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Proteome-wide analysis of human disease
mutations in short linear motifs: neglected
players in cancer?†

Bora Uyar,*a Robert J. Weatheritt,bc Holger Dinkel,a Norman E. Daveyad and
Toby J. Gibson*a

Disease mutations are traditionally thought to impair protein functionality by disrupting the folded globular

structure of proteins. However, 22% of human disease mutations occur in natively unstructured segments of

proteins known as intrinsically disordered regions (IDRs). This therefore implicates defective IDR functionality

in various human diseases including cancer. The functionality of IDRs is partly attributable to short linear

motifs (SLiMs), but it remains an open question how much defects in SLiMs contribute to human

diseases. A proteome-wide comparison of the distribution of missense mutations from disease and non-

disease mutation datasets revealed that, in IDRs, disease mutations are more likely to occur within SLiMs

than neutral missense mutations. Moreover, compared to neutral missense mutations, disease mutations

more frequently impact functionally important residues of SLiMs, cause changes in the physicochemical

properties of SLiMs, and disrupt more SLiM-mediated interactions. Analysis of these mutations resulted

in a comprehensive list of experimentally validated or predicted SLiMs disrupted in disease. Furthermore,

this in-depth analysis suggests that ‘prostate cancer pathway’ is particularly enriched for proteins with

disease-related SLiMs. The contribution of mutations in SLiMs to disease may currently appear small

when compared to mutations in globular domains. However, our analysis of mutations in predicted

SLiMs suggests that this contribution might be more substantial. Therefore, when analysing the

functional impact of mutations on proteins, SLiMs in proteins should not be neglected. Our results

suggest that an increased focus on SLiMs in the coming decades will improve our understanding of

human diseases and aid in the development of targeted treatments.

Introduction

Alterations of the human genome are the source of many
diseases including cancer. Such alterations can be rare at micro-
scopic levels (e.g. aneuploidies, chromosomal rearrangements),
frequent at sub-microscopic levels (e.g. insertions, deletions,
inversions, duplications, copy number variations) and most
typical as single nucleotide substitutions.1 Single nucleotide
substitutions within the protein coding regions of the genome

can hit splice sites, shift the reading frame of a gene, or
introduce stop codons. Substitutions that change amino acids
of the protein product, known as ‘missense mutations’, can
have adverse effects on protein structure and function. Most of the
disease-related missense mutations (B78%) are found within
ordered/globular, structured regions of proteins,2 in particular,
regions of low solvent accessibility.3 Such mutations in the globular
domains may impact the stability and folding of the domains,4

impair active sites5 or alter binding pockets.6

Many proteins contain functionally important regions that
lack stable tertiary structures in solution, known as intrinsically
disordered regions (IDRs).7–12 Although disease-related missense
mutations are enriched in ordered regions,13 they can also have
an impact on the functionally important regions of IDRs.2,14 For
instance, proteome-wide analyses of disease-related mutations
have shown that gain or loss of post-translational modification
sites, which are generally found in IDRs, contributes to human
diseases.15–17 Moreover, IDRs are enriched in proteins implicated
in human diseases,18 for instance, 80% of human cancer-
associated proteins contain extensive IDRs.19
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IDRs are frequently observed in the human proteome.
A significant proportion of the human proteome is disordered
(B22% of all the residues) and B35% of the proteins contain
at least one disordered segment longer than 30 residues.20 IDR-
containing proteins, often referred to as intrinsically disordered
proteins (IDPs), are core components of the cellular machinery
and are particularly associated with transcription, translation,
signal transduction, and the cell cycle.21 Depending on the
interaction partner and the intra-cellular context, IDPs can take
various conformations. Thus, IDPs are able to mediate multiple
signaling events21–24 and serve as hubs in protein–protein inter-
action networks.25

A key class of protein interaction modules predominantly
found within IDRs is the short linear motifs (SLiMs),26 which are
short (3–10 amino acids long) peptide segments of proteins.27

SLiMs can serve as sites of proteolytic cleavage, post-translational
modification, ligand binding or ligand docking, or as signals for
sub-cellular targeting or proteasomal degradation.28 This wide
functional spectrum is achieved by recognition of SLiMs by various
classes of protein globular domains. As opposed to globular
domains, SLiMs take up a very small sequence space. Conse-
quently, IDRs can be densely packed with multiple SLiMs, which
can sometimes overlap and act as regulatory switches.29,30

