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Concerted bioinformatic analysis of the
genome-scale blood transcription factor
compendium reveals new control mechanisms†

Anagha Joshi*a and Berthold Gottgensb

Transcription factors play a key role in the development of a disease. ChIP-sequencing has become a

preferred technique to investigate genome-wide binding patterns of transcription factors in vivo. Although

this technology has led to many important discoveries, the rapidly increasing number of publicly available

ChIP-sequencing datasets still remains a largely unexplored resource. Using a compendium of 144 publicly

available murine ChIP-sequencing datasets in blood, we show that systematic bioinformatic analysis can

unravel diverse aspects of transcription regulation; from genome-wide binding preferences, finding regulatory

partners and assembling regulatory complexes, to identifying novel functions of transcription factors and

investigating transcription dynamics during development.

Introduction

The control of cell-type specific gene expression underlies develop-
ment of all multicellular organisms, and is thought to be achieved
through combinatorial interactions of transcription factors with
gene regulatory sequences. Moreover, dysregulation of transcrip-
tion has been widely proven to be a major contributor to human
pathologies, with the recent development of small molecule drugs
targeting protein interactions between transcriptional regulators
generating much excitement.1,2

With the interaction between cis-regulatory DNA elements
and trans-acting transcription factors (TFs) representing the
fundamental basis of transcriptional control, the delineation of
comprehensive collection of regulatory sequences together with
knowledge of the TFs bound to them will be essential to gain
global insights into transcriptional control mechanisms. Over
the past 10 years, chromatin immunoprecipitation (ChIP) followed
by microarray (ChIP-chip) or sequencing (ChIP-Seq) have become
the most widely used approaches for genome wide identification
and characterization of in vivo protein–DNA interactions. Due to the
rapid drop in the cost of high throughput sequencing, ChIP
sequencing has become the method of choice for the generation
of high resolution maps of genome-wide protein–DNA interactions
in mammalian systems.3

To gain a holistic view of transcriptional control during
development, it is essential to generate genome scale maps of key
transcription factors across multiple cell types. However, generating
such genome-scale maps in many different cell types remains a
daunting task for individual research groups due to limited human
and financial resources. Moreover, each individual TF requires
careful validation of antibody reagents, which limits the potential
throughput of large-scale initiatives. Indeed, bespoke protocols are
often developed by individual groups with specialist expertise, so that
published ChIP-Seq studies commonly report binding maps for less
than a handful of TFs4–10 and only a few larger studies reporting 10
or more factors11,12 or a single factor across multiple cell types.13 We
have previously shown14 that unlike gene expression data, ChIP-Seq
datasets produced by different laboratories can be readily integrated.
This analysis revealed that genome wide transcription factor binding
profiles are largely governed by cellular context. We recently reported
a TF ChIP-Seq compendium containing 144 publicly available
studies pertaining to the mouse blood system.15 Using this dataset,
here we show how concerted bioinformatic analysis of such a high
quality hand-curated compendium can reveal previously unknown
aspects of transcriptional control. This includes identification of
those TF-bound sites most likely to be functional, prediction of TF
interactions and multicomponent complexes, specific functionality
of individual TFs and the dynamics of transcriptional regulation
during differentiation and development.

Results and discussion
Enhancers, unlike promoters, cluster according to the cell type

We collected genome-wide binding patterns (peaks) of 144 publicly
available murine ChIP-sequencing datasets for 53 transcription
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factors in 15 major blood lineages and leukemia15 to obtain
270 261 regulatory regions with at least one factor binding. We
classified peaks into two groups: promoter and enhancer peaks
by defining the peaks within 1 kb of TSS as promoter peaks.
7.5% of the total peaks belonged to promoters and all non-
promoter peaks were classified as putative enhancers. The
hierarchical clustering of enhancers clustered them according
to the cell type (Fig. 1B and Fig. S2, ESI†) irrespective of the
factors such as Fli1 in hematopoietic progenitor cells (HPC)
clustered with other samples in HPCs and Fli1 in T cells
clustered with T cell samples. There was an exception of one
transcription factor, Pu.1. Pu.1 samples across multiple cell
types clustered together.14

The promoter regions did not show a strong cell type
specific clustering but clustered into two major clusters
(Fig. 1A and Fig. S1, ESI†). Cluster 1 consisted of Gata factors
across multiple cell types with their known interacting partners
such as Ldb1 and Scl/Tal1 and Cluster 2 consisted of a large
agglomeration of over 35 samples of multiple factors in diverse
cell types. More generally, the observation of lineage-specific
pair-wise associations in distal but not promoter regions
provides global confirmation for previous suggestions that
tissue specific expression is largely mediated by distal elements
(Heintzman et al., 2009).

