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Serum ferritin is an important inflammatory
disease marker, as it is mainly a leakage product
from damaged cells

Douglas B. Kell*a and Etheresia Pretorius*b

"Serum ferritin" presents a paradox, as the iron storage protein ferritin is not synthesised in serum yet is

to be found there. Serum ferritin is also a well known inflammatory marker, but it is unclear whether

serum ferritin reflects or causes inflammation, or whether it is involved in an inflammatory cycle. We

argue here that serum ferritin arises from damaged cells, and is thus a marker of cellular damage. The

protein in serum ferritin is considered benign, but it has lost (i.e. dumped) most of its normal

complement of iron which when unliganded is highly toxic. The facts that serum ferritin levels can

correlate with both disease and with body iron stores are thus expected on simple chemical kinetic

grounds. Serum ferritin levels also correlate with other phenotypic readouts such as erythrocyte

morphology. Overall, this systems approach serves to explain a number of apparent paradoxes of serum

ferritin, including (i) why it correlates with biomarkers of cell damage, (ii) why it correlates with

biomarkers of hydroxyl radical formation (and oxidative stress) and (iii) therefore why it correlates with

the presence and/or severity of numerous diseases. This leads to suggestions for how one might exploit

the corollaries of the recognition that serum ferritin levels mainly represent a consequence of cell stress

and damage.

Introduction

In mammals (in contrast, for instance, to some functions in
insects1–4), ferritin is supposed to be a cellular means of storing
iron,5 not of transporting it, yet serum ferritin levels are widely
measured as indicators of iron status. However, the soluble
transferrin receptor (sTfR) : log ferritin ratio (sTfR Index) prob-
ably provides a better estimate of body iron over a wide range of
normal and depleted iron stores.6–9 This is because serum
ferritin levels can be raised significantly in response to inflam-
mation and/or a variety of diseases (see later). "Serum ferritin"
thus presents something of a paradox. Taking a systems
approach, we develop and summarise the view that "serum
ferritin" actually originates from damaged cells (and thus
reflects cellular damage), that it contains some iron but has
lost or liberated most of its normal content, and that since the
protein part of ferritin is assumed to be benign, that it is this
(initially) free iron that correlates with and is causative of
disease. The rest of this analytical and synthetic review

summarises the wide-ranging evidence for this. We necessarily
start by reviewing iron metabolism from a systems point of view
(Fig. 1).

A systems biology overview of human
iron metabolism

A starting point for systems biology is the creation of the
network (mathematically a ‘graph’) of interacting partners
(e.g. ref. 10–14). To this end, a number of recent genomic-
level or systems biology reviews have summarised the chief
features of human iron metabolism (e.g. ref. 15–19). (Systems
genetics analyses are also available.20–23) For the present pur-
poses, aimed at seeking the ‘function’ of human serum ferritin
(SF), we shall take a particularly high level view, and assume
that the body has a very restricted number of compartments.
Fig. 2, updated from ref. 15 shows essentially just three:
intestinal tissue, peripheral tissue and blood/serum, and (see
also ref. 24, 25 and cf. ref. 26) these will be quite sufficient.

Thus, as is well known, ferric salts and ions are poorly water
soluble (hence the need for siderophores – better known in
microbiology27–30), and much of the complex (redox) chemistry
of iron in the body is designed to deal with this. In addition to
its existence in divalent and trivalent states, iron is also capable
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of being liganded in up to 6 places (4 equatorial, 2 polar), and
this liganding is necessary to stop its otherwise exceptional
reactivity, specifically the production of the very damaging
hydroxyl radical that reacts in nanoseconds with the nearest
biological substances15,17 via the Fenton reaction31–35 of H2O2

and Fe(II). This may be coupled to the re-reduction of Fe(III) to
Fe(II) by superoxide in the Haber–Weiss reaction,31–35 such that
unliganded (or poorly liganded) iron moieties are catalytic and
thus especially dangerous. Thus, while iron is vital for living
processes, there is an exceptionally important need to sequester
iron in a suitably liganded form, and cellular ferritin is a major
means of doing this.36

Leaving aside haem, and also nutrient-derived ferritins,37,38

iron is absorbed in the intestine as ferrous ions and trans-
ported in the serum bound (in the ferric form) to transferrin,
where it can enter peripheral tissues via suitable receptors,
being re-reduced in the process. Ferrous iron is incorporated
into ferritin, simultaneously being oxidised at a di-iron centre39

to ferric iron. Thus, importantly, ferritin is made in cells
(including intestinal cells), and not in serum. We also note
the evidence for the presence of ferritin within erythrocytes,40–54

the largest volume fraction of serum.55 In nucleated cells, ferritin
resides mainly in the cytoplasm, but there are nuclear56–61 and
mitochondrial62–64 forms (not considered here, as our focus is
serum ferritin). An overview of cellular iron metabolism is given
in Fig. 3.

