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Colorectal cancer is one of the most commonly diagnosed cancer types worldwide. Identification of the
key regulators of the altered biological networks is crucial for understanding the complex molecular
mechanisms of colorectal cancer. We proposed a gene module based approach to infer key miRNAs
regulating the major gene network alterations in cancer tissues. By integrating gene differential expression
and co-expression information with a protein—protein interaction network, the differential gene expression
modules, which captured the major gene network changes, were identified for colorectal cancer. Then,
several key miRNAs, which extensively regulate the gene modules, were inferred by analyzing their target
gene enrichment in the modules. Among the inferred candidates, three miRNAs, miR-101, miR-124 and
miR-139, are frequently down-regulated in colorectal cancers. The following computational and
experimental analyses demonstrate that miR-139 can inhibit cell proliferation and cell cycle G1/S
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transition. A known oncogene ETS1, a key transcription factor in the gene module, was experimentally
verified as a novel target of miR-139. miR-139 was found to be significantly down-regulated in early
pathological cancer stages and its expression remained at very low levels in advanced stages. These
results indicate that miR-139, inferred by the gene module based approach, should be a key tumor
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Introduction

Colorectal cancer is a kind of severe bowel disease and it is the
third most commonly diagnosed cancer around the world. The
molecular networks are usually significantly altered in cancer
cells. To understand the complex regulatory mechanism of
colorectal cancer initiation and progression, it is crucial to
identify the key regulators of the altered molecular networks.
MicroRNAs (miRNAs), a class of ~22 nt endogenous small
regulatory RNAs, are significantly differentially expressed
between colorectal cancerous and adjacent normal tissues.
But only a few of them are linked with the major alterations
of the molecular networks in colorectal cancer. To infer the key
miRNAs regulating the altered molecular networks in cancer,
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suppressor in early cancer development.

one simple way is to analyze the enrichment of their targets in
the differentially expressed genes between cancerous and normal
tissues.” But due to the complexity of the cancer transcriptome, this
kind of method frequently failed to find candidates due to low
statistical significances. Multiple genes usually work cooperatively
as functional gene modules.® Differential network analysis can
better identify the altered molecular networks by integrating gene
expression data with network data (such as a protein-protein
interaction network and a literature co-citation network).*”

The differential gene expression modules (DGEMs, or called
active gene sub-networks), a class of ‘““differential networks”
consisting of a set of densely connected differentially expressed
genes and their neighbors, can be treated as the major network
alterations in cancer.”® Then, the key miRNAs can be inferred
by analyzing their target enrichment in the DGEMs. Based on
this hypothesis, we developed a gene module based master
regulator inference (ModMRI) approach to identify the key
miRNAs in colorectal cancer: firstly, the DGEMs were identified
by the integrative analysis of multiple gene expression datasets
and protein—protein interaction networks using ClustEx pack-
age.” Then, a network-based permutation test was used to infer
the key miRNAs whose target genes are significantly overlapped
with the DGEMs. Among the inferred candidates, miR-101,
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miR-124 and miR-139 are frequently down-regulated in colorectal
cancer.® The following computational and experimental analyses
suggest that miR-139 should act as an important tumor suppressor
in early cancer pathologic stages.

Methods

Colorectal cancer gene expression data and gene
network data

A combined gene expression dataset of colorectal cancer was
constructed based on four microarray data series from the
NCBI GEO database with at least 15 clinical cancer/normal
samples and using Affymetrix Human Genome U133 Plus 2.0
Array (GSE20916, GSE21510, GSE22598, GSE23878; 90 normal
and 107 cancer samples in total). The .CEL files of the four data
series were processed and normalized using RMA package
independently.’ Probe signals were mapped to gene expression
values according to the latest probe annotations. Then, the raw
gene expression values were transformed to ranks. To avoid the
noises of the lowly expressed genes, only the genes ranked as
top 10000 (~50% of the genes on the microarray) in at least
30% samples were left for the following analysis.

We extracted all binary interactions from HPRD (release 9
and BioGRID (version 3.1.86)."" To reduce the high false
positives in PPI data, we only used the interactions annotated
in both databases. By filtering the above “expressed” genes in
microarray datasets, we got the background gene network with
4181 genes and 10261 edges. The edges were weighted by
Spearman’s co-expression levels according to the combined
gene expression dataset.

