR studies are consistent with the chair conforma-
tions dominating in solution. Caprolactam 3 was found to
undergo dynamic exchange between two chair forms, one with
the ester equatorial (30%) and the other with the ester axial
(70%), the latter observed in the X-ray structure. For the
C2-substituted seven-membered rings 5 and 6, we observed
one chair form for both cis isomers with both ester and
dithiocarbamate groups occupying equatorial positions. The
respective trans isomers exist in equilibrium between two chair
forms in an 1: 1 ratio where either substituent can occupy axial
or equatorial positions. In all cases, solvent e.g. benzene or
chloroform had only negligible influence on the conforma-
tional properties of the caprolactams.

Experimental section
Materials and methods

All reactions involving moisture sensitive reagents were carried
out under a nitrogen atmosphere. Cooling was performed in

New J. Chem., 2014, 38, 5905-5917 | 5913
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ice-water baths (0 °C) or dry ice-acetone baths (—78 °C). Anhydrous
solvents were obtained from solvent stills and were activated by
passing over a short column of activated alumina. Reagents were
obtained from Acros or Aldrich fine chemical suppliers and used
as supplied. Thin layer chromatography (TLC) was performed on
Merck DC-Kieselgel 60 F 254 0.2 mm precoated plates with
fluorescence indicator. Visualization of spots was achieved using
UV light (254 nm) and by developing in a basic solution of KMnO,
followed by heating. Chromatography was performed using a
Biotage SP4 chromatography system, using prepacked Biotage
KP-SIL SNAP columns.

Proton nuclear magnetic resonance spectra ("H NMR) were
recorded using a Bruker AV400 (400 MHz) and AVII 500
(500 MHz) spectrometers. Proton decoupled carbon nuclear
magnetic resonance spectra (*?*C NMR) were recorded on a
Bruker AV400 (100 MHz) and AVII 500 (125.6 MHz) with sample
temperatures regulated at 298 K, unless otherwise stated.
Spectra were assigned using COSY, DEPT-135, HMQC, edited-
HSQC, and HMBC. All chemical shifts are quoted on the scale
in ppm and referenced to residual solvent peaks; CD,Cl, at
5.32 ppm and C¢Dg at 7.2 ppm and calculated internally by the
spectrometer. Resonances are described as s (singlet), d (doublet),
t (triplet)) m (multiplet), and br s (broad singlet). 1-D NOE
experiments were performed using DPFGSE-NOE pulse sequence
employing two 180 degree pulses and a mixing time of 800 ms.*

Single crystals suitable for single crystal X-ray diffraction
studies were obtained from cyclohexane for compound 1 and
from a mixture of dichloromethane/methanol (1:1) for 5, 6 and 7.
Compound 3 was recovered as a colourless oil, that produced
suitable crystals after some weeks. Single crystal X-ray diffraction
data were collected using a Nonius Kappa CCD diffractometer (1)
or Oxford Diffraction (Agilent) SuperNova diffractometer (2-7)
fitted with an Oxford Cryosystems Cryostream open-flow nitrogen
cooling device. Data collection and reduction were carried out
using HKL COLLECT/DENZO-SCALEPACK" or CrysAlisPro as
appropriate. Structures were solved using SIR92*' within the
CRYSTALS suite®” and optimized by full-matrix least squares
on F°. Hydrogen atoms were not generally provided by the initial
solution, however they were usually clearly visible in the difference
Fourier map. Hydrogen atoms were positioned at geometrically
sensible positions and refined using soft restraints prior to
inclusion in the final refinement using a riding model.** The
rmsD and maxD data were calculated with the program Mercury™*
and torsion angles were calculated using PLATON.*> CCDC
numbers: 1018875-1018881.

IR spectra were recorded using a Bruker Tensor 27 ATR-FT-IR
spectrophotometer. Selected absorption maxima (4max) are given in
wavenumbers (cm™ ') and are uncorrected. Mass spectra were
recorded on a Waters LCT premier. Melting points were recorded
on a Leica VMTG heated-stage microscope melting point apparatus.