Although there are bacterial (and other) ferritins that have
only 12 subunits,65 human ferritins consist of 24 subunits of a
light (L) and heavy (H) chain arranged by self-assembly in a
tetracosameric, octahedral cage with 4-3-2 symmetry (e.g.
ref. 5, 66–70). In humans, the molecular masses of the two
chains are 19 (173 amino acids) and 21 kDa (183 amino acids),
respectively,61 and the subunits are structurally interchange-
able,71 even between mammalian species.72 The heavy subunit
is primarily responsible for the ferroxidase activity of the

ferritin complex,39 whereas the light subunit (L also standing
for Lacks catalysis73) facilitates the storage of iron into the
ferritin core.61 Many X-ray structures are known.74 Broadly,
each subunit consists of a 4-helix bundle, and their self-
assembly (whether iron is present or not) is energetically
extremely favourable – the melting or denaturation tempera-
ture of the 24mer cage is some 401C greater than that of an
individual subunit.75

Iron loading mechanism of ferritin

The main features of the typical 24-subunit ferritin architecture
(shown as an all-H-chain variant) are given in Fig. 4. Human
ferritin is some 12 nm diameter overall, with a 2 nm thick
protein shell and a hollow internal 8 nm diameter cavity
capable of holding up to 4500 iron atoms. Ferrous ions can
diffuse into (and out of) the core via the eight, hydrophilic
B4 Å � 15–20 Å channels located at the 3-fold symmetry
axis,70,73,76–82 where they are oxidised by dioxygen (or H2O2 if
present) at a di-iron catalytic site to form Fe(III)2–O products
that then form the Fe2O3�H2O mineral core.78,83,84 Other mate-
rials such as phosphate may also serve as counterions.82,85

Ferritin Fe3+O nucleation channels open onto the internal
surfaces of ferritin protein cages at the four-fold symmetry axes
of the ferritin protein cage.82 The six channels located at the
4-fold axis of the protein are hydrophobic; their function does
not seem to be known with any certainty, but they may permit
entry of dioxygen and/or H2O2.77

It is not quite so clear how (after storage as Fe(III) in the ferritin
core) Fe(II) exits the channels81,86 to become available to cells, nor
how the physiological (in vivo) reductant reaches the potential site
of reduction inside the small channels. It is not clear even what the
physiological reductant is,87 though NADH and FMN have been
reported to serve,82,88 as have superoxide89 and other materials.81
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How much iron in cellular/tissue
ferritin?

The number of iron atoms/ferritin cage is said to average 1000–
1500 normally,73 governed more by iron availability than any-
thing else, with a maximum of 4500 iron atoms normally being
quoted (e.g., ref. 90–92, and attained for iron overload condi-
tions or when loaded artificially in vitro). Direct observation

also leads to a mode value of B1500 in a liver biopsy from a
patient with hereditary haemochromatosis.93

What kind of ferritin in which tissues?

As mentioned, from a structural point of view in terms of forming
the 24mer nanocage, ferritin H and L forms are interchangeable.71

Similarly, as expected, ferritin is expressed in most tissues.
Thus, human protein atlas expression data for the light chain

Fig. 1 An overview of this manuscript. (A) A Mind map representation; to read this start at ‘‘1 o’clock’’ and go clockwise. (B) A representation as an
infographic, covering (0) the systems biology of iron metabolism, (1) the nature and structure of serum ferritin (SF), (2) the relationship between SF and
body iron stores and its measurement, the relationship between SF and (3) markers of oxidative stress and (4) disease, and finally (5) the evidence that
ferritin is transferred from cells to serum mainly via cell damage and leakage rather than by regulated secretion.
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http://www.proteinatlas.org/ENSG00000087086/normal show it
mainly in CNS, bone marrow, spleen, liver, kidney, lung and
adipocytes. Expression of the heavy chain is broadly similar
http://www.proteinatlas.org/ENSG00000167996/normal save that
it is also highly expressed in breast, uterus, testis, prostate and
thyroid tissue. In terms of the actual stoichiometries of L:H in
ferritin molecules in different tissues (which also affects the
ordering or crystallinity of the mineral core73,87) there is rather
less information, and variations in this may be causative of
disease.94,95 Clearly, for a 24-subunit molecule with two kinds of
subunits, one can build 25 canonical ‘isoferritins’.74 Liver and
spleen ferritin is mainly the L subunit while heart and brain

