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Zinc-selective inhibition of the promiscuous
bacterial amide-hydrolase DapE: implications of
metal heterogeneity for evolution and antibiotic
drug design†‡

Narasimha Rao Uda,a Grégory Upert,a Gaetano Angelici,a Stefan Nicolet,a

Tobias Schmidt,b Torsten Schwedeb and Marc Creus*a

The development of resistance to virtually all current antibiotics makes the discovery of new antimicrobial

compounds with novel protein targets an urgent challenge. The dapE-encoded N-succinyl-L,L-

diaminopimelic acid desuccinylase (DapE) is an essential metallo-enzyme for growth and proliferation

in many bacteria, acting in the desuccinylation of N-succinyl-L,L-diaminopimelic acid (SDAP) in a late stage

of the anabolic pathway towards both lysine and a crucial building block of the peptidoglycan cell wall.

L-Captopril, which has been shown to exhibit very promising inhibitory activity in vitro against DapE and

has attractive drug-like properties, nevertheless does not target DapE in bacteria effectively. Here we show

that L-captopril targets only the Zn2+-metallo-isoform of the enzyme, whereas the Mn2+-enzyme, which is

also a physiologically relevant isoform in bacteria, is not inhibited. Our finding provides a rationale for the

failure of this promising lead-compound to exhibit any significant antibiotic activity in bacteria and

underlines the importance of addressing metallo-isoform heterogeneity in future drug design. Moreover,

to our knowledge, this is the first example of metallo-isoform heterogeneity in vivo that provides an

evolutionary advantage to bacteria upon drug-challenge.

Introduction

It has been estimated that about 25 000 people die in Europe
alone every year from an infection due to common antibiotic-
resistant bacteria, causing an economic burden in excess of
1.5 billion euro per year.1 Similar alarming statistics are
reported around the world, making the current inevitable rise
of antibiotic-resistance to our limited subset of clinically useful
drugs an issue of great concern.2 It is therefore crucially
important and urgent that new protein targets are identified
and that their specific inhibitors are developed.

DapE, N-succinyl-L,L-diaminopimelic acid desuccinylase of
the meso-diaminopimelate (mDAP)/lysine biosynthetic pathway
of bacteria, has been identified as an attractive potential
antibiotic target for two main reasons:3 (i) the growth of many
bacteria is highly dependent on the biosynthesis of lysine and

diaminopimelic (DAP) acid, which are essential for protein
synthesis and elaboration of their peptidoglycan cell wall,
respectively,4 and (ii) both DAP and lysine are synthesized by
the dap operon bacterial enzymes and no similar pathways take
place in humans.

L-Captopril was identified as a low-micromolar inhibitor of
the H. influenzae DapE enzyme in vitro.4a Considering that
L-captopril is a marketed drug against hypertension5 one may
suppose that the compound already exhibits attractive pharma-
cokinetic properties. Moreover, considering the structural and
functional conservation among DapE from various bacteria,
one would expect that L-captopril may inhibit various bacterial
homologues in a similar manner, thus potentially proving to
be a broad-selectivity antibiotic. Disappointingly, however,
L-captopril exhibited only very modest antimicrobial activity
when tested in bacteria (including strains of S. enterica and
E. coli). Moreover, this weak activity was revealed to be totally
DapE-independent.6

The failure of a promising drug-like compound to exhibit
any significant antimicrobial effect in vivo or to target the
enzyme target identified in vitro is perplexing and acts as a
sobering reminder of the difficulty of translating in vitro data to
effects in vivo. In an attempt to overcome this initial setback, we
aimed at understanding why L-captopril should fail to have any
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significant antimicrobial potency in bacteria. Here, we present
a simple answer to this conundrum, based on the surprising
metal-selectivity of L-captopril and its inability to inhibit all
microbiologically relevant metallo-isoforms. Further, our findings
imply that heterogeneity in metal content of metallo-enzymes may
confer selective advantages.

Materials and methods
Construction of C-terminus polyhistidine-tagged DapE
(DapE-C6His)

A pET28b-based plasmid (Novagen) for DapE overexpression was
constructed according to published methods.7 Briefly, the 1.2 kb
dapE gene was PCR amplified from the plasmid pCM655dapE
by using the primers from Microsynth, F-SEQpCM655 (50 GCGT
ACGTCGCGACCGCGGACATGT 30) & R-pCM655XhoI (50 AGCCA
AGCCTCGAGGGCGACGAGCTGTTCC 30), with Pfu turbo polymerase
(Stratagene) and sub-cloned into pET28b plasmid (Novagen) at the
restriction sites HindIII and XhoI (using restriction enzymes from
Biolabs).