A gene was regarded as a target of a miRNA family, if
the gene has at least one conserved target site predicted by
TargetScan (v6.0)."> The 3/-UTR lengths of genes were calculated
from the 3’-UTR multiple alignment file from TargetScan
resources. If a gene has multiple transcripts, the length of the
longest 3’-UTR was used.
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Gene module based key miRNA inference

The miRNAs, whose target genes were significantly enriched in the
differential gene expression modules (DGEMs), were identified as
key regulators. Firstly, differentially expressed genes were identified
from the combined gene expression dataset. Secondly, the DGEMs
were identified by finding the sub-networks consisting of a set of
closely connected differentially expressed genes and their neighbors.
Then, the key miRNAs were inferred by analyzing their target
gene enrichments in the DGEMs. Finally, bootstrapping was
implemented to get robust inferences. The flowchart of this gene
module based master regulator inference (ModMRI) method can
be found in Fig. 1.

Identification of the differentially expressed genes. The
differentially expressed genes were identified by combining the
top 600 genes ranked by the t-test between cancerous and adjacent
normal samples in at least one of the four microarray datasets.
1330 non-redundant differentially expressed genes were identified
by this criterion.

Identification of the differential gene expression module.
ClustEx’ was used to identify the DGEMs of colorectal cancer by
clustering and extending the differentially expressed genes in
the network.

miRNA target gene enrichment analysis. For each miRNA,
we counted the number of its target genes in DGEMs. Then, a
degree-preserving permutation was implemented to generate
10000 randomized DGEMs. The numbers of the miRNA target
genes in the randomized DGEMs were counted to estimate the
background distribution of the number of the overlapped target
genes. The p-value was calculated by comparing the original
number with the corresponding background distribution. The
p-values were multiple-test adjusted as g-values using fdrtool.™®

Resampling experiments for robust inferences. Cancer gene
expressions data are usually noisy. To reduce the unstable
inferences due to the gene expression variances, bootstrapping
was implemented: in each run, 80% out of all samples are
randomly selected to re-do the whole analysis. Only the miRNAs,

Cancer Gene
Expressions

Protein-Protein
Interaction Network

i

Use ClustEx to identify DGEM
by integrating gene differential
expression, co-expression and
network information

Differential Gene

MiRNA Target Gene
Set From TargetScan

Expression Module

(DGEM)

Down-Regulated
MiRNAs in Cancer

Tumor-Suppressive
MiRNA Candidates

Find the miRNAs whose target
genes are enriched in DGEM

Bootstrapping for
consistent inferences

Fig. 1 The flowchart of the module-based master regulator inference (ModMRI).
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which were repeatedly inferred in at least 50% re-sampling runs,
were reported as the final results. To further reduce the false
positives due to miRNA target predictions, we randomly added
or removed 10% miRNA target genes to calculate the means and
the standard variations of the empirical p-values.

Experimental validation of miR-139 cellular functions and
target genes

A series of experiments were conducted to validate the cellular
functions and target genes of miR-139 in colorectal cancer cells.

Cell culture. Human colorectal cancer cell lines, HCT-116
and SW480, were obtained from the Cell center of Peking Union
Medical College (Beijing, China) and HEK293 was obtained
from American Type Culture Collection (Manassas, VA). The
cells were maintained at 37 °C in a humidified atmosphere of
5% CO, in air. Both cells were maintained in Dulbecco’s
Modified Eagle Medium. The media were supplemented with
10% fetal bovine serum (FBS), 5 mM r-glutamine, 100 U m]1™*
penicillin and 100 mg ml ™" streptomycin.

Cell proliferation assay. Cells were plated onto 96-well plates
and incubated overnight before the transfection. After transfec-
tion with miRNA mimics or a negative control, both 50 nM, for
48 hours, the cells were used for cell viability evaluation using a
CCK8 assay kit (Biyutian, China) according to the protocol.

Cell cycle assay. Cells were harvested and fixed in 70% ethanol
and stored at —20 °C overnight. Cells were washed twice with
ice-cold phosphate buffer saline (PBS) and incubated with
RNase and propidium iodide for 30 min and then cell cycle
analysis was performed using a flow cytometer.

Luciferase reporter assay. HCT-116 or HEK293 cells were
plated onto 24-well plates, 1 x 10° in each well. After 24 hours,
cells were co-transfected with 1 pg of the psiCheck2 luciferase
reporter vector containing the conserved binding sites in 3’-
UTRs of the candidate target genes and the 50 nmol miRNA
mimic. Luciferase assays were performed using the Dual Luci-
ferase Reporter Assay System (Promega) 48 hours after transfec-
tion. The renilla luciferase activity was normalized to the firefly
luciferase activity as an internal transfection control. Then, the
luciferase values were normalized to the average values for the
corresponding vehicle control transfections. Values represent
mean + SD of at least three experimental repeats.