ferritin is mainly the H subunit. Serum ferritin is mainly in the
L form,5,96 consistent with the view that it typically originates in
the liver.97 The same (i.e. mainly the L form) is presumably true
for erythrocyte ferritin, in that this is what the usual ELISA tests
for serum ferritin are designed to detect.

Natural degradation of ferritin

The exact circumstances under which ferritin is normally
degraded in vivo (if it is intact) are not entirely clear, but what
is clear is that there is a fundamental conceptual problem,
in that if the only part degraded is the protein the result is
the damaging liberation of unliganded iron. Certainly, as
expected for normal cellular degradation, the proteasome is
involved,38,98 but there is also a major lysosomal degradation
pathway.38,99–103 We note too that overexpression can lead to
the formation of ferritin inclusion bodies.104

As well as proteolytic degradation, there are other means of
ferritin removal. Thus, haemosiderin is an insoluble material
formed from damaged ferritin (ferritin with exposed and
potentially chemically reactive mineral sites), commonly
appearing under conditions of iron overload and often reflect-
ing a poorer disease prognosis (e.g. ref. 71, 105–112). (Note that
another insoluble cellular degradation cluster – lipofuscin
(e.g. ref. 113–116) – is different, as it does not contain haemo-
siderin.) However, the insoluble substance neuromelanin
(e.g. ref. 115, 117–119) may contain ferritin or ferritin-like
material.120–122 The question of what happens to haemosiderin
seems rather poorly understood, but in contrast to ferritin it is
not normally seen (nor at least measured) in serum;123,124 since
it is composed of large, insoluble aggregates it is possibly not
surprising that it does not leak from cells. Overall, however, it
seems that we have comparatively little information on the

Fig. 2 A high-level, three-compartment overview of iron metabolism (based on15) and the means by which we consider that ferritin appears in serum by
leakage from peripheral (and possibly intestinal) cells. BR biliverdin reductase, DMT1 divalent metal transporter1, HO haem oxygenase, Hph hephaestin,
TfR transferrin receptor, Lcn2 lipocalin2, also known as Neutrophil gelatinase-associated lipocalin. Diagrams rendered by Dr Steve O’Hagan.

Fig. 3 Some relevant aspects of cellular iron metabolism, including
ferritin and its possible loss to serum. The figure is not to scale, and is
based in part on.67 Membrane protein concentrations shown are lower
(for clarity) than those in real cell membranes.458 Diagram rendered by
Dr Steve O’Hagan.
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important question of what happens to its iron content when
the protein part of the ferritin molecule either leaves the
intracellular environment or is degraded.

In what form is serum ferritin measured?

As mentioned previously, ferritin has an H and L form that are
structurally interchangeable. Serum (L-)ferritin is usually measured
with antibodies; only rarely is its iron content measured as well.
Mass spectrometric methods, that can measure both protein and
internal materials, may thus be expected to become the methods of
choice.125–128 When such measurements are done, serum ferritin is

usually found to contain some iron, but nothing like its full
complement.91,92,97,129,130 This implies that it has lost it, whether
during or after effluxing from the cells in which it originates.87

Is the protein component of serum
ferritin benign or toxic?

This question arises because if the iron has escaped and now
(say) the inside of the ferritin is exposed in the serum it might
have effects that the intact protein does not (given that the
intact protein is extremely stable to thermal unfolding75). There
is some fragmentary evidence that serum ferritin itself may
have apoptotic and other actions on cells.68,131,132 However, at
present it is rather difficult to answer the question of how
benign the protein-only form of ferritin (i.e. apoferritin) actually
is, since serum ferritin does always tend to contain at least
some iron, which can be released and is then not at all benign.
When the iron is varied systematically, it is iron-loaded ferritin
that is the more toxic,133 with apoferritin in fact being protec-
tive.133–137 An important piece of evidence comes from the fact
that homozygous ferritin knockout mice are embryo-lethal138

but that heterozygous Fth+/� mice are fairly normal save that
they have greatly increased levels of serum ferritin but
unchanged serum iron.139 This shows us, importantly, (i) that
iron and ferritin can be regulated independently, and (ii) that
excess ferritin protein is not of itself toxic in vivo (see also
ref. 140). Hereditary hyperferritinemia-cataract syndrome is
another disease in which serum ferritin is high but there is
no evidence of systemic iron overload.141–146 However, as well
as (sometimes) being a marker of liver iron stores, serum
ferritin is also an inflammatory marker, and there is often a
considerable correlation between disease status and the serum
ferritin protein level as measured using antibodies (which do
not distinguish ferritins with varying iron content).

Serum ferritin can be a marker of iron
stores but is also an inflammatory
biomarker

What matters from the point of view of mammalian biology is both
the total amount of iron and its speciation. While iron is necessary
in every metabolising tissue, a substantial amount of iron is held in
the liver, so ‘liver iron stores’ are often taken as the gold standard.
Traditionally, these were measured in a biopsy, although this is
not something that can be done with any frequency. Fortunately
non-invasive measurement and imaging methods, e.g. neutron-
stimulated emission controlled tomography,147 SQUID-
biosusceptometry129,148 and (in particular) MRI (e.g. ref. 149–158),
also widely used for brain imaging (e.g. ref. 159–161), are coming
through. In some cases, where there is no inflammation and/or if a
specific iron-related disease state is known, liver iron content can
correlate with serum ferritin (e.g. ref. 162 and 163), but more often
the correlation is poor (e.g. ref. 129, 157, 164–171). This is more or
less inevitable when serum ferritin levels can be affected by two

Fig. 4 The architecture of a human ferritin, rendered from PDB structure 1FHA
(all-H-chain variant). (A) A view down one of the hydrophilic channels repre-
senting the 3-fold axis of symmetry through which iron enters the ferroxidase
site en route to the core. (B) A view down the hydrophobic channels
representing the 4-fold axis of symmetry (whose function is unknown). (C)
Entry of Fe2+ into ferritin via a hydrophilic channel, and conversion at a di-iron
site to Fe3+, based loosely on a diagram in73 – note that for clarity the iron atoms
are not drawn to scale. Diagrams rendered by Dr Steve O’Hagan.
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largely independent causes, viz. iron status and inflammatory
status. Thus, as mentioned above, serum ferritin alone is falling
out of favour as a marker of iron status, with serum (‘soluble’)
transferrin receptor (sTfR) being seen as much more useful, since
sTfR may be used to distinguish the anaemia of chronic disease
from iron-deficiency anaemia.172 In particular, the "sTfR Index"
(the sTfR/log ferritin ratio when both are measured in mg L�1) is
now considered to provide an estimate of body iron over a wide
range of normal and depleted iron stores,6–9 and again is thus
better for discriminating iron deficiency anaemia from the anaemia
of chronic disease9,173–175 (cf. ref. 176).

In consequence, and especially in countries where inflammatory
diseases are highly prevalent, it would seem that serum ferritin may
in general be a better marker of inflammation than of iron status.

Some diseases in which serum ferritin
levels correlate with the presence or
severity of disease

One of us has previously listed a great many (inflammatory)
diseases in which iron dysregulation clearly plays a major role
(e.g. ref. 15 and 17), but did not there distinguish serum ferritin
explicitly. It is therefore helpful to set down some of the studies
in which serum ferritin is known to associate with disease and/
or disease severity, and this is done in Table 1.

There can be very little doubt that high serum ferritin levels
accompany a great many diseases, and the corollary of this is
that iron-induced hydroxyl radical formation leading to oxida-
tive damage is likely to be a contributory factor in all of them.
In addition, there are other useful phenotypic readouts that
change with serum ferritin, and the next section describes one.