Expression and purification of recombinant DapE-C6His

The expression plasmid, pET28b-DapE, was transformed into
strain BL21(DE3) (Stratagene); the pre-culture was made in
LB-medium with 30 mg ml�1 kanamycin and 2% glucose at
37 1C and the over-expression was induced with 1 mM isopropyl-
1-thio-b-D-galactopyranoside (IPTG) when the OD600 was between
0.5 and 0.8, in LB-medium containing 30 mg ml�1 kanamycin at
20 1C throughout. The cells were harvested after 6 hours of IPTG
induction and the cell pellet was frozen at �20 1C, which was
then thawed on ice and re-suspended in lysis buffer (50 mM
tricine pH 7.8, 0.5 M NaCl, 1 mM PMSF, 3 mg ml�1 DNase I and
5 mg ml�1 lysozyme) and the cell-lysis was carried out at 37 1C and
200 rpm for 1 hour. The soluble protein fraction was transferred
into a fresh bottle at 4 1C after the centrifugation at high speed
(9000g) for 30 minutes in a pre-cooled (4 1C) centrifuge.

The soluble protein fraction was filtered using a 0.45 mm
filter and the loading buffer (50 mM tricine pH 7.8 & 0.5 M
NaCl) and elution buffer (50 mM tricine, 0.5 M NaCl & 0.5 M
imidazole and the final pH was adjusted to 7.8) were filtered
using a 0.2 mm filter. Filtered DapE-C6His protein was purified
on HiTrap 5 ml chelating HP columns (GE Healthcare) loaded
with 0.1 M ZnCl2 in 50 mM tricine pH 7.8 with an ÅKTA
Purifier-10 from GE Life Sciences.

Removal of the labile metal from the purified protein
solution was achieved by 3 step sequential dialysis: first dialysis
against 10 l of 50 mM tricine pH 7.8 with 1 mM 1,10-phenan-
throline, second dialysis against 10 l of 50 mM tricine pH 7.8
with 5 mM ethylenediaminetetraacetic acid (EDTA) and third
dialysis with 50 mM de-metallated tricine pH 7.8. Each dialysis
step was for 8 to 12 hours at 4 1C using the dialysis bags with an
approximate molecular weight cut-off of 6 to 8 kDa (Spectrum
Labs). Chelex-100 (Bio-Rad) chelating ion exchange resins were
used for the de-metallation of the buffer, i.e. 50 mM tricine
pH 7.8 used for dialysis.

Purified DapE protein from S. enterica exhibited a single
band on SDS-PAGE, indicating a molecular weight of approximately
42 kDa. Protein concentrations were determined by using the
Pierce BCA protein assay kit (Thermo Scientific). The yield of the
purified DapE protein was about 1 mg L�1 of bacterial culture.

Synthesis of SDAP

N-succinyl-L,L-diaminopimelic acid (SDAP) was synthesized in
liquid phase through a standard coupling procedure between
mono-tert-butyl succinate and enantiopure mono-tert-butyl protected
L,L-diaminopimelic dimethyl ester (protected DAP), using
O-benzotriazole-N,N,N0,N0-tetramethyl-uronium-hexafluoro-phos-
phate (HBTU) as a coupling agent. The product of the coupling
was then conveniently deprotected by standard cleavage of the
protecting groups. DAP was previously synthesized according to
published protocols via olefin cross-metathesis between enantio-
pure Boc-L-allylglycine-OMe and Cbz-L-vinylglycine-OMe, in yields
above 70%.8

DapE kinetic assays

The enzymatic assays were carried out in triplicate in 50 mM
tricine pH 7.8 at 37 1C, using the purified DapE-C6His to a final
concentration of 1 ng ml�1. The final substrate concentration of
the native substrate (SDAP) was 20 mM in a reaction volume of
50 ml. Initially the DapE enzyme was pre-incubated with metals
(0.2 mM ZnCl2 & 0.5 mM MnCl2 for the native substrate and
1 mM MnCl2 for the promiscuous substrate) at 37 1C for an
hour and then with the inhibitor for another 10 minutes.
L-Captopril was purchased from Sigma-Aldrich. In all cases
the reactions were initiated by adding the substrate, either
SDAP or Asp-Leu (Shanghai FWD Chemicals). The enzymatic
reaction was followed by measuring the hydrolysis of the
peptide bond of the substrates.9 Readings were carried out
every 2 minutes for about 3 hours at UV230nm in UV transparent
96-well plates (Greiner) using a TECAN Safire plate reader.