All molecular modelling work was carried out using the
Schrodinger’s Maestro modelling package employing Macro-
Model with the Schrdédinger’s implementation of the
OPLS_2005 molecular mechanics force field.*® Conformational
searches were performed as follows. Initial molecular models
for each compound were energy minimised (convergence
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criterion: RMS energy gradient < 0.001 kcal mol™ A™%) using
constant dielectric constant with chloroform as the solvent and
used as starting points for molecular dynamics simulations at
an effective temperature of 1000 K. A total of 50 samples were
extracted from each dynamics trajectory with a time interval of
1 ps between samples. The sampled structures were then
energy minimised, and structural duplicates removed (match
criterion: heavy atom RMSD < 0.2 A). The final set of unique
minimum-energy conformers was then sorted according to
calculated energy.

Syntheses

Methyl 7-oxoazepane-2-carboxylate (1). Methanol (30 ml) was
cooled to —10 °C and thionylchloride (2.5 ml, 34.46 mmol) was
dropped in with stirring. Subsequently, (+)-2-aminopimelic acid
(3.0 g, 17.13 mmol) was added, the reaction mixture allowed to
warm to room temperature and was stirred overnight. The
solvents were removed in vacuo, to yield the hydrochloride of
the amino acid, which was used without purification. The inter-
mediate was neutralized by addition of a small amount of water
containing sodium bicarbonate (1 eq.), before extracting this
solution with ethyl acetate. The organic phase was dried (MgSO,),
filtered and concentrated to afford the free base. After addition of
p-cymene (80 ml), the mixture was stirred at reflux for 72 h. The
solvent was removed under reduced pressure and the residue was
purified by flash chromatography (SiO,; eluent: ethyl acetate).
White solid. Yield: 1.68 g (57%, 9.81 mmol). Mp. 75-76 °C.
R¢ = 0.35 (SiO,; ethyl acetate).

3C NMR (100 MHz, CDCl;): § = 176.2 (COOCHj,3), 171.9
(CONH) 55.7, 52.9 (COOCH;, NHCH), 37.0 (CH,), 33.7 (CH,),
29.5 (CH,), 23.0 (CH,). "H NMR (400 MHz, CDCl;): § = 6.45 (br s,
1H, NH), 4.07-4.03 (m, 1H, NHCH), 3.74 (s, 3H, COOCHj3), 2.47-
2.33 (m, 2H, CH,), 2.19-2.15 (m, 1H, CH,), 2.03-1.96 (m, 1H,
CH,), 1.86-1.77 (m, 1H, CH,), 1.65-1.51 (m, 3H, CH,). IR: 3270,
2949, 2919, 2865, 1740, 1645, 1557, 1513, 1468, 1437, 1404,
1343, 1312, 1298, 1261, 1241, 1214, 1196, 1183, 1136, 1107,
1089, 1062, 1012, 965, 933, 873, 850, 801, 733. m/z = 172.11
[M + H'], calc. 172.09.

7-Oxoazepane-2-carboxylic acid (2). Methyl 7-oxoazepane-2-
carboxylate (1) (1.08 g, 6.33 mmol) was dissolved in tetra-
hydrofuran (35 ml). Lithium hydroxide monohydrate (1.06 g,
25.27 mmol) in water (50 ml) and 6.2 ml hydrogen peroxide
solution (30%) were added and the solution stirred overnight.
The pH of the aqueous layer was adjusted to three with
hydrochloric acid (2 M) and extracted three times with ethyl
acetate. The organic layers were combined and washed with
water (3x) and with brine (1x). The solution was dried (Na,SO,)
and the solvent removed in vacuo to yield 693 mg (70%),
4.41 mmol of a white solid. Mp. 161-162 °C (Lit.:*” 160-162 °C).