With the exception of post-translational modification
sites,15–17 the impact of disease-related mutations on SLiMs
and the association of SLiMs with human diseases have not
been studied at a proteome-wide scale with a specific focus on
SLiMs. One of the previous notable studies has provided a

literature review of the disease-related mutations in SLiMs.31

Another study has investigated whether mutations in IDRs that
shift the disordered state of a residue into an ordered state
(called disorder-to-order transition mutations) are enriched in
experimentally validated SLiMs.2 However, no significant
enrichment of disorder-to-order transition mutations was
observed for disease-related mutations compared to neutral
missense mutations. In this work, we report a proteome-wide
analysis of disease-related mutations with a specific focus on
SLiMs. We utilise the growing knowledge of disease and non-
disease mutations generated by high-throughput sequencing
and compiled by resources such as the ‘‘Catalog of Somatic
Mutations In Cancer’’ (COSMIC)32 and the ‘‘1000 Genomes
Project’’ (1000GP).33 We complement our analysis by mutation
data annotated in UniProt34 for inherited human diseases
compiled by ‘‘Online Mendelian Inheritance in Man’’ (OMIM).35

By comparing the distribution of disease and non-disease mutation
datasets, we show that disease-related mutations are enriched in
SLiMs in IDRs and they occur more frequently at functionally
important residues of SLiMs. Also, in the context of protein
interaction networks, we show that the number of interactions
mediated by a SLiM correlates with the likelihood that a mutation
affecting that SLiM will be disease-related. Based on these analyses,
we report a comprehensive list of experimentally validated and
predicted disease-related SLiMs. This list reveals that ‘KEGG
human prostate cancer pathway’ is the pathway most enriched
for proteins containing cancer-related SLiMs (see the analysis
pipeline in Fig. 1A).

Fig. 1 Analysis of mutations in short linear motifs. (A) Pipeline for the analysis of mutations in SLiMs. (B) Proteins shared by mutation datasets (OMIM:
Inherited Disease Mutations from UniProt, COSMIC: Catalog of Somatic Mutations in Cancer, 1000GP: missense mutations from the 1000 Genomes
Project). (C) Mutated sites shared by mutation datasets.
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Results
Comparison of the mutation datasets

In this study, we compare the distribution of inherited disease-
related missense mutations from the OMIM dataset (19 630
mutated sites in 1941 proteins) and cancer-associated somatic
missense mutations from the COSMIC dataset (440 266 mutated
sites in 13 941 proteins) with missense mutations from the
1000GP dataset (207 720 mutated sites in 12 755 proteins) that
are assumed to have a ‘‘neutral’’ impact on protein structure and
function (see Methods) (ESI,† Tables S1–S3). The majority of
the proteins from the disease-related mutation datasets contain
at least one neutral mutation (81.5% of OMIM proteins and
70.8% of COSMIC proteins are shared with the 1000GP dataset)
(Fig. 1B). Conversely, the overlap between the mutated sites from
disease-related mutation datasets and the neutral mutation
dataset is low (5.6% of mutated sites from the OMIM dataset
and 4.0% of mutated sites from the COSMIC dataset are shared
with the 1000GP dataset) (Fig. 1C) (Table 1). This suggests that
there are important differences to be observed between the
positional distributions of the mutations within the proteins
shared by different datasets.

Mutations in experimentally validated SLiMs

The Eukaryotic Linear Motif (ELM) resource28 is a collection
of experimentally validated SLiMs manually curated from the
literature for eukaryotic species. The ELM resource, as of
October 2013, contained a compilation of 1262 human SLiM
instances for 726 proteins (ESI,† Table S4) classified into 161
classes and 6 functional types (Table 2). In total, 1262 SLiMs
contain 8470 amino acid residues (average SLiM length is
B6.7 amino acids). The database of UniProt protein sequences
(see Methods) contained 19 991 proteins and had a total length
of 11 140 525 amino acids (ESI,† Table S5). Thus, experimentally
validated SLiM instances are found in B3.6% of the human
proteins and they take up B0.08% of the residues within human
protein sequences. Thus, the probability of a mutation to occur in
an experimentally validated SLiM is low. After mapping the
mutations from the 1000GP, the OMIM, and the COSMIC data-
sets onto the experimentally validated SLiMs, we observed that a
small proportion of the mutations overlap SLiMs. 152 (or 0.073%)
of the mutated sites from the 1000GP dataset, 53 (or 0.270%) of
the mutated sites from the OMIM dataset, and 405 (or 0.092%) of
the mutated sites from the COSMIC dataset overlap the experi-
mentally validated SLiMs. Of note, disease-related missense
mutation datasets show a slightly higher overlap with SLiMs
than the neutral missense mutation dataset. In order to observe