Growth assays

Bacterial growth assays were carried out with strain TN5911, a
knockout strain for DapE and for several dipeptidases; there-
fore, mDAP (Bachem) has to be supplemented in both minimal
and enriched media. An appropriate source of leucine and
proline is also required in minimal medium and supplementa-
tion with lysine provides better growth (Prof. Charles G. Miller,
personal communication). For DapE expression and selection
assays, strain TN5911 was transformed with the plasmid
pCM655/DapE to form strain TN5935.6,7

The metal-dependent anti-microbial activity of L-captopril
was monitored by measuring the growth curves of the TN5935
in LB-medium containing L-captopril (0, 1 mM, 5 mM, 25 mM,
100 mM & 300 mM) under native activity selection (no mDAP
supplementation) and under no selection (supplemented with
1 mM mDAP) and with and without 0.35 mM metal (MnCl2 or
ZnCl2) supplementation. All measurements were carried out at
least in duplicate. The main cultures were grown and the OD600

was measured in flat bottom 96-well plates (200 ml culture per well)
in a plate reader (TECAN Safire) at 37 1C for every 16 minutes.
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The main cultures were started by adding the pre-culture of
OD600 B 1 to an initial OD600 between 0.1 and 0.2.

The effect of the metals on DapE enzyme activities in
bacteria was monitored by measuring the growth curves of
the TN5935 under no selection and under selection for native &
promiscuous activities with and without 0.35 mM metal salt
(MnCl2 or ZnCl2) supplementation. These growth curves were
measured from the cultures of minimal medium (1% MgSO4�7H2O,
10% citric acid�H2O, 50% K2HPO4, 17.5% NaHNH4PO4�4H2O, 0.4%
glucose, 0.4 mM proline, 0.4 mM lysine, 0.4 mM leucine or Asp-Leu,
1 mM IPTG and, if required, 1 mM mDAP) by following the
OD600 every 4 hours at 37 1C at 200 rpm. The cultures were
started by adding the pre-culture of LB-medium of OD600 B 1 to
an initial OD600 between 0.1 and 0.2, which corresponded in
this case to 0.4 ml of overnight LB-medium culture in 100 ml of
minimal medium in a 1 l Erlenmeyer flask. We carried out
a control culture to confirm that at this dilution of rich
LB-medium in minimal medium (250-fold dilution), there is
insufficient carry-over of leucine to allow for any detectable
growth of the dapE knockout strain (TN5911) when supple-
menting with mDAP.

Structural modelling

A homology model of the Salmonella enterica DapE model was
built with SWISS-MODEL.10 The di-zinc Haemophilus influenzae
X-ray structure [PDB: 3IC1] sharing 61% identity with S. enterica
without water molecules was used as a modelling template.

The resulting model was energy minimized using the Yasara
energy minimization server.11 The conformation of residue
Lys174 was replaced by an alternative rotamer in Maestro12 to
enlarge the ligand binding site. For the mono-zinc model, ZN2 was
removed. The resulting structures were energy minimized using
MacroModel.13 Subsequently, the L-captopril structure [PDBe: X8Z]
was docked into the active site of the mono- and di-zinc structures
using SwissDock.14 Ligand conformations satisfying the constraints
of metal-coordination that were imposed based on mechanistic
considerations (see Results section) were found within the 25 and
the 10 best ranked poses for the di-zinc and the mono-zinc models,
respectively. These best-ranked models were submitted to the model
archive (www.modelarchive.org) and are freely available for down-
load (DOI: 10.5452/ma-a1nb6). All model figures were drawn with
OpenStructure.15

Results
Metal substitution changes L-captopril inhibition in vitro

DapE was active as an SDAP desuccinylase in vitro both in
its Zn2+ mono-metallated form (Zn/-) and as a Zn2+ binuclear
(Zn–Zn) or mixed (Zn–Mn) form, with comparable Vmax

(Scheme 1 and Table 1). As reported previously,7 no activity
was detected for Asp-Leu hydrolysis with the Zn/- and Zn–Zn
isoforms of the enzyme, whereas only the Zn–Mn isoform
was active with this promiscuous substrate (in our hands, with
kcat 383 s�1). These activity profiles correspond to the metalla-
tion status ascribed to the various enzyme preparations.