13C NMR (100 MHz, CD;OD): § = 178.9 (COOH), 173.8
(CONH), 55.9 (NHCH), 36.6 (CH,), 33.4 (CH,), 29.2 (CH,), 23.1
(CH,). '"H NMR (400 MHz, CD;OD): § = 4.18-4.13 (m, 1H,
NHCH), 2.59-2.40 (m, 1H, CH,), 2.50-2.48 (m, 1H, CH,), 2.25-
2.17 (m, 1H, CH,), 2.03-1.96 (m, 1H, CH,), 1.89-1.81 (m, 1H,
CH,), 1.78-1.67 (m, 1H, CH,). IR: 3234, 2922, 2850, 1703, 1612,
1443, 1413, 1358, 1343, 1327, 1265, 1250, 1229, 1220, 1203,
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1191, 1152, 1086, 1026, 942, 878, 853, 834, 807, 755, 728.
m/z = 156.07 [M — H'], calc. 156.17.

1-tert-Butyl 2-methyl 7-oxoazepane-1,2-dicarboxylate (3). Under
a nitrogen atmosphere methyl ester 1 (481 mg, 1.77 mmol) was
dissolved in dry toluene (50 ml). Subsequently, Hunig’s base
(603 pl, 3.54 mmol) and 4-(N,N-dimethylamino)pyridine (43 mg,
0.35 mmol) were added at room temperature. To this mixture, a
solution of di(tert-butyl)dicarbonate (1.93 g, 8.86 mmol) in dry
toluene (10 ml) was added and the resulting mixture stirred
overnight under reflux. After cooling down, water (40 ml) was
added and the mixture stirred at room temperature for 30 min.
The organic layer was separated and dried over Na,SO,. Evapora-
tion of the solvent and column chromatography yielded the
respective compound. The crude products were purified by column
chromatography (SiO,; n-hexane/ethyl acetate = 1:1). 86% (481 mg,
1.77 mmol) of a colourless oil, which slowly crystallizes. Mp.
48-49 °C. Ry = 0.80 (SiO,; n-hexane/ethyl acetate = 1:1).

3C NMR (100 MHz, CDCl,): 6 = 175.3 (COOCHj,3), 170.9
(CONH), 153.3 (NCOO'Bu), 83.2 (C(CHj;);), 56.5 (NHCH), 52.4
(COOCH,), 39.5 (CH,), 29.8 (CH,), 27.9 (C(CH,);), 25.6 (CH,),
22.6 (CH,). 'H NMR (400 MHz, CDCl,): § = 5.16-5.12 (m, 1H),
3.71 (s, 3H), 2.63-2.58 (m, 1H, CH,), 2.46-2.40 (m, 1H, CH,),
2.36-2.29 (m, 1H, CH,), 1.79-1.73 (m, 3H, CH,), 1.51-1.46
(m, 2H, CH,), 1.43 (s, 9H). IR: 2983, 2961, 2933, 2869, 1715,
1701, 1454, 1434, 1380, 1368, 1295, 1285, 1251, 1235, 1204,
1144, 1127, 1083, 1050, 1022, 986, 956, 929, 912, 875, 842, 819,
806, 779, 745, 727, 704. m/z = 272.17 [M + H'], calc. 272.14.

Methyl 6-bromo-7-oxoazepane-2-carboxylate (4). Methyl
7-oxoazepane-2-carboxylate (1) (342 mg, 2.00 mmol) was dis-
solved in dry dichloromethane (15 ml) and cooled to 0 °C. PCl5
(458 mg, 2.20 mmol) and I, (9 mg, 0.034 mmol) were added.
The reaction mixture was stirred for 15 min at 0 °C. Then,
bromine (354 mg, 2.22 mmol) in dichloromethane (2 ml) was
added, and the reaction was stirred at 0 °C for 4 h. The reaction
was quenched by adding aqueous sodium sulfite solution and
extracted several times with dichloromethane. The combined
organic phases were dried (Na,SO,), and the solvent was
evaporated to yield a dark a red oil, which was column
chromatographed (SiO,, ethyl acetate). Flesh-coloured oil
(357 mg, 1.43 mmol, 71% yield) as a mixture of cis and trans
isomers, which were inseparable by chromatographic techniques.
R¢ = 0.70 (SiO,; ethyl acetate).