if there is a significant difference in the amount of overlap with
SLiMs between disease-related and neutral missense mutation
datasets, a pairwise comparison of the datasets (OMIM vs.
1000GP and COSMIC vs. 1000GP) was carried out (Fig. 2A).
Both the mutated sites and the SLiM instances were split into
two separate bins according to whether they are in ordered or
disordered regions. When comparing each individual disease-
related mutation dataset with the 1000GP dataset, only proteins
that exist in both the respective disease-related mutation data-
set and the 1000GP dataset were considered. The reason to only
consider shared proteins was to avoid potential biases in terms
of the order–disorder content of the non-shared proteins
between the compared datasets. When considering the ordered
regions of the proteome, the percentage of the mutated sites
overlapping the experimentally validated SLiMs was less, although
not significantly, for both the COSMIC dataset (Fisher’s exact test,
p = 0.098) and the OMIM dataset (Fisher’s exact test, p = 0.146)
than for the 1000GP dataset. This result suggests that, in the
ordered regions, disease-related mutations are not enriched in
experimentally validated SLiMs and even show a trend towards
depletion compared to neutral missense mutations, probably
because the mutations in the ordered regions are more detri-
mental to the protein when they hit a globular domain than a
SLiM that is found in an ordered region. On the other hand,
when considering only the disordered regions, a significant
enrichment of disease-related mutated sites overlapping the
experimentally validated SLiMs was observed for both the
OMIM (Fisher’s exact test, p = 4.461 � 10�9) and the COSMIC
datasets (Fisher’s exact test, p = 0.008) compared to the 1000GP
dataset. Thus, a mutation in a disordered region is more likely
to be disease-associated than to have no impact if the amino
acid is part of a functional SLiM. It is important to note that
inherited disease mutations from the OMIM dataset show a more
direct causality in terms of impairing the SLiMs compared to
mutations from the COSMIC dataset. This may be the conse-
quence of higher quality annotation of OMIM mutations, which
are experimentally validated to contribute to disease. Additionally,
the OMIM dataset may display an acquisition bias as it contains
disease-related mutations that have led to the discovery of a
functional SLiM. Conversely, mutations from the COSMIC dataset
should not suffer from an acquisition bias because a large portion
of the COSMIC dataset is generated via whole genome sequencing
of tumour samples.32 Furthermore, the majority of mutations

Table 1 Disease-related mutation datasets (OMIM and COSMIC) and their
overlap with the neutral mutation dataset (1000GP)

Overlap with 1000GP

Dataset Proteins Mutated sites Proteins Mutated sites

1000GP 12 755 207 720 — —
OMIM 1941 19 630 1580 (81.5%) 1100 (5.6%)
COSMIC 13 941 440 266 9873 (70.8%) 17 705 (4.0%)

Table 2 Annotated SLiMs in the ELM resource

SLiM type Instance count %

LIG 582 46.1
MOD 322 25.5
DOC 140 11.1
TRG 115 9.1
DEG 63 5.0
CLV 40 3.2
Total 1262 100.0

Number of SLiM instances classified into SLiM types. LIG: ligand
binding sites; MOD: post-translational modification sites; DOC: docking
sites; TRG: subcellular targeting signals; DEG: proteasomal degradation
motifs; CLV: proteolytic cleavage sites.
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in the COSMIC dataset lack experimental evidence for a role as
cancer-drivers. Consequently, many of these will be passenger
mutations that do not contribute to cancer but instead accumu-
late during cell proliferation.

Motif-breaking and motif-conserving mutations

Different positions within a SLiM instance have different
contributions to the strength of the affinity of binding. The
complementarity of the SLiM residues to the binding pocket on
the interaction partner is the major constraint for the defini-
tion of the motif patterns. These patterns are represented as
regular expressions that reflect the conservation pattern of each
position of a motif in both the convergently evolved instances
in unrelated proteins and evolutionarily conserved instances in

the orthologous proteins. Thus, the functional impact of a muta-
tion in a SLiM depends on the position of the mutated site within
the SLiM and different positions of SLiMs are permissive
to mutations at different levels.27 For example, a RGD motif
(recognised by integrins) is defined exclusively by the amino acids
arginine, glycine, and aspartic acid in its three positions. Any
mutation in this sequence can lead to mis-recognition of the
motif by the integrins. Such a mutation, which hereby is called
a ‘motif-breaking’ mutation, impairs the motif functionality.
On the other hand, a STAT5 Src homology 2 (SH2) domain
binding motif (pY[VLTFIC]xx, where ‘x’ can be any amino acid)
contains one degenerately defined position ([VLTFIC] in the
second position of the motif), where mutations between any of
the amino acids including valine, leucine, threonine, phenyl