Addition of L-captopril in vitro inhibited the catalytic activity
of the (Zn/-) or (Zn–Zn) metallated isoforms of DapE, with an
IC50 of 10 mM and 28 mM at 20 mM substrate, respectively
(Fig. 1). However, no significant inhibition of the Zn–Mn isoform
was found even at 1 mM L-captopril.

The substrate concentration at which half the maximum velocity
was measured for SDAP hydrolysis (K50) was similar for the Zn–Zn
and Zn–Mn metalloisoforms (12 mM and 12.5 mM respectively).
DapE from Haemophilus influenzae was reported in two independent
studies9,16 to have comparable Km for the Zn/-, Zn–Zn and Zn–Co
metalloisoforms, which also supports the notion that the second
metal only marginally affects the binding of the native substrate.
Together, these results suggest that the metallation state at the
second position influences the binding of both the inhibitor
L-captopril and the promiscuous substrate Asp-Leu, but does
not affect much the binding of the native substrate SDAP.

Manganese isoform is present in vivo

Traditionally, it has been considered that Zn2+ is the native and
physiologically relevant metal of DapE. However, the enzyme
presents also a promiscuous dipeptidase activity that is dependent
on the presence of manganese ions (Mn2+), which can also be

Scheme 1 L-Captopril inhibitor and substrates of DapE used in this study.
Elements common to the three molecules are highlighted in red.

Table 1 DapE desuccinylation activity in vitroa

DapE metallo-isoform Vmax (mmol L�1 s�1) kcat (s�1)

Zn/- 18.23 309
Zn–Zn 39.81 677
Zn–Mn 64.99 1104

a Vmax and kcat values of desuccinylase activity of different metallo-
isoforms of recombinant DapE from Salmonella enterica typhimurium.

Fig. 1 Inhibition of desuccinylase activity of different DapE metallo-
isoforms by L-captopril. Measurements were carried out in triplicate and
error bars represent the standard deviation from the mean.
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selected in vivo in an leucine auxotroph strain using Asp-Leu as a
substrate.7 Since this non-native dipeptidase activity occurs in vitro
only when the labile, co-catalytic Zn2+ is replaced by Mn2+ to
form a mixed Zn–Mn binuclear centre, it is surmised that the
DapE-dependent promiscuous activity in bacterial cultures also
arises from Mn2+-metallo-isoforms of DapE in vivo.7

When selecting for the native desuccinylase activity in bacteria,
the conditions in which no metal was added and where Zn2+ was
supplemented showed similar growth; in contrast Zn2+ slowed down
the growth of cell cultures when selecting for dipeptidase activity,
which suggests that Zn2+ is deleterious for the promiscuous activity
of DapE, but not for its native activity (Fig. 2). DapE was able to
desuccinylate SDAP in its Zn/-, Zn–Zn and Zn–Mn metallo-isoforms
in vitro, albeit to different extents, with the following trends for kcat:
Zn–Mn > Zn–Zn > Zn/- (Table 1). S. enterica grew appreciably better in
Mn2+-supplemented media when selected for either native or pro-
miscuous activity (Fig. 2). Therefore, it appears that addition of Mn2+

promotes dipeptidase activity of DapE both in vivo and in vitro,
whereas Zn2+ inhibits the dipeptidase activity, presumably by com-
peting with Mn2+ for the labile metal-binding site of DapE.

We conclude from these observations that (i) metallation of DapE
can be influenced by metal-supplementation with either Zn2+ or
Mn2+; (ii) Mn2+-metallation is growth-limiting in non-supplemented
medium, particularly when selecting for the dipeptidase activity, and
(iii) the Mn2+ isoform may be normally present in vivo but is not the
only metallated species of DapE that occurs.

Zn2+ supplementation makes bacteria more susceptible to
L-captopril inhibition compared to Mn2+

Having concluded from growth profiles that metal supplementation
of bacterial cultures can influence the state of metallation of DapE,

we next investigated whether metal-supplementation also affected
susceptibility to L-captopril in bacterial cultures. We reasoned, since
L-captopril targets only the Zn2+-isoform of DapE in vitro and since
metal supplementation can influence the metallation of DapE
in vivo, that we may be able to influence the sensitivity of bacterial
cultures to L-captopril through metallation of DapE.