BC NMR (100 MHz, CDCl,): § = 171.7, 170.2, 54.5 (COOCH3),
53.2 (CHCOO), 51.1 (CHBr), 33.5 (CH,), 30.0 (CH,), 24.3 (CH,).
'H NMR (400 MHz, CDCl,): 6 = 6.67 (br s, 1H, NH), 4.63 (m, 1H,
CHBr), 4.55 (dd, */ = 11.0 Hz, %] = 3.5 Hz, 1H, NHCH), 3.79
(s, 3H, COOCHS3), 2.38-2.31 (m, 1H), 2.24-2.12 (m, 1H, CH,),
2.09-1.91 (m, 3H, CH,), 1.57-1.46 (m, 1H, CH,). IR: 3347, 2952,
2933, 1734, 1672, 1434, 1379, 1360, 1337, 1303, 1269, 1240,
1223, 1177, 1147, 1107, 1076, 1061, 1011, 939. m/z = 250.02,
251.98 [M + H'], cale. 250.00, 252.00.

Preparation of dithiocarbamates 5 and 6. Methyl 6-bromo-7-
oxoazepane-2-carboxylate (4) (mixture of diastereomers) (1 eq.)
was dissolved in dioxane (15 ml) and the mixture was heated
to 60 °C. Subsequently, a solution of the respective sodium
dithiocarbamate (1.2 eq.) dissolved in methanol (15 ml), is
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added dropwise. After stirring is continued at 60 °C for 90 min,
the solvent is removed under reduced pressure. The raw
material was purified by column chromatography (SiO,; n-hexane/
ethyl acetate = 1:1 — ethyl acetate) to yield in both cases two
separable diastereomers.

Methyl 6-/(dimethylcarbamothioyl)thio]-7-oxoazepane-2-carboxylate
(5). Yield 80% (202 mg, 0.70 mmol) as a mixture of 178 mg (88%)
cis and 24 mg (12%) trans isomer.

cis-Methyl 6-(dimethylcarbamothioyl)thio]-7-oxoazepane-2-
carboxylate (5 cis). Mp. 136-137 °C. Ry = 0.70 (SiO,; ethyl
acetate). *C NMR (100 MHz, DMSO/CD;0D): § = 195.5, 172.5,
171.2, 57.6, 55.5, 51.1, 45.3, 41.7, 33.6 (CH,), 32.3 (CH,), 24.3
(CH,). "H NMR (400 MHz, CDCl;): § = 6.60 (br s, 1H, NH), 4.96
(dd, 1H, CHSC=S), 4.35 (dd, 1H, NHCH), 3.80 (s, 3H, COOCHj),
3.51, 3.39 (s, NCH;, 6H), 2.30-2.20 (m, 1H), 2.12-2.03 (m, 2H,
CH,), 1.96-1.84 (m, 2H, CH,), 1.59-1.49 (m, 1H, CH,). IR: 3369,
3308, 2950, 2859, 1738, 1654, 1490, 1433, 1395, 1367, 1353,
1329, 1305, 1216, 1135, 1081, 1034, 1007, 983, 943, 873, 854,
817, 786, 742, 718. m/z = 291.11 [M + H'], calc. 291.08.