As Pu.1 peaks in both promoters as well as enhancers cluster
according to the factor rather than the cell type, we characterized
them in more detail. The 5-way Venn diagram of Pu.1 in
promoter regions showed a high overlap of binding sites with
about 50% of peaks present in all cell types (Fig. 1C) whereas
only about 10% of enhancer peaks were present in all cell types
(Fig. 1D). This shows that Pu.1 also agrees with the model where

promoters mainly drive the cell type invariant while enhancers
drive tissue specific expression.

It is well established that transcription factors bind to different
interacting partners in a cell type specific manner to drive gene
expression.8 To check if TFs have distinct interacting partners in
promoter and enhancer regions, we calculated cis-regulatory motif
enrichment in promoter and enhancer regions separately for each
factor using HOMER software. The sequence motif of the transcrip-
tion factor chipped was enriched in both promoters and enhancers
in most samples. Most samples also exhibited promoter-specific
and enhancer-specific sequence motifs (Fig. S3, ESI†). The
GFY-STAF, NRF1 sequence motifs were enriched in promoters
of most samples. Only a few motifs were sample specific in
promoters such as the Sp1 motif was enriched only in Scl/Tal1
promoter peaks. Sp1 is known to interact with Scl/Tal1 to drive
expression of key gene loci such as Kit.16 On the other hand,
enhancers showed more sample specific motif enrichment. The
Ebf1 (early B cell factor) motif is enriched only for Pu.1
enhancers in B cells while MafA (macrophage activating factor)
motif is only enriched in Pu.1 enhancers in macrophages.

Taken together, the data support the suggestion that tissue-
specificity is a common feature of enhancers rather than
promoters.

Transcription factor gene loci are enriched for peaks

We mapped peaks across 15 blood lineages to their nearest
genes resulting in an average of 13.5 peaks per gene. The 19 869
unique gene loci were associated with peaks ranging from a
single peak to over 200 peaks. The 726 genes with more than 50
peaks in their gene loci are enriched for functional categories
‘transcription regulation’ ( p-value: 6.6 � 10�18), ‘hematopoiesis’
( p-value: 1.9 � 10�10) and ‘blood vessel development’ ( p-value:
8.2 � 10�8) demonstrating that hematopoietic regulatory
genes have more binding sites in their gene loci. In an individual
ChIP-sequencing experiment, most gene loci are associated with
only one peak with an average of 1.8 peaks per gene. Genes with
more than 5 peaks in their gene locus were enriched for
hematopoietic functions. Transcription factor gene loci have an
average of 2.5 peaks per gene, in agreement with previously reported
suggestions that TF gene loci have a higher number of regulatory
elements than average. This difference is statistically significant even
after correcting for the gene length ( p-value: 2.2 � 10�6).

It has been suggested that multiple peaks of a TF in a gene
locus arise due to cross linking of multiple distant regulatory
elements to the promoter, which might explain the lack of a
consensus binding motif in many ChIP-seq peak regions.17 We
calculated the number of enhancer peaks for each factor with
and without the presence of a peak at the promoter of a gene
and did not observe any bias towards the presence of an
enhancer peak with the presence of a promoter peak.

Candidate regulatory regions bound by multiple factors might
be functionally more relevant

A typical ChIP-sequencing experiment generates millions of
reads and hundreds to thousands of peaks. It is widely assumed
that not all binding events are of equal functional significance.

Fig. 1 (A, B) Hierarchical clustering of pair-wise peak overlap of all
promoters and enhancers across all cell types, red representing positive
Pearson’s correlation coefficient values and blue representing negative
correlation coefficients. (C, D) 5-way Venn diagram of Pu.1 ChIP sequencing
data from 5 cell types in promoters and enhancers representing higher
overlap in promoters compared to enhancers.
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However, dissecting out functionally important binding events
from potentially opportunistic binding events still remains an
unsolved problem. Approximately 60% of the 270 thousand
peaks of TFs across multiple cell types in blood are bound by
more than one factor. We investigated whether the binding
of multiple TFs provides any clues towards the functional
implications of a binding event. As sequence conservation of
a DNA fragment across species is predictive of functionality, we
calculated human-mouse sequence conservation scores for all
peaks. The sequences underlying peaks bound by multiple
factors were more conserved across mammals than those
bound by a single factor (Fig. 2A). Moreover, peaks bound by
multiple factors were enriched in the VISTA enhancer database
(Fig. 2B), a collection of over 700 enhancer regions functionally
validated in transgenic mouse assays.18 Taken together, these
observations suggest that peaks bound by multiple factors
might be more likely to be functional. Studies in mammalian
cell types indeed have shown that the densely occupied regions
tend to lie in the vicinity of genes characteristic of that
particular cell type.11,19 In addition to the functionality of peaks
bound by multiple TFs, it has also been shown that gene loci
with multiple binding events are more likely to be functionally
significant targets.20 Genes bound at multiple locations in most
samples are over-represented for developmental processes

including ‘muscle tissue development’ and ‘cell fate commitment’,
as well as for ‘transcription factor activity’.

Prediction of new candidate regulatory partners using enriched
cis-regulatory motifs

Combinatorial transcriptional control is a key aspect of eukaryotic
transcription as it provides cell type specificity as well as an ability
to integrate multiple signals at a transcriptional level. In order to
find over-represented cis-regulatory sequence motifs in each ChIP
sequencing sample, we used a list of approximately 1300 sequence
motifs with known or unknown associated TFs from the JASPAR
data-base.26 Fig. 2C shows all significantly enriched motifs (x axis)
for all samples (y axis) highlighted in yellow. The enriched motifs
are useful in three ways. Firstly, they validate the chipped TF e.g.
the Cepb motif is enriched in the two samples CebpA and CebpB
(Fig. 2C (1)). Secondly, they indicate important binding motifs for
a particular cell type, such as enrichment of the GATA motif in
HPC7 and erythroid cells (Fig. 2C (2)). Important regulators
such as Runx1 and Tal1 are thought to be recruited indirectly to
many regulatory regions with the help of GATA factors.11

Thirdly and most importantly, new candidate regulatory partners
can be predicted, for example a homeodomain box motif is
overrepresented only in the binding sites of all factors chipped in
hematopoietic progenitor cells (Fig. 2C (3)). Hox proteins, known
to play key roles in governing proliferation and differentiation of
haematopoietic progenitor cells, can therefore be nominated as
new candidate interacting partners with the other blood stem
cell factors present in the compendium.

Transcription factors show preference to a particular genomic
location

In order to investigate whether TFs have a preference for specific
genomic contexts, we used HOMER8 to calculate enrichment
with respect to 9 categories defining the gene structure such as 30

UTR, 50 UTR, Exon, Intron, Inter-genic, and Promoter regions as
well as repeat elements such as LINE, SINE and LTR. All
transcription factors were enriched for promoter binding as
expected. The components of the Ldb1 complex in erythroid
cells were specifically enriched for intronic regions while Chd2
and Smc3 in MEL and Notch1 in T-ALL samples were enriched
for 30 UTR regions (Fig. S4, ESI†). All Pu.1 samples were enriched
for LTR repeat elements whereas CebpA and CebpB in macro-
phages were enriched for SINE repeat elements (Fig. S5, ESI†).
Bourque et al.21 showed that binding sites of five transcription
factors ESR1, TP53, POU5F1, SOX2, and CTCF are embedded in
distinctive families of transposable elements which facilitate
dynamics in the transcriptional network during evolution such as
new locations of CTCF binding generated by SINE repeat element
expansion in mammals.22 The repeat region enrichment analysis
thus provides clues towards how these transcription factors might
have gained new regulatory sites during evolution.