First, we confirmed that L-captopril was toxic in a dose-
dependent manner, shown by bacterial growth-curves in rich
medium at different inhibitor concentrations (Fig. S1, ESI‡).
Second, in the growth conditions tested, in rich medium and
25 mM L-captopril, metal supplementation with either divalent
Zn or Mn lowered L-captopril toxicity. The influence of metal
supplementation on bacterial growth under these conditions
was much larger in the presence of 25 mM L-captopril than in
the absence of the drug (Fig. 3): Mn2+-supplemented cultures
clearly showed better growth as compared to Zn2+ supplemented
or especially non-metal-supplemented cultures, which were more
susceptible to L-captopril inhibition. The growth-profile in the
presence of L-captopril was Mn2+ > Zn2+ > no metal. Intriguingly,
L-captopril inhibition of DapE in vitro has exactly the comple-
mentary activity profile: L-captopril inhibition Mn2+ o Zn2+ o
no metal.

Despite the metal-dependent effect of L-captopril, bacterial
growth in the absence of selection for DapE activity (i.e. with
mDAP supplementation) showed that the toxicity of this drug is
largely independent of DapE activity (Fig. 3B), confirming our
previous finding that this essential enzyme is not the main target
of inhibition of L-captopril in vivo and suggesting that other
metalloproteins may also be the main targets of L-captopril.6

We conclude that at least some of the targets of L-captopril
are metal-dependent, i.e. metal-supplementation decreases
sensitivity to L-captopril. The finding that Mn2+ supplementation

Fig. 2 Growth curves of bacterial cultures selected for native (desuccinylase)
DapE activity (A) or promiscuous (dipeptidase) DapE activity (B) in the absence or
presence of Zn2+ or Mn2+ supplementation. Note that Mn2+ accelerates the
growth of the culture appreciably when selecting for both native and promis-
cuous activity. In contrast, Zn2+ slows down the growth of the culture appre-
ciably when selecting for promiscuous activity but has little effect on proliferation
when selecting for native activity. Plotted are fitted curves from means of
duplicate cultures, with individual values comprised in the symbols. The values
plotted are representative of two independent experiments with similar findings.

Fig. 3 Effect of metal supplementation on growth curves of bacterial
cultures selected for DapE activity (A) or non-selected (B), in the absence
of L-captopril (left) or in the presence of 25 mM L-captopril (right). Cultures
were grown in LB broth either in the presence or absence of mDAP for
selection of native (desuccinylase) activity of DapE. The effect of divalent
Zn or Mn was tested and compared to the absence of metal supplementa-
tion (no metal). Note that L-captopril toxicity is dependent on metal-
supplementation and that Mn2+ is more protective than Zn2+, although the
toxic effect of the drug is largely independent of DapE activity. Means of
measurements from quadruplicate cultures are plotted with standard
deviations shown as error bars.
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is more protective than Zn2+ supplementation is consistent with
the notion that L-captopril has a preference for Zn2+-containing
targets, at least some of which may also be functionally active with
Mn2+. We also surmise that the failure of L-captopril to exhibit any
significant DapE-selective antibiotic activity in bacteria is due to
the existence of sufficient amount of Zn–Mn isoform, which is not
susceptible to L-captopril inhibition.

Model of L-captopril inhibition supports that thiol is the
Zn2+-binding group

We created a model of S. enterica DapE (Fig. 4) based on the
high-resolution crystal structure of the homologous enzyme
from Haemophilus influenzae reported by Nocek et al.17 The DapE
enzyme is a dimer, each monomer of which contains two
domains: a dimerization domain and a catalytic domain. The
active site of the enzyme can contain either two or one zinc
ions. The strongly bound Zn2+ is referred to as Zn1, whereas the

Zn2+ occupying the site of the labile metal (M2, which can be
either Zn2+ or Mn2+) is referred to as Zn2.

To generate the model of L-captopril binding to the active
site, we imposed some constraints based on prior knowledge of
DapE and L-captopril as a substrate analogue (Scheme 1). First,
as in the suggested catalytic mechanism of DapE,17 we propose
that the carbonyl group of the amide coordinates with the
catalytic metal that acts as a Lewis acid (Zn1). Second, since
captopril binds to the catalytic zinc of Angiotensin Converting
Enzyme (ACE) through coordination by the sulfhydryl group5

and since we found experimentally that the nature of the co-catalytic
metal (M2, either Zn2+ or Mn2+) influences inhibition by L-captopril,
we expect the sulfhydryl group to be oriented toward this second
metal. Satisfyingly, docking-poses that fulfil these constraints were
found within the 25 highest ranked poses (Fig. 4).