trans-Methyl 6-[(dimethylcarbamothioyl)thio]-7-oxoazepane-
2-carboxylate (5 trans). Mp. 111-113 °C. R; = 0.65 (SiO,; ethyl
acetate). "H NMR (400 MHz, dichloromethane): § = 6.54 (br s,
1H, NH), 5.07 (d, 1H, *J = 8.0 Hz, CHSC=S), 4.59 (dd, *J = 10 Hz,
%] = 4 Hz, 1H, NHCH), 3.89 (t, */ = 10 Hz, NCH,CHy,), 3.83 (s, 3H,
COOCH;), 3.71 (t, *] = 10 Hz, NCH,CH,), 2.45-2.37 (m, 1H),
2.33-2.21 (m, 1H, CH,), 2.14-2.07, 2.02-1.97 (m, NCH,CH,,
4H), 1.93-1.84 (m, 3H, CH,), 1.61-1.54 (m, 1H, CH,). *C NMR
(100 MHz, DMSO/CD;0OD): § = 195.1, 172.8, 171.3, 56.7, 54.7,
53.1, 45.7, 41.6, 33.0 (CH,), 32.5 (CH,), 25.2 (CH,). IR: 3364,
3245, 3089, 3038, 2984, 2946, 2937, 1747, 1708, 1655, 1478,
1455, 1440, 1408, 1376, 1363, 1348, 1325, 1307, 1288, 1274,
1250, 1205, 1177, 1157, 1126, 1105, 1084, 1030, 1012, 984, 945,
896, 879, 869, 841, 800, 774. m/z = 291.11 [M + H'], calc. 291.08.

Methyl 6-[(pyrrolidine-1-carbonothioyl)thio]-7-oxoazepane-2-
carboxylate (6). Yield 77% (296 mg, 0.94 mmol) of a mixture
consisting of 213 mg (72%) cis and 83 mg (28%) trans isomer.

cis-Methyl 6-(pyrrolidine-1-carbonothioyl)thio]-7-oxoazepane-
2-carboxylate (6 cis). Mp. 129-131 °C. R¢= 0.70 (SiO,; ethyl acetate).
'H NMR (400 MHz, dichloromethane): § = 6.54 (br s, 1H, NH),
5.07 (d, 1H, %] = 8.0 Hz, CHSC=S), 4.59 (dd, 1H, NHCH), 3.89
(t, 3] = 10 Hz, NCH,CHS,), 3.82 (s, 3H, COOCH,), 3.71 (t, °] = 10 Hz,
NCH,CH,), 2.45-2.37 (m, 1H), 2.33-2.21 (m, 1H, CH,), 2.14-2.07,
2.02-1.97 (m, NCH,CH,, 4H), 1.93-1.84 (m, 3H, CH,), 1.61-1.54
(m, 1H, CH,). **C NMR (100 MHz, CDCl;): § = 191.0, 172.5, 171.6,
56.5, 55.2, 54.5, 53.2, 51.1, 32.8 (CH,), 32.7 (CH,), 28.9 (CH,), 26.7
(CH,), 24.3 (CH,). IR: 3369, 3303, 2950, 1736, 1657, 1431, 1396,
1353, 1307, 1221, 1161, 1083, 1066, 1035, 1008, 946, 873, 855, 821,
787, 739, 716. m/z = 317.08 [M + H'], calc. 317.09.

trans-Methyl 6-[(pyrrolidine-1-carbonothioyl)thio]-7-oxoazepane-
2-carboxylate (6 trans). Mp. 119-121 °C. R; = 0.59 (SiO,; ethyl
acetate). °C NMR (100 MHz, CDCLy): § = 189.8, 173.4, 171.4,
55.4, 55.3, 54.2, 53.1, 50.7, 33.9 (CH,), 32.5 (CH,), 26.1 (CH,), 25.2
(CH,), 24.2 (CH,). '"H NMR (400 MHz, dichloromethane): § = 6.60
(br s, 1H, NH), 5.15 (d, 1H, CHSC=S), 4.24 (m, 1H, NHCH), 3.88
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(t, 37 = 10 Hz, NCH,CH,), 3.83, 3.82 (s, 3H, COOCH;), 3.68
(t, *] = 10 Hz, NCH,CH,), 2.48-2.38 (m, 1H), 2.31-2.23 (m, 1H,
CH,), 2.13-1.99 (m, NCH,CH,, 4H), 1.93-1.84 (m, 3H, CH,), 1.63-
1.55 (m, 1H, CH,). IR: 3304, 3213, 3096, 2954, 2872, 1727, 1655,
1432, 1363, 1332, 1316, 1287, 1253, 1215, 1185, 1164, 1124, 1106,
1081, 1031, 1002, 957, 945, 889, 868, 846, 822, 794, 774. m/z = 317.08
[M + H'), cale. 317.09.