Some morphological and related
readouts of haematological changes
associated with inflammatory diseases

While not the entire focus of this review, we highlight two other
accompaniments to the unliganded iron caused by its loss from
ferritin, namely morphological changes to both fibrin and
erythrocytes. Thus, we have recently been developing the idea
that many of the consequences of unliganded iron can be
observed directly, by changes in properties such as erythrocyte
(RBC) morphology and deformability and the nature and
morphology of fibrin fibres generated in the presence of
thrombin (as is observed in a number of diseases343–346). When
thrombin is added to healthy whole blood, the RBCs will keep
their typical discoid shape while fibrin fibres will form over and
around the RBCs (such a typical healthy RBC (from an indivi-
dual with a serum ferritin of 19 ng�mL�1), surrounded by fibrin
is shown in Fig. 5A). However, in inflammatory conditions,
where iron overload is present, the RBCs lose their typical discoid
shape, while the fibrin network forms a dense matted layer.

Table 1 A selection of diseases in which their presence or severity
is known to be related to serum ferritin levels. The table purposely
excludes classic ‘iron overload’ diseases such as haemochromatosis,
thalassaemia and myelodysplastic syndrome. It also excludes syndromes
such as Alzheimer’s disease177–179 and Parkinson’s disease,18,180 where a
great many papers show dysregulation of iron metabolism in brain tissue
but where there is very little work in serum. In the case of rheumatoid
arthritis some of the studies involved synovial fluid; like serum, this is an
extracellular fluid

Disease or syndrome Selected references

Acute respiratory distress syndrome 181–184
Amyotrophic lateral sclerosis 185–189
Atherosclerosis 96, 190–200
Cancer 201–214
Cirrhosis of the liver 215–217
Coronary artery disease 218–221
Diabetes mellitus, type 2 221–249
Hypertension 250–254
Metabolic syndrome 235, 236, 252, 255–272
Multiple sclerosis 273–276
Myocardial infarction 277–285
Non-alcoholic fatty liver disease 260, 262, 264, 270, 286–301
Preeclampsia 302–306
Rheumatoid arthritis 307–314
Sepsis/SIRS 315–318
Stroke 319–330
Systemic lupus erythematosus 274, 331–342

Fig. 5 A to D: whole blood with added thrombin, taken from females.
(A) Erythrocyte surrounded by fibrin network, from a healthy individual
(serum ferritin (SF) = 19 ng mL�1); (B) erythrocyte from a hereditary
hemochromatosis individual (C282Y/C282Y) showing elongated shape
with (in brown) matted fibrin (serum ferritin (SF) = 508 ng mL�1); (C)
erythrocyte of an individual with a pro-thrombin mutation (G20210A –
heterozygous) as well as anti-phospholipid syndrome, showing fibrin
forming a covering on the elongated erythrocyte (serum ferritin (SF) =
177 ng mL�1); (D) erythrocyte from a high serum ferritin Alzheimer’s
disease individual, showing architectural changes of the cell (serum ferritin
(SF) = 256 ng mL�1). E and F: whole blood smears (without added
thrombin) (E) erythrocyte of hereditary hemochromatosis individual
(serum ferritin (SF) = 508 ng mL�1); (F) erythrocyte from hereditary
hemochromatosis individual after addition of the iron chelator desferal
(167 mM). Scale bar = 1 mm. Ethical clearance was obtained by E Pretorius
for SEM analysis.
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This was previously noted in RBCs of hereditary haemochroma-
tosis, pro-thrombin mutation and antiphospholipid syndrome
with increased serum ferritin levels and in high serum ferritin
levels in Alzheimer’s disease.347–351 Fig. 5B–D show examples of
RBCs and fibrin in these conditions. The corollary is clear,
namely that these kinds of changes should be observable in
cases where we see high serum ferritin, and some examples have
already been published.

In the presence of iron, the already compromised RBCs are
entrapped in the pathological fibrin masses. Iron plays an impor-
tant role in the change of a netlike fibrin layer to a matted mass.
We previously showed that healthy fibrin can be changed to
resemble this matted appearance, when physiological levels of
iron are added to plasma.352 Such matted fibrin morphology was
also previously noted in type II diabetes, thrombotic ischemic
stroke and systemic lupus erythematosus. Here the compromised
RBCs twist around the fibres and this may cause a tight and rigid
clot that might be particularly resistant to fibrinolysis.353–355

As well as undergoing a shape change, the RBC mem-
branes, in the presence of iron overload, also lose their elastic
ability (deformability). This was noted in Alzheimer’s Disease
individuals with iron overload, where their RBCs have a
decreased membrane elasticity.347 A changed RBC membrane
roughness was also noted in diabetes.356

Further, RBC shape and membrane changes have been
noted in smokers and in individuals with Chronic Obstructive
Pulmonary Disorder (COPD).357,358 Both conditions are known
to cause a general inflammatory state in the user as well as
increased serum ferritin levels,359 and this may aid in the
developing of the changed RBC deformability.