Fig. 2 Analysis of missense mutations in experimentally validated SLiMs. (A) A site-based analysis of the enrichment of disease-related missense mutations
(OMIM and COSMIC) compared to neutral missense mutations (1000GP) in ordered and disordered regions. For each comparison, SLiMs and mutated sites
in the shared proteins between the compared datasets are divided into two groups as ‘disordered’ and ‘ordered’. The percentages of mutated sites
overlapping the SLiMs in the respective regions are compared between OMIM and 1000GP (first panel) and COSMIC and 1000GP (second panel). (B)
Classification of unique mutations overlapping the SLiMs as ‘only motif-breaking’ (MB), ‘only motif-conserving’ (MC), or ‘both MB and MC’ (see Methods).
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alanine, isoleucine, and cysteine are permitted and would not
impair the motif functionality. This motif also contains two
wild-card positions (third and fourth position of the motif),
where any mutation is permitted. Such mutations that either
occur at a wild-card position or occur at a degenerately defined
position within the restriction of the permitted amino acids for
that position are hereby called ‘motif-conserving’ mutations.
Additionally, a mutation may be classified as both ‘motif-
breaking’ and ‘motif-conserving’ in the cases when the mutation
affects overlapping SLiM instances (see Methods). In order to
observe if mutations that hit the experimentally validated SLiMs
are differently distributed within the SLiMs, the functional impact
of the mutations was classified and compared. For each mutation
dataset, the mutations that overlap experimentally validated SLiMs
were classified as ‘only motif-breaking’, ‘only motif-conserving’, or
‘both motif-breaking and motif-conserving’ (see Table 3). The ratio
of mutations exclusively classified as ‘motif-breaking’ from the
1000GP dataset (33.3%) was smaller than that from both the
OMIM dataset (55.2%) and the COSMIC dataset (40.2%) (Fig. 2B)
(ESI,† Tables S6–S8). The difference was significant between the
OMIM dataset and the 1000GP dataset (Fisher’s exact test, p =
0.003), while the difference between the COSMIC dataset and the
1000GP dataset was not significant (Fisher’s exact test, p = 0.299).
This result suggests that disease-related missense mutations tend
to impact functionally important residues of experimentally
validated SLiMs more often than neutral missense mutations.
Moreover, inherited disease mutations from the OMIM dataset
were significantly more frequently classified as ‘motif-breaking’
compared to the mutations from the COSMIC dataset (Fisher’s
exact test, p = 0.023). This result further emphasises the
differences between the quality of the OMIM dataset and the
COSMIC dataset in terms of the direct causality of the annotated
mutations in human diseases.

Impact of mutations on the amino-acid properties of SLiMs

In molecular recognition, physicochemical properties of amino
acids (e.g. charge, hydropathy, polarity, volume, chemical char-
acteristics, hydrogen donor/acceptor availability) at the inter-
action interfaces are important determinants of the nature of
the interaction. The physicochemical properties of amino acids
in the SLiMs are reflected in the defined patterns of SLiMs.27

For instance, while most of the residues of nuclear localization
signals favour positively charged amino acids (such as arginine
and lysine), some motif classes such as degrons or 14-3-3 binding
motifs require amino acids that have hydroxyl groups in the side
chains (such as serine and threonine) so that the motif can be

regulated via phosphorylation. Amino acid substitutions due to
missense mutations may cause changes in the physicochemical
properties of a SLiM and lead to defects in molecular recognition.
For instance, R105A and R106S mutations in the nuclear localiza-
tion signal of ceramide kinase-like protein cause a shift from
positively charged arginine residues to uncharged alanine and
serine residues, respectively. These mutations cause defects in
the nuclear import of the protein and are implicated in retinitis
pigmentosa type 26.36,37 In order to observe what changes in the
physicochemical properties of SLiM residues are unfavourable, the
frequencies of changes of these properties caused by mutations
were compared between disease-related missense mutations and
neutral missense mutations (see Methods) (ESI,† Fig. S1). Com-
pared to the neutral missense mutations from the 1000GP dataset,
inherited disease mutations (OMIM dataset) changed the amino
acid properties of SLiMs more frequently, consistently across all
types of properties in comparison (charge, hydropathy, polarity,
volume, chemical characteristics, hydrogen donor/acceptor avail-
ability). For three of the six properties in comparison, OMIM
mutations caused changes in the physicochemical properties of
SLiM residues significantly more frequently than the 1000GP
mutations: hydropathy (76% of OMIM mutations; 53% of
1000GP mutations; p = 0.024); hydrogen donor/acceptor availability
(76% of OMIM mutations; 62% of 1000GP mutations; p = 0.039);
and side chain chemistry (85% of OMIM mutations and 70% of
1000GP mutations; p = 0.015). On the other hand, no significant
differences were observed between the COSMIC dataset and the
1000GP dataset in terms of the frequency of transitions in the
physicochemical properties of SLiM residues. This result suggests
that inherited disease mutations from the OMIM dataset have a
more evident impact on the physicochemical properties of SLiM
residues than cancer related mutations from the COSMIC dataset.