Divalent manganese behaves similar to magnesium in having
a preference for oxygen ligands, although Mn2+ is more receptive
of nitrogen ligands; in contrast, zinc prefers nitrogen and sulfur
as ligands and, in general, a lower coordination number.18

Consequently, our model provides a reasonable and straight-
forward qualitative explanation for the metal-dependent selectivity
of L-captopril inhibition of DapE: the presence of Mn2+ does not
allow strong coordination by the sulfhydryl group, whereas either
the absence of a co-catalytic metal or the presence of a second Zn2+

allows coordination with the sulfur liganding either Zn2 or Zn1,
respectively.

Discussion
Implications for drug development

L-Captopril was the first marketed anti-hypertension drug,
targeting the Zn-metalloprotease Angiotensin I Converting
Enzyme (ACE) through coordination of the catalytic metal by
a sulfhydryl group, with low nM affinity.5 However, L-captopril
has also shown inhibitory activity towards a variety of other zinc
metalloproteases, although this is typically several orders of
magnitude weaker than with ACE.19 Recently, L-captopril was
identified also as a low-micromolar inhibitor of H. influenzae
DapE (IC50 = 3.3 mM). We found that L-captopril inhibited the
Zn–Zn isoforms of S. enterica DapE with IC50 values compar-
able to those of the H. influenzae enzyme (i.e. IC50 of 10 mM vs.
3.3 mM, respectively), providing further evidence for the simila-
rities in the structure and function of the active sites of DapE of
different species.17,20 The low-micromolar affinity of L-captopril
for the Zn/- and Zn–Zn isoforms of DapE could be seen as a
reasonable starting point for further optimisation of this lead
compound,3,4 akin to what succinyl-proline was for ACE.5,19

However, note that L-captopril at the concentrations at which
it inhibits DapE might cause hypotension in normo-tensive
individuals, which would warrant further development of its
antibiotic properties. Moreover, at this low-micromolar level of
affinity some off-targets are likely to occur, as indeed suggested
by the poor activity of L-captopril6 and by the general protective
effect of Zn2+ and especially Mn2+ supplementation (Fig. 3). We
were nevertheless initially very surprised that we could detect

Fig. 4 Model of S. enterica DapE based on the crystal structure of H.
influenzae DapE (PDB: 3IC1), with L-captopril docked to the (A) di-zinc and
(B) mono-zinc catalytic metal center. Only the side-chains of important
residues for catalysis are drawn and labelled, i.e. coordinating amino acids
and the catalytic base (E134). L-Captopril is drawn in the stick-form with
each type of atom colored differently: green carbon; blue nitrogen; red
oxygen and yellow sulfur. Although coordination bonds with the ligand are
not explicitly drawn, in both the mono- and di-zinc form the L-captopril
carbonyl group of the amide coordinates with the Zn1, whereas the
L-captopril thiol group can additionally coordinate either with Zn2 in the
di-zinc structure (A) or with Zn1 in the mono-zinc structure, to form a
6-membered ring (B). These two models are freely available for download
with DOI: 10.5452/ma-a1nb6 (www.modelarchive.org).
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no evidence of L-captopril inhibiting DapE activity in vivo and
that the compound had such a modest antimicrobial activity,
despite low-micromolar affinity of this drug in vitro for an
essential enzyme. We now forward the proposal that a crucial
contribution to this low antibiotic activity is that L-captopril
does not target one of the physiologically relevant isoforms of
DapE, i.e. the Zn–Mn form of the enzyme.

It is generally acknowledged that any screen (or selection)
should reflect the desired result as closely as possible, because
‘you get what you screen for’.21 Becker and colleagues4a identified
L-captopril as an inhibitor of DapE in a screen biased toward
compounds containing zinc-binding groups, which included thiols,
carboxylic acids, boronic acids, phosphonates and hydroxamates,
and using the Zn-form of DapE of H. influenzae as a target in vitro.
Consequently, a Zn-selective compound was identified with low
micromolar affinity in vitro. Our discovery offers a plausible
explanation for the failure of an apparently promising compound
to show any DapE-targeted antimicrobial activity:6 the Zn–Mn
mixed-metal isoform, which is not inhibited by L-captopril, is
normally present in bacteria, as originally suggested by Broder
and Miller7 judging by the presence of a selectable Mn2+-dependent
promiscuous activity, which we confirmed here also by exploring
bacterial growth upon metal-supplementation of cultures.