RBCs are extremely adaptable cells, particularly due to their
rheological properties that force them to deform and reform
under shear forces when they travel through narrow capillaries,
while in the presence of high (poorly liganded) iron levels, they
lose this deformability. By contrast, diseased RBCs can regain
their discoid shape when selected chelators are added.350 Here
we show how an RBC from a HH individual can return to the
typical discoid shape after the addition of physiological levels
of the iron chelator Desferal (Fig. 5E and F). This may have
profound clinical implications under conditions where iron
overload is present.

Thus, this unliganded iron affects (negatively) at least three
things that can each contribute to vascular woes: erythrocyte mor-
phology, erythrocyte deformability and fibrin structure/morphology.

Chelation for the reversal of
iron-induced effects

The recognition that these changes can be reversed by known
iron chelators leads to the recognition of a further prediction:
that disease severity may be decreased through the use of iron
chelators that may be pharmacological or nutritional. For the
former, three iron chelators have been approved for clinical use
(e.g. ref. 15, 360–364), viz. desferal/deferoxamine/desferrioxamine,365

L1/deferiprone366–368 and deferasirox.369–372 From the nutritional

point of view, there is considerable evidence that many of the
benefits of polyphenolic antioxidants (such as are found in
coloured, and especially purple, fruits) derive from their ability
to chelate unliganded iron (see e.g. ref. 17, 373–380).

Chemical kinetic basis of the relation of
serum ferritin to liver iron stores and
with disease

Many dozens of references indicate that in normal humans (with-
out overt inflammation) serum ferritin levels are more or less
closely related to body iron stores (e.g. in the liver) as judged by
magnetic resonance imaging, biopsy or repeated phlebotomies.
A selection of such references includes.163,169,381–385

Since there is normally a decent correlation between
body iron stores and serum ferritin, a series of simple
(even first order) reactions in which cells release ferritin can
account for this (Fig. 6). The question arises as to the nature of
this ‘release’.

Ferritin transfer from cells to serum in
humans: less active secretion, more
simply leakage from damaged cells

Partly because a fraction of serum ferritin is glycosylated, as
judged more or less solely by its ability to bind to concanavalin
A (not a very specific assay), it is occasionally stated that ferritin
is ‘secreted’ (e.g. ref. 382, 386 and 387), implying a controlled

Fig. 6 A high-level systems approach to serum ferritin. The diagram
serves to illustrate why there tend to be correlations between the amount
of ferritin in cells, the rate of its excretion by cell damage (involving
liberation of unliganded iron) and the levels of serum ferritin. The serum
ferritin correlates with disease but the cause is iron, with which it too can
correlate. As with any systems biology network, multiple differences in
different elements of the network can lead to the same overall effects,
explaining the lack of a perfect correlation with any individual process.
Thus a first order rate of efflux of ferritin is the product of (and thus
contains contributions from) both the internal ferritin concentration and
the rate constant for efflux, which may vary independently. For these
purposes we do not discriminate the many individual iron species.
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process, but without – so far as we are aware – any actual
evidence for secretion rather than leakage being the mecha-
nism in vivo. Indeed when ferritin is genuinely secreted, as it is
for instance in insects,3,4,388 it has suitable leader (secretion
signal) sequences, and mammalian ferritins do not.

This said, in cell cultures, there is some (scant) evidence for
a comparatively small amount of regulated secretion,389 and
one paper states that secretion can be decreased by brefeldin,
an inhibitor of Golgi processes.390 This secreted form is said to
be mainly the more acidic H form131 and is glycosylated. We
note that both SCARA5 and the transferrin receptor can act as
receptors for serum ferritin,68,391,392 as can TIM-2 in mice,393

that can in some circumstances be taken up into cells.394 There
is also evidence for active secretion (of a non-glycosylated form)
in mice.395 Overall, however, there is not as yet any real
evidence for regulated or active secretion in humans in vivo,
such that the origin of serum ferritin must indeed largely, if not
entirely, be seen as cellular damage. A number of analyses in
the literature are consistent with this, and the following four
sections pertain.

Relative lack of homeostasis of serum ferritin

The ‘normal range’ of a biochemical concentration is a body
fluid is usually taken as the middle 95 percentiles. Somewhat
like the Gini indices of economics,396 it is then possible to
assess the ratio of particular percentiles, which gives an indica-
tion of the spread of these among populations. We shall call
this ratio (of the 2.5th and 97.5th percentile) the 95 percentile
ratio or 95PR. A small spread implies a tighter degree of
regulation or control. The large normal range of serum ferritin
(18–350 ng mL�1) relative to other biochemical variables
(http://www.globalrph.com/labs_def.htm#Ferritin_), with a 95PR
of nearly 20, implies that it is not the subject of homeostasis,
i.e. that its appearance is not regulated. One might also com-
ment on the very low normal concentrations of serum ferritin
(up to say 350 ng mL�1 in men, up to say 150 ng mL�1

in women) relative to say transferrin (1.88–3.41 mg mL�1)
(http://www.globalrph.com/labs_t.htm) or fibrinogen (2–4 mg mL�1).

Association between serum ferritin and biomarkers of liver
damage

As stated by Theil:70 "serum ferritin likely originates from cell
leakage". The figure in67 implies a similar role. Similarly,
Hubel305 points out correlations between serum aspartate
aminotransferase (a marker of hepatocellular damage) and
SF,397 which again implies that serum ferritin originates from
cellular damage. Many other authors (e.g. ref. 87, 91, 129, 288,
382 and 398) take a similar view. Serum alanine aminotransfer-
ase is another well known marker of liver damage that corre-
lates with serum ferritin,93,215,257,287–289,399–407 consistent with
the view that serum ferritin is indeed a marker of damaged
cells. In this regard, it is worth noting that the rate of cell
turnover, and especially liver cell turnover/regeneration, can be
very high (e.g. ref. 408–411).

Correlation of serum ferritin with other markers of oxidative
stress and hydroxyl radical formation

Since intracellular ferritin is a means of storing iron safely,412

and indeed its synthesis is increased in response to oxidative
stress,413–416 one should not necessarily expect serum ferritin to
be related to biomarkers reflecting hydroxyl radical formation
via the Fenton reaction, that is catalysed by unliganded iron.
However, in a similar vein to the liver damage above, serum
ferritin levels do correlate with serum markers of hydroxyl
radical formation such as 8-hydroxydeoxyguanosine,17,417–424

27-hydroxycholesterol,425 4-hydroxynonenal,131,290 isopros-
tanes,426,427 and malondialdehyde.406,428–436 Given that only
unliganded iron can do this, the easiest interpretation of such
data is that the serum ferritin has lost its iron and that it is this
unliganded iron that catalyses hydroxyl radical formation and
thus the production of these markers. An extensive food proces-
sing literature also documents this loss of iron from ferritin in
muscle foods (e.g. ref. 437–439), where the consequent lipid
oxidation is a major issue in causing rancid tastes, and where
metal chelators decrease it.440,441

Correlation of platelet microparticles with serum ferritin –
further evidence for the cell damage hypothesis

As mentioned, a considerable number of papers note the
presence of ferritin in erythrocytes, the largest cellular com-
partment in blood.40,43–50,53,54 In RBCs, one of the more notable
cell death mechanisms is eryptosis, a suicidal death of erythro-
cytes; this is characterized by erythrocyte shrinkage, blebbing,
and phospholipid scrambling of the cell membrane. There is
limited evidence that eryptosis occurs in iron overload condi-
tions like b-thalassemia.442 It is noteworthy that erythrocyte-
derived microparticles are also often observable in the blood of
patients with diseases associated with high serum ferritin levels
(Table 1).443–453 These microparticles are circulating fragments
derived from blebbing and shedding of cell membranes
through several mechanisms that include activation, apoptosis
(in nucleated cells) and cell damage.444,454 These microparticles
are well-known in cardiovascular, neoplastic, and inflammatory
diseases and this again implies a correlation between cellular
damage and serum ferritin. Cell damage also releases both
phospholipids and DNA, and (in a similar vein) ferritin levels
are also raised in diseases in which antibodies to such mole-
cules are also present (e.g. ref. 455–457).

Summarising remarks

Although serum ferritin is widely seen as an inflammatory
biomarker, our understanding of its role as an intracellular
iron storage protein gives no explanation of why it should even
exist in serum. The view summarised here is that serum ferritin
leaks from damaged cells, losing most of its iron on the way,
and leaving that iron in an unliganded form that can impact
negatively on health. This unliganded iron can of course
stimulate further cell damage.17 This overall view serves
straightforwardly to explain the following, known observations.
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(1) Serum ferritin exists, despite the fact that ferritin is not
synthesised in the serum.

(2) Serum ferritin lacks most of the iron it contained when
intracellular.

(3) The intracellular ferritin must have ‘dumped’ its unli-
ganded iron somewhere, where it can participate in Haber–
Weiss and Fenton reactions, creating hydroxyl radicals and
consequent further cellular damage.

(4) The serum ferritin protein is itself considered benign.139

(5) Yet the level of serum ferritin correlates with numerous
inflammatory and degenerative diseases.

Quo vadis (where next)? A perspective
for future work

We consider the summary presented here rather persuasive, as
it has considerable explanatory power in terms of accounting
for the nature and consequences of serum ferritin, and providing
corollaries of the fact that it has largely ‘lost’ its iron that are
borne out by evidence. It also leads us to note some of the
experiments that need to be done. First, we need to understand
much better the state of both cellular and serum ferritin in terms
both of its subunit composition and the nature and extent of its
iron content. We also need to understand better the different
cellular and tissue distributions of the variously loaded forms,
and we certainly need to determine the toxicity displayed, or
protection afforded, by the different forms of well characterised
ferritins under different circumstances. Far from implying
that serum ferritin is a poor biomarker, it leads us rather to
suggest that we need to follow it (and its sequelae) more carefully
and longitudinally during the development or otherwise of
various diseases, and to test how well its changes reflect thera-
peutic benefits to disease progression. Only then will we deter-
mine its true utility, whether alone or in combination with other
biomarkers.
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The hereditary hyperferritinemia-cataract syndrome: a family
study, Eur. J. Pediatr., 2010, 169, 1553–1555.

145 C. Beaumont, Miscellaneous Iron-Related Disorders, in Iron
Physiology and Pathophysiology in Humans, ed. G. J. Anderson
and G. D. McLaren, 2012, pp. 417–439.

146 S. Luscieti, G. Tolle, J. Aranda, C. B. Campos, F. Risse,
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319 A. Dávalos, J. M. Fernandezreal, W. Ricart, S. Soler,
A. Molins, E. Planas and D. Genis, Iron-related damage
in acute ischemic stroke, Stroke, 1994, 25, 1543–1546.

320 A. K. Erdemoglu and S. Ozbakir, Serum ferritin levels and
early prognosis of stroke, Eur. J. Neurol., 2002, 9, 633–637.

321 G. M. Bishop and S. R. Robinson, Quantitative analysis of
cell death and ferritin expression in response to cortical
iron: implications for hypoxia-ischemia and stroke, Brain
Res., 2001, 907, 175–187.

322 A. Armengou and A. Davalos, A review of the state of
research into the role of iron in stroke, J. Nutr., Health
Aging, 2002, 6, 207–208.

323 E. Millerot, A. S. Prigent-Tessier, N. M. Bertrand, P. J. Faure,
C. M. Mossiat, M. E. Giroud, A. G. Beley and C. Marie, Serum
ferritin in stroke: a marker of increased body iron stores
or stroke severity?, J. Cereb. Blood Flow Metab., 2005, 25,
1386–1393.

Perspective Metallomics

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Ja

nu
ar

y 
20

14
. D

ow
nl

oa
de

d 
on

 1
/1

7/
20

26
 1

:5
4:

59
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c3mt00347g


768 | Metallomics, 2014, 6, 748--773 This journal is©The Royal Society of Chemistry 2014

324 D. L. van der A, D. E. Grobbee, M. Roest, J. J. M. Marx,
H. A. Voorbij and Y. T. van der Schouw, Serum ferritin is a
risk factor for stroke in postmenopausal women, Stroke,
2005, 36, 1637–1641.

325 M. Millan, T. Sobrino, M. Castellanos, F. Nombela, J. F.
Arenillas, E. Riva, I. Cristobo, M. M. Garcia, J. Vivancos,
J. Serena, M. A. Moro, J. Castillo and A. Dávalos, Increased
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