To further elucidate the specific kinds of unfavourable
changes in the physicochemical properties of SLiM residues, the
frequencies of each type of transitions were compared between the
disease-related and neutral mutation datasets. For each class of
physicochemical properties (charge, hydropathy, polarity, volume,
chemical characteristics, hydrogen donor/acceptor availability),
amino acids were grouped according to subclasses of each prop-
erty (for example, based on the hydropathy properties, amino acids
were grouped into three subclasses: hydrophobic, hydrophilic,
and neutral) (see Methods). Between the OMIM and the 1000GP
datasets, none of the transitions among hydropathy properties
(hydrophobic, hydrophilic, neutral) and none of the transitions
among polarity properties (non-polar and polar) were signifi-
cantly different. In terms of transitions among charge proper-
ties (positively charged, negatively charged, uncharged), OMIM
mutations significantly more frequently substituted uncharged
residues with positively charged residues ( p = 0.008). When
amino acids were grouped based on their volumes, OMIM
mutations changed very small residues in SLiMs to very large
residues significantly more often than the 1000GP mutations
( p = 0.002). Interestingly, the OMIM mutations substituted the
wild type residues with mutant residues that have a larger
volume more often than the 1000GP mutations (57% of the
OMIM mutations and 41% of the 1000GP mutations caused an

Table 3 Motif-breaking and motif-conserving mutations in experimen-
tally validated SLiM instances

Dataset
SLiMs with
mutations

Mutations
in SLiMs

Only motif-
breaking

Only motif-
conserving Both

N % N % N %

1000GP 144 156 52 33.3 100 64.1 4 2.6
OMIM 30 67 37 55.2 27 40.3 3 4.5
COSMIC 299 498 200 40.2 285 57.2 13 2.6
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increase in the volume of the SLiM residues; p = 0.035).
Furthermore, the OMIM dataset was enriched for mutations
that changed SLiM residues which had neither hydrogen donor
nor hydrogen acceptor atoms to residues with hydrogen donor
atoms ( p = 0.009). Finally, the OMIM dataset was enriched for
transitions in the side chain chemistry such as hydroxyl to
aromatic ( p = 0.009), basic to hydroxyl ( p = 0.025), and aliphatic
to basic ( p = 0.022) (ESI,† Fig. S2). Between the COSMIC dataset
and the 1000GP dataset, as observed for the comparison of the
OMIM dataset and the 1000GP dataset, significant differences
were observed for transitions from very small to very large
residues ( p = 0.025) and from hydroxyl to aromatic side chain
chemistries ( p = 0.04). However, for the rest of the transitions,
no significantly different transitions of physicochemical prop-
erties of SLiM residues were observed between the COSMIC
dataset and the 1000GP dataset (ESI,† Fig. S3).

Recurrently mutated SLiMs in human diseases

According to the available disease-related missense mutation
datasets, the most recurrently mutated experimentally validated
SLiM is the conserved proteasomal degradation motif (‘‘degron’’)

in the highly disordered N-terminal region of b-catenin (Fig. 3A).
This motif (DEG_SCF_TRCP1_1, 32DPSGIHPS37) mediates bind-
ing to the WD40 repeat domain of the beta-TRCP subunit of the
SCF-betaTRCP E3 ubiquitin ligase complex (Fig. 3B). In the
COSMIC dataset, there are 1709 mutation entries for this motif
derived from 1692 unique samples based on 256 different
publications. Each of the six positions of the motif contains
at least one mutation (a total of 33 unique mutations). These
1692 samples are from 27 primary tumour sites (454 samples
from the liver and 271 samples from the central nervous system
as the top two primary sites) with a diverse set of 26 primary
histology descriptions (908 of the samples classified as carci-
noma and 269 of them classified as medulloblastoma as the top
two primary histology types) (Fig. 3C). Of note, all of the most
commonly occurring mutations of this SLiM (D32Y, S33F, S33C,
G34R, S37F, S37C) occur on functionally important residues and
are categorised as ‘motif-breaking’ mutations. Other examples of
recurrently mutated experimentally validated SLiMs include
Cellular Tumour Antigen p53’s nuclear localisation signal
(305KRALPNNTSSSPQPKKKPL323),38 the 14-3-3 binding motif of
Raf1 (256RSTpSTP261),39 and the VHL degron motif of endothelial

Fig. 3 Phospho-degron motif of b-catenin. (A) Structure (PDB:1P22) of the b-TrCP1-Skp1-b-catenin complex44 generated with Chimera.45 Green: Skp1;
orange: beta-TrCP1; black: b-catenin phospho-degron motif (DSGx{2,3}[ST], 32DpSGIHpS37). The degron motif binds the WD40 repeat domain of
b-TrCP1. (B–D) Classification of 1709 entries in the COSMIC dataset that reports 33 unique missense mutations (B) derived from 1692 different samples
taken from 27 unique primary sites (C) with 26 unique primary histology descriptions (D).
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PAS domain containing protein 1 (HIF2a) (529LAPYIOHPMD-
GEDFQR542)40 (ESI,† Table S9).

Mutations in the predicted SLiMs

The human proteome has the capacity to contain millions of SLiM
instances.41 Manual annotation of SLiMs is an accurate but slow
process, and therefore, should be supported by computational
prediction tools. SLiM prediction is a computationally challenging
problem because they are short and often degenerately defined
(allowing physico-chemically similar substitutions at certain
positions). So, particularly for the SLiM classes that have high
occurrence probability, a regular expression search in the pro-
teome results in many false-positive motif instances. However,
predictions can be improved by filtering hits in inaccessible
regions and by retaining only well conserved instances, which
are strategies utilised by the SLiMSearch42 and SlimPrints43

motif discovery tools.
Based on our prior results, if a candidate SLiM in a disordered

region is truly functional, a mutation in the SLiM is more likely to be
disease-associated. Likewise, if a mutation in a predicted SLiM
contributes to disease, the SLiM is more likely to be functional than
a random peptide that matches the SLiM pattern. A disease-related
mutation in a SLiM may disrupt a protein–protein interaction, which
may be important for signaling and regulation. Based on this logic,
we hypothesised that if a given list of predicted SLiMs contains a
reasonable number of truly functional motifs, we should observe an
enrichment of disease-related mutations in those SLiMs compared
to the background. For this purpose, we predicted SLiMs in dis-
ordered segments (IUPred score 4 0.5) of the human proteome and
compared the level of enrichment/depletion of disease-related muta-
tions against the background (Fig. 4A and B).

Missense mutations from the 1000GP dataset were signifi-
cantly more frequently found in predicted SLiMs that had poor

relative conservation scores (RLC score o 0). On the other
hand, a significant enrichment of disease-related mutations
was observed for the predicted SLiMs that had positive relative
local conservation scores (RLC 4 0). This result adds support to
our previous findings that disease-related missense mutations
occur more frequently in SLiMs in the IDRs than neutral
missense mutations. Furthermore, in this set of predicted
SLiM instances using stringent disorder and RLC scores (see
Methods) (ESI,† Table S10), compared to experimentally validated
SLiMs, there were B63 fold more candidate SLiM instances with
mutations from the COSMIC dataset (18 990 predicted SLiM
instances with mutations) and B13 fold more candidate SLiM
instances with mutations from the OMIM dataset (403 predicted
SLiM instances with mutations). These predicted SLiM instances
containing disease-related mutations can serve as a strong list of
candidates, which may be of interest to other researchers for
follow-up studies (ESI,† Table S11).

Mutated SLiMs in protein–protein interaction (PPI) networks

In scale-free networks such as PPI networks, defects in the hubs
have more deleterious effects on the network compared to
defects in non-hubs.46 A study has demonstrated that, for yeast,
deletion of hub proteins imposes a higher risk of lethality to the
organism.47 Thus, the more interactions a protein has, the worse
the consequences for the network will be when the protein loses its
interactions with the surrounding proteins. SLiMs are important
mediators of protein–protein interactions and SLiM mediated
interactions can be lost due to mutations in the SLiMs. For
instance, mutations in the 14-3-3-binding motif of Raf1 abrogate
its interaction with 14-3-3 proteins in Noonan and Leopard
syndromes.48 Although examples exist of diseases caused by the
known loss of protein–protein interactions due to mutations in
the SLiMs, we wanted to observe whether there is a trend at a

Fig. 4 Mutation enrichment analysis in predicted SLiM instances. Frequencies of mutated sites within predicted SLiM instances (IUPred = 0.5) at different
relative local conservation score intervals are compared. RLC scores range from �2.5 to 2. SLiMs that are relatively more conserved than the surrounding
regions have a RLC score above zero. (A) Comparison between OMIM and 1000GP (green stars represent enrichment of 1000GP mutations; red stars
represent enrichment of OMIM mutations) and (B) COSMIC and 1000GP (green stars represent enrichment of 1000GP mutations; red stars represent
enrichment of COSMIC mutations).
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proteome-wide scale such that the more interactions a SLiM
mediates, the higher is its likelihood to be associated to
disease. If so, disease-related mutations should impact more
SLiM mediated interactions than should neutral mutations. In
order to make a comparison, using the predicted list of SLiMs,
a motif-mediated PPI network was constructed (see Methods)
(Fig. 5A) (ESI,† Table S12). Then, for each mutated site in the
disordered regions of the proteome (IUPred = 0.5), the total
number of protein–protein interactions mediated by the
predicted SLiMs that overlap the mutated site was counted.
The number of interactions for the mutated sites, which do not
overlap any of the predicted SLiMs involved in the interaction
network, was counted as zero (ESI,† Tables S13–S15). The
number of SLiM-mediated interactions impacted by disease-
related mutations was higher than that of neutral mutations
(Fig. 5B) for both COSMIC (p o 1.276 � 10�12, Wilcoxon rank-
sum test) and OMIM (p o 1.628 � 10�7, Wilcoxon rank-sum
test). This result suggests that the number of interactions a
SLiM mediates influences the likelihood that a mutation in a
SLiM is disease-related.

Pathways enriched with disease-related SLiM-containing
proteins

Some cellular pathways may be more dependent on motif
functionality than others. In order to observe such differences
between pathways, we looked for the pathways that are most
enriched with predicted SLiMs that contain motif-breaking
mutations from the COSMIC dataset (Table 4). Proteins con-
taining disease-related SLiMs were most enriched in the ‘KEGG
human prostate cancer pathway’ (Fig. 6A). In this pathway, 26
proteins had at least one predicted SLiM with a motif-breaking

mutation (ESI,† Table S16). A manual literature search revealed
that, of these 26 proteins, seven proteins had at least
one predicted disease-related SLiM that was experimentally
validated and already annotated in the ELM resource; nine
proteins had at least one predicted disease-related SLiM with
experimental validation, but was not annotated in the ELM
resource; five proteins had at least one predicted SLiM that
neither had experimental validation nor was annotated in the
ELM resource but showed promising evidence of functionality;
and five of them lacked mutated predicted SLiMs with any
experimental validation or promising evidence that suggested
functionality of the SLiM (see Methods).

For some of the predicted SLiMs with motif-breaking muta-
tions in the ‘KEGG human prostate cancer pathway’, support-
ing experimental evidence of function can already be found in
the literature and annotated in the ELM resource. For instance,
the stability of IkBa, an inhibitor of NFkB, is regulated via a
phospho-degron motif (31DpSGLDpS36). Regulation of NFkB
activation via modification of the stability of IkBa is crucial
as NFkB signals the transcription of genes involved in a variety of
cellular processes including immune response, inflammation,
differentiation, and apoptosis.49 In patients with anhidrotic
ectodermal dysplasia with T cell immunodeficiency, a S32I

Fig. 5 Analysis of mutations in the predicted SLiM–domain interaction network. (A) Pipeline of SLiM–domain interaction network construction. (B)
Distribution of the number of interactions (x axis) versus number of mutated sites (normalized per 10 000 mutated sites – y axis) (see Methods). The
relative frequency distributions (number of interactions per 10 000 mutated sites) of each mutation dataset are plotted using a blue dashed line (the
OMIM dataset), a green dashed line (the COSMIC dataset), and a straight red line (the 1000GP dataset).

Table 4 DAVID–KEGG pathway enrichment analysis results (FDR o 0.05)

KEGG pathway
Number of
proteins p-value FDR

hsa05215: Prostate cancer 26 2.54 � 10�6 0.003
hsa05213: Endometrial cancer 18 1.17 � 10�5 0.014
hsa04510: Focal adhesion 42 1.68 � 10�5 0.020
hsa03040: Spliceosome 30 2.98 � 10�5 0.036
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mutation in IkBa protein has been found.50 This mutation
disrupts the phosphorylation of the IkBa degron motif; thus the
protein cannot be degraded and ultimately NFkB cannot be
activated. Another motif-breaking mutation (D31N) was found
in a breast cancer sample (COSMIC). This mutation may impair
regulation of NFkB, and may thus be detrimental to a variety of

cellular processes. For some of the SLiMs that were not anno-
tated in the ELM resource, we could still find experimental
validation in the literature for their functionality. For instance,
human TCF3, a transcription factor that acts as an activator
of Wnt signaling in the presence of b-catenin, contains a
C-terminal-binding protein 1 (CtBP)-binding motif (502PLSLT506).

Fig. 6 Analysis of predicted SLiMs with motif-breaking mutations in the KEGG human prostate cancer pathway. (A) KEGG human prostate cancer
pathway (KEGG id: hsa0521553). Proteins highlighted with orange in the pathway contain at least one predicted SLiM that has a motif-breaking mutation
(COSMIC). (B) Sequence features of retinoblastoma-associated protein-1 (RB1) (phosphorylation sites from Phospho.ELM,54 domain predictions from
SMART55 and PFAM,56 and order–disorder profile predictions from GlobPlot57 and IUPred58). A potentially functional SH2-binding motif (606pYLSP609)
with a multiple sequence alignment of orthologs from representative model organisms is highlighted in black. The alignment is generated using
ClustalW59 and visualized using JalView.60
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In the absence of b-catenin, TCF3 binds to CtBP co-repressor
and it acts as a transcriptional repressor.51,52 A motif-breaking
S504P mutation, found in a large intestine carcinoma sample
(COSMIC), may be responsible for the loss of regulation
imposed by CtBP for the repressor activity of TCF3.

Some mutated SLiMs in this pathway are potentially func-
tional, but require further experiments to characterise the
motif’s functionality and the functional impact of a mutation
in the motif. For instance, retinoblastoma-associated protein
(RB1) has a predicted SH2 domain-binding site (606pYLSP609),
which is conserved in a disordered region of the RB1 protein
(Fig. 6B). There are two cancer-associated motif-breaking mutations
in this motif: Y606C and L607P (COSMIC). As a complementary
evidence for the functionality of this putative motif, RB1’s Y606 is a
known phosphorylation site in both humans61 and mice (corre-
sponding phosphorylation site Y599).62

Moreover, there are several known SH2 domain-containing
binding partners of RB1: tyrosine-protein kinase ABL1,63,64

tyrosine-protein kinase FRK,65 and signal transducer and acti-
vator of transcription 3 (STAT3).66 Among these proteins, STAT3
is known to directly bind to RB1 on DNA.66 Cumulatively, the
available evidence suggests that this motif is a promising SH2-
binding site that might be important for the regulatory functions
of the RB1 protein.

Taken together, analysis of disease-related motif-breaking
mutations in predicted SLiMs can lead us to potentially func-
tional SLiMs. This in turn can improve our understanding of a
protein’s functionality in disease pathways. Of note, our analysis
of mutated SLiMs in ‘KEGG human prostate cancer pathway’
suggests that the combinatorial impact of SLiM mutations could
be extensive if they simultaneously malfunctioned. This finding
underlies the necessity to understand the defects in SLiM
functionality to better understand disease pathways.

Discussion
Structure-centric analysis of mutations

The now obsolete dogma of structural biology, ‘structure deter-
mines the function of a protein’, has historically biased the
analyses of the impact of disease-related mutations on proteins
toward folded globular domains. Researchers have tried to
explain how mutations impact the properties of proteins that
contribute to structural order of proteins. Similarly, algorithms
that are designed to classify mutations based on their impact
also have carried this bias for structured proteins.14,67 In
molecular recognition, while ordered proteins are used mostly
for catalysis and associated enzymatic processes, disordered
proteins are mainly used for signaling and regulation.11,68

Cancer arises from alterations preferentially in the cellular
signaling pathways.69 Such alterations can occur due to mis-
recognition- or mis-signaling-based defects in IDPs.23,70 It has
been postulated that point mutations in IDRs may disrupt
SLiMs and contribute to mis-recognition- or mis-signaling-
based diseases.31,71 In fact, the diverse functionality conferred
by SLiMs onto IDRs is concomitantly impaired in a diverse set

of human diseases as a result of mutations. For instance, the
most well studied SLiM with cancer-associated mutations, the
phospho-degron DSGxxS motif of b-catenin (32DpSGIHpS37), is
required for the regulation of the stability of b-catenin, which is
a key protein of the Wnt signaling pathway and is responsible
for activation of Wnt-responsive genes for regulation of cell
adhesion.72 Mutations in this phospho-degron motif lead to
accumulation of b-catenin, resulting in constitutive activation
of Wnt-responsive genes, which can drive various types of
cancers.73,74 Other ways in which SLiM mutations contribute
to disease include the following: altering the sub-cellular
localisation of the protein (e.g. the ciliary trafficking motif
of rhodopsin is mutated in autosomal dominant retinitis
pigmentosa75–77); defective proteolytic cleavage (e.g. furin
cleavage site of the insulin receptor is mutated in insulin
resistant diabetes78); and/or impairing post-translational
modification sites (e.g. mutation of the sumoylation site of