Exact knowledge of the metallation state of proteins in vivo
is often thwarted by experimental difficulties.22 Moreover,
metallation may exhibit strong dependence on the cellular
context, differing for example in different media, cell-locations
or in different species.23 Several other examples have been
reported where incomplete knowledge of the physiologically
relevant metal has hindered drug development. For example,
potent inhibitors of methionine aminopeptidase discovered
in vitro, which were active against either Co2+ or Mn2+-isoforms
of the enzyme, failed to have any of the expected antibacterial
activity in vivo.24 It was later suggested that Fe2+ is the native
cofactor in E. coli, prompting a move either toward Fe2+-selective
inhibitors that exhibited antimicrobial activity25 or, in what may be
called a ‘‘bet-hedging move’’ in the absence of a clear candidate,
toward exploring selectivity against a plethora of different metallo-
isoforms.26 Similarly, peptide deformylase is another bacterial
metalloenzyme and a promising antibiotic target27 that was
originally thought to be a Zn-metalloenzyme in E. coli28 but was
later shown instead to contain Fe2+, a metal that due to its
tendency to oxidize in air leads to facile loss of enzyme activity.29

However, the precise identity of the metal in peptide deformylase
may be species-specific, since another bacterial pathogen, Borrelia
burgdorferi, does use Zn2+ in this enzyme.30 Despite considerable
interest in peptide deformylase inhibitors in recent years27c

it appears that little attention has been paid to the issue of
metallo-selectivity of drugs targeting this essential enzyme.

Implications for evolution

In general, the presence of different metal ions in metalloenzymes
can maintain the overall structure of the active site, but provide
alternative coordination interactions with substrates and inhibitors.
It has already been pointed out that non-strict metal incorporation
can be used as a facile way to create catalytic diversity.31 For

example, metal-heterogeneity has been proposed to have evolved
in the carbonic anhydrase of marine diatoms that are challenged
with low Zn-availability, thereby acquiring the capability of using
either Zn2+ or Cd2+ in the active site of this essential enzyme.32

Indeed, we suggest that such metal-ambiguity and the resulting
promiscuous behaviour in vivo, which may be considered a further
example of ‘‘messiness in biology’’,33 is in fact a more general
survival strategy, for example to avoid facile drug inhibition of an
essential enzyme like DapE. To our knowledge, this may be the first
example of metal-promiscuity providing a source of (non-genetic)
diversity that confers an intrinsic survival advantage in defending
against potential inhibitors, namely to the synthetic drug L-captopril,
but also likely against other naturally occurring dipeptide-like
compounds. Considering the importance of diversity as a driver of
Darwinian evolution, we speculate that such metal-promiscuity may
be much more common than hitherto thought, not only to provide
substrate promiscuity in the development of new catalytic function,
but also promiscuity for inhibitor-escape.

Conclusions

In summary, DapE in bacteria is heterogeneous, containing
various metallated forms – mono-metallated with Zn2+ or
binuclear with Zn2+ or Mn2+ – all of which are active as a
desuccinylase, the essential and native function of the enzyme.
We also conclude that the Zn–Mn binuclear isoform, which is
very likely to be present in vivo as judged by bacterial selection
of the promiscuous dipeptidase activity of DapE, is not inhib-
ited by L-captopril, thus providing a mechanism of escape
against this potential antibiotic. Such metal heterogeneity
and resulting promiscuous properties may confer important
selective advantages, including escape of inhibition, and there-
fore may have been selected for in evolution. Finally, the
discovery of metal-selective inhibition of DapE that we describe
here paves the way toward the discovery of compounds with
improved antimicrobial properties. Our efforts are now directed
toward finding novel inhibitors that target also the physiologically
relevant Mn2+ isoform of DapE.

Abbreviations

mDAP meso-Diaminopimelic acid
DAP Diaminopimelic acid
SDAP N-Succinyl-L,L-diaminopimelic acid
DapE N-Succinyl-L,L-diaminopimelic acid desuccinylase
ACE Angiotensin I converting enzyme
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