Western blot. Proteins from cells and tissue samples were
extracted with RIPA lysis buffer (150 mM NaCl, 10 mM Tris, pH
7.5, 1% NP40, 1% deoxycholate, 0.1% SDS, protease inhibitor cock-
tail (Roche)). Proteins from total cell lysates were resolved by 10%
SDS-PAGE gel, transferred to the nitrocellulose membrane, blocked
in 5% non-fat milk in PBS/Tween-20, and blotted with the antibody
against ETS1 (1:500, Abcam), and blotted with Goat anti Rabbit IgG
(1:3000, Santa Cruz). Gene PCNA was used as loading control.

Results
The differential gene expression module in colorectal cancer

A large number of genes were significantly differentially expressed
between colorectal cancer and noncancerous tissues. The gene

This journal is © The Royal Society of Chemistry 2014
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module based master regulator inference (ModMRYI) is an integrative
gene network analysis for identifying the key regulators mediating
these significant alterations of molecular networks. At first, ClustEx
program was used to identify the differential gene expression
modules (DGEMs) associated with colorectal cancer. The identified
biggest or the principal DGEM has 822 genes including 305
differentially expressed seed genes. The module genes are
significantly enriched in KEGG annotated ‘“‘pathways in cancer”
(g-value 1.4 x 10~"), “cell cycle” (1.4 x 10~ %), “MAKP signaling
pathway” (6.7 x 10 '*) and “colorectal cancer” (2.8 x 10~ '°),
which suggests that the identified DGEM is highly associated
with colorectal cancer. The details of the module and the
enriched cellular processes can be found in Supplementary File
1 (ESIY).

The key miRNAs extensively regulating the differential gene
expression modules

Then, several key miRNAs, including several known oncogenic
and tumor-suppressive miRNA families in colorectal cancer,
miR-17," miR-93," miR-101"® and miR-135,"” were identified by
analyzing their target gene enrichments in the biggest DGEM
(Table 1). Three of them, miR-101, miR-124 and miR-139, were
found frequently down-regulated in colorectal cancer,"® which
suggest that these miRNAs may act as tumor suppressors
by extensively regulating the biggest DGEM. We also analyzed
the miRNA target enrichments in the second biggest DGEM
(609 genes), but no significant candidate was found.

miR-139 inhibited cancer cell proliferation and cell cycle
progression

Among the three inferred tumor suppressors, miR-139 has the
minimal p-value and highest bootstrapping re-sampling stability
(Table 1). We chose to further study the cellular functions and
target genes of miR-139 by a series of computational and
experimental analyses. The 35 miR-139 target genes in the
DGEM are significantly enriched in “regulation of cell prolifera-
tion” (11 out of the 35 target genes are annotated with the GO
term, g-value < 0.05) (Supplementary File 2, ESIt). CCK-8 cell
proliferation assays show that miR-139 significantly inhibited
cancer cell proliferation (g-value < 0.01). The inhibition rates
are comparable to the well-studied tumor suppressor miR-101

Table 1 The key miRNAs inferred by ModMRI in colorectal cancer

miRFam p-value #Target BS (%) Expression
miR-135 0.0005 (0.049) 57/198 50 Up
miR-874 0.0021 (0.104) 29/77 58 —
miR-139 0.0042 (0.131) 35/108 84 Down
miR-17 0.0142 (0.200) 91/358 50 Up

miR-93 0.0160 (0.206) 64/256 86 Up
miR-124 0.0175 (0.211) 116/500 52 Down
miR-101 0.0365 (0.241) 65/262 50 Down

“p-value”: the p-value and the corresponding g-value. “#Target”: the
number of targets overlapped with the DGEM and the total number of
predicted targets; “BS”: the percentage of significant inferences in boot-
strapping experiments; “Expression”: the miRNA expression patterns in
ref. 1 and PhenomiR database.
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Fig. 2 miR-139 can inhibit cancer cell proliferation and cell cycle G1/S phase transition. Colorectal cancer cell lines HCT116/SW480 were transfected
with miRNA mimics. (A) The CCK-8 cell proliferation assays in HCT116. (B) The CCK-8 cell proliferation assays in SW480. The p-values of the t-test were
adjusted by Bonferroni correction. (C) The FACS analysis of the cell cycle in HCT116.