Pyrolysis of dithiocarbamates. A solution of the respective
thiocarbamate (5 or 6, resp.) (mixture of diastereomers) (1 eq.)
in diphenylether (6.0 g) was heated to reflux for 10 h. The dark
brown reaction mixture was allowed to cool to room tempera-
ture, then purified by column chromatography (SiO,, ethyl
acetate — ethyl acetate/MeOH = 9:1). In both cases, the
pyrolysis of the respective dithiocarbamate yielded a mixture
of two different desaturation products (7 and 8). Pyrolysis of 5
yielded 32% (66 mg, 0.39 mmol) of 7 and 33% (67 mg
0.40 mmol) of 8. Pyrolysis of 6 yielded 30% (10 mg, 0.059 mmol)
of 7 and 27% (9 mg, 0.053 mmol) of 8.

Methyl 7-0x0-2,3,4,7-tetrahydro-1H-azepine-2-carboxylate (A°)
(7). Mp. 101-102 °C. R¢ = 0.20 (SiO,; ethyl acetate).

C NMR (100 MHz, CDCL): § = 171.5 (COOCHj3), 168.4
(CONH), 140.2 (COCH=C), 126.0 (COCH=C), 53.8, 53.0
(COOCH;, NHCH), 32.5 (CH,), 28.7 (CH,). '"H NMR (400 MHz,
CDCly): 6 = 6.67 (br s, 1H, NH), 6.37-6.28 (m, 1H, COCH=CH),
5.94 (dd, */ = 12.5 Hz, ¥ = 2 Hz, 1H, COCH=C), 4.51-3.98 (m, 1H),
3.81 (s, 3H), 2.58-2.47 (m, 2H, CH,), 2.37-2.43 (m, 1H, CH,), 2.04-
2.14 (m, 1H, CH,). IR: 3277, 3238, 3182, 3132, 3031, 2956, 2923,
1720, 1667, 1619, 1487, 1435, 1390, 1368, 1351, 1331, 1279, 1243,
1216, 1197, 1183, 1146, 1085, 1044, 1009, 989, 932, 913, 874, 862,
836, 816, 784, 731. m/z = 170.11 [M + H'], calc. 170.07.

Methyl 7-0x0-2,3,6,7-tetrahydro-1H-azepine-2-carboxylate (A°)
(8). Mp. 155-156 °C. Ry = 0.38 (SiO,; ethyl acetate).

3C NMR (100 MHz, CDCl,): § =173.2 (COOCHj), 171.1 (CONH),
127.2, 120.5 (COCH—C, COCH—C), 53.1, 52.8 (COOCH3, NHCH),
35.4 (CH,), 33.8 (CH,). "H NMR (400 MHz, CDCl,): d = 6.52 (br s,
1H), 5.60-5.49 (m, 2H), 4.61-4.54 (m, 1H), 3.80 (s, 3H), 3.52-3.36
(m, 1H, CH,), 2.91-2.80 (m, 1H, CH,), 2.71-2.59 (m, 1H, CH,), 2.49-
2.35 (m, 1H, CH,). IR: 3284, 3028, 2953, 1735, 1647, 1550, 1436,
1365, 1296, 1266, 1225, 1204, 1158, 1064, 1030, 998, 966, 931, 904,
860, 808, 743, 669, 610. m/z = 170.11 [M + H'], calc. 170.07.
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