Another genomic feature thought to be important for tran-
scription control are CpG islands which facilitate the promoter
function by destabilising nucleosomes and attracting proteins
that create a chromatin state suitable for transcription.23

Rozenberg et al.24 observed that the frequency of six TFBS

Fig. 2 (A, B) Fraction of conserved peaks across human and mouse and
fraction of in vivo validated peaks (Visel et al., 2007) respectively classified
according to the number of transcription factors bound. (C) Heatmap of all
ChIP-seq samples against over-represented (yellow) JASPAR motifs showing
sequence motifs over-represented in at least one of the samples. Box 1
represents variants of the Cebp motif, box 2 represents variants of the GATA
motif, while box 3 represents variants of the homeo-domain motif.
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(ETS, NRF1, BoxA, SP1, CRE and E-box) can accurately predict
the presence of CpG islands in promoters suggesting that they
are structural elements critical for CpG island function. In line
with this, transcription factors such as the three ETS factors
Erg, Fli1 and Pu.1 were enriched for CpG rich regions. Interestingly,
peaks of components of the Ldb1 complex (Gata1, Gata2, Ldb1,
Mtgr1 and Scl) occurred significantly less often than expected by
chance in CpG rich regions (Table 1).

Taken together, we found binding biases of transcription
factors with respect to genomic locations, repeats and CpG
islands. The functional relevance of these observations remains
to be investigated.

TF complexes can be predicted using ChIP sequencing datasets

Physical interaction of TFs is an important aspect in determining
tissue specific gene expression, and cooperative binding to DNA
may be subject to spatial constraints. For each TF pair, we
mapped the sequence motifs to peaks bound by both TFs and
calculated the distance between two motifs. We selected motif
pairs displaying a specific distance preference in at least two
independent ChIP-seq experiments. Importantly, this analysis
recovered previously known spacing of 8–10 bps between GATA
and E-box motifs involved in binding of Gata1/Scl/E2A/Lmo2
multiprotein complexes.25 Of interest, additional preferred
pair-wise spacing could be recovered such as 20 bp spacing
between the motifs for CTCF and Pu.1. The functional signifi-
cance of this remains to be explored. The co-ordinate binding
between a major fate determining factor such as Pu.1 with a
more architectural transcription factor such as CTCF does
however provide tantalizing clues as to how interactions
between such factors may potentially be involved in stabilizing
cell type specific transcription programs. We also find an
overlapping joint motif – CANNTGGAW between Scl and ETS
factors (Pu.1 and Fli1).

To investigate any new motifs showing distance specificity
with respect to TF binding sites from our compendium, we
calculated distances between each sample and all possible 3 mers
(43 = 64 patterns). We found 3 binding distance preferences; the
first pattern, GATA and GAT, had a 3/4 bp gap consistent with
Gata factors binding as homo-dimers validated by the crystal
structure (Bates et al., 2008).32 The second pattern, GATA and
CTG or GTC, had a 9 bp gap mapping to GATA and a half Ebox

binding as a part of the Ldb1 complex. The final pattern, Gfi1b
and (A/T)GC, had a 2 bp gap (Fig. 3).

Lineage priming in progenitor cells

TFs are major determinants of cell fate and lineage choice.
However, most lineage determining TFs are expressed across
multiple lineages, suggesting that combinatorial interactions
are critical in determining cell type specificity. By merging
datasets from different studies, the TF ChIP-seq compendium
serves as an excellent resource in the study of genome wide
binding patterns of the same TF in multiple cell types. Grouping
the genome wide binding patterns of Pu.1 in haematopoietic
progenitor cells (HPCs) along with two mature cell types (macro-
phages and B cells) highlights that cell type specific, as well as
ubiquitous binding events are present in both promoters and
enhancers with ubiquitous binding events being more common
in promoters. T and B cells specific functional categories such as
‘lymphocyte activation ( p-value: 1.9 � 10�6)’, ‘immune system
development ( p-value: 5.1 � 10�4)’, ‘B cell receptor signalling
pathway ( p-value: 1.2 � 10�2)’ are enriched in genes near Pu.1
peaks in HPC7 and B cells and not in macrophages while
macrophage specific functional categories such as ‘endocytosis

Table 1 Top 5 over-represented and 5 under-represented ChIP-seq
samples with peaks in CpG rich regions along with the corresponding
p-values

# Sample Prefer/avoid p-value

1 Erg_HPC7 Prefer o1 � 10�256

2 Fli1_T-cells Prefer o1 � 10�256

3 Gfi1b_HPC7 Prefer o1 � 10�256

4 Pu.1_B-cells Prefer o1 � 10�256

5 Rag2_thymocytes Prefer o1 � 10�256

5 Ldb1_Erythroid Avoid 3.4 � 10�4

4 Gata1_Erythroid_progenitors Avoid 8.9 � 10�8

3 Lmo2_HPC7 Avoid 9.6 � 10�5

2 Lyl1_HPC7 Avoid 5.2 � 10�8

1 Smad1_Erythroid_progenitors Avoid o1 � 10�256

Fig. 3 (A) Frequency of the distance between the Scl motif and the GATA
motif in peaks occupied by both Gata1/Gata2 and Scl, plotted such that the
GATA motif is at position zero. A peak with a 8–10 bps gap between the
two sequence motifs is over-represented. (B) Similarly there is a preferred
gap of 20 bps between the CTCF and Pu.1 motifs (C). A gap of �1 bp
between the Pu.1 and Scl motifs is significantly enriched. Each motif pair
was validated by at least two independent ChIP-seq experiments.
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( p-value: 2.0 � 10�5)’ and ‘inflammatory response ( p-value:
6.2 � 10�3)’ are over-represented in genes near Pu.1 peaks in
HPC7 and macrophages and not in B cells. This is a strong
indicator of lineage priming in the progenitor cells and there-
fore provides global confirmation for one of the most hotly
debated topics in stem cell biology.

Methods

The Genome-wide binding patterns of 53 transcription factors
in 15 major blood lineages and leukaemia were obtained from
ref. 15. Peaks within a 1 kb region from a gene TSS, based on
RefSeq gene annotation, were classified as promoter peaks. For
each transcription factor pair, the significance of peak overlap
was calculated using 1000 randomisations. Human-mouse
orthologous regions were downloaded from the MGI database.
The overlaps between peaks and human-mouse orthologous
regions as well as experimentally validated enhancers in
mouse27 were calculated using BEDtools.28 For the two groups,
we calculated whether the pair-wise overlap of promoter and
non-promoter peaks was significantly over-represented (red) or
under-represented (blue) compared to 100 randomizations.
Using HOMER8 and based on gene context or repeat elements,
peaks were sorted into 9 categories: 30 UTR, 50 UTR, exons,
introns, intergenic regions, promoters, LINE, SINE and LTR.
CpG islands were downloaded from UCSC. A list of transcription
factors in mouse was downloaded from RIKEN.29 To find distance
preferences between pairs of TFs, the sequences for peaks bound
by both transcription factors were obtained using UCSC Galaxy and
the binding locations of each sequence motif were determined
using TFSBsearch.30 cis-Regulatory sequence motifs were down-
loaded from the JASPAR library26 and the motifs were searched in
peaks using TFSBsearch;30 over-representation was calculated with
respect to 100 random sequence sets of the same number and
lengths of real peak sequences. Functional enrichment was calcu-
lated using DAVID.31 Most analysis was done using Perl, MATLAB
and R scripts.

Conclusions

The advent of next generation sequencing technologies has led
to a dramatic shift in modern biological research, where
bioinformatic processing and interpretation of large-scale data-
sets are rapidly replacing data generation as the major bottle-
neck. Moreover, bioinformatic analysis of genome-scale
datasets is often restricted to the particular context of the paper
that first reported them, even though the raw data are made
publicly available in online repositories. Consequently, a whole
potential treasure trove of biological insights remains essen-
tially unexplored.

To ameliorate this situation, progress on two fronts will be
vital. Firstly, significant efforts need to be invested into the
generation of data integration platforms that facilitate cross-
referencing between the multiple independent studies. Secondly,
bioinformatic analysis strategies need to be developed to

facilitate extraction of novel biological hypotheses from integrated
genome-scale resources.

In this paper, we have addressed the latter issue and provided
seven examples of bioinformatic analysis that together have
allowed us to develop a number of new hypotheses on transcrip-
tional control mechanisms with the potential to transform our
understanding of blood cell development. Importantly, both the
procedures outlined as well as the take-home messages learned
should be readily transferable to the exploitation of ChIP-Seq
datasets in other cellular systems, and thus have the potential to
significantly advance our understanding of a wide range of both
normal and pathological cellular processes.
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