(Fig. 2A & B). FACS analysis indicates that miR-139 may inhibit
cell proliferation by blocking cell cycle G1/S phase transition
(Fig. 2C).

miR-139 directly targeted oncogene ETS1

miR-139 has 11 predicted target genes in the DGEM which are
annotated as ‘“regulation of cell proliferation”. Four of them,
MNT, NOTCH1, ETS1 and JUN are with high TargetScan context+
scores and aggregate Pcr. ETS1 and JUN are also involved in the
KEGG “cancer signaling pathway”. The predicted conserved
binding sites in the 3’-UTRs of the four genes were synthesized
into luciferase reporters. It is observed that miR-139 mimics can
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miR-139 seed sequence

significantly inhibit the luciferase activities of the reporters with
the conserved ETS1 binding site, while the miR-139 cannot
inhibit the reporters with a mutated ETS1 binding site (Fig. 3A
& B, Fig. S1, ESIt). Western blot experiments show that miR-139
mimics can suppress ETS1 protein activity in a dose-dependent
manner (Fig. 3C). These results indicate that miR-139 can
directly suppress ETS1 activity via the conserved binding site
in its 3’-UTR. ETS1 is known as an oncogenic transcription
factor, which can promote cell cycle G1/S transition."®" It is
suggested that miR-139 may inhibit cell cycle progression by
subsequently suppressing the ETS1 mediated transcriptional
program.
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16
2 00013  >005 >005  >005
'E 14 +
212
s
B
208 uCed
Hoe =miR-139
@
204
z
%02 ¢
=
o
ETS1 NOTCH1 JUN MNT
miR-139 mimic .o 40nM  1000M 2000M C
concentration

ETS1{

1 0.8210  0.5034

0.1924

Fig. 3 ETSlis adirect target of miR-139. (A) The conserved miR-139 binding site in ETS1 3’-UTR. (B) Dual luciferase assay experiments for the conserved
miR-139 binding sites in target genes, 3'-UTRs. The p-values of the t-test were adjusted by Bonferroni correction. (C) Western blot for ETS1 protein
activity with increasing dose of miR-139 mimics. PNAC is used as loading control.
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Fig. 4 miR-139 expressions in colorectal cancer tissues in different pathologic stages and adjacent normal tissues. (A) miR-139 expressions in the TCGA
COAD dataset (HiSeq sequencing data). (B) miR-139 expressions in GSE28364 (qPCR data).

miR-139 expression was down-regulated in cancer tissues

We examined miR-139 expressions in two clinical studies (TCGA
COAD dataset with 222 cancer and 8 non-cancerous samples;”®
GSE28364 with 40 cancer and 40 non-cancerous samples>"). The
data show that miR-139 is significantly down-regulated in early
cancer pathologic stages compared with adjacent non-cancerous
tissues, and it remains at a very low expression level in advanced
pathologic stages (Fig. 4). Reid et al. also reported that the miR-139
region has genomic loss in cancer samples.”* These results suggest
that the loss of miR-139 is an important indicator of colorectal
cancer. Similar expression patterns can be observed in several other
solid tumors (Fig. S2, ESIt).

Discussion

miR-139 is a broadly conserved miRNA in vertebrates. The
module-based master regulator inference (ModMRI) predicted
that miR-139 is a key regulator by targeting tens of genes in the
DGEM of colorectal cancer. The following expression and
functional analyses further suggested that miR-139 may act as
a tumor suppressor by regulating cancer cell proliferation.
Cellular functional assays validated that miR-139 can inhibit
cancer cell proliferation and cell cycle G1/S transition. And
ETS1, an oncogenic transcription factor promoting cell cycle
progression, was verified as a direct target of miR-139. ETS1 is
not differentially expressed in any of the four colorectal gene
expression datasets, but it can be found by module-based
analysis after incorporating the gene network information.
Two large-scale expression datasets from colorectal cancer
patients show that miR-139 was significantly down-regulated
in early pathologic stages of colorectal cancer and remained at a
very low expression level in advanced stages. A few other studies
also reported that miR-139 can inhibit colorectal cancer cell
proliferation.”>** These results indicate that miR-139 should be
a key tumor suppressor in early cancer development.
Modularity is an important property of biological networks.
Tens of genes work cooperatively as a functional module for

4,24
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different cellular processes. Inference of any single gene frequently
fails to disturb the module activity due to complex network
compensations and feedbacks. This study indicates that the
module-based inference using miRNAs may be an alternative
approach to disturb cancer cellular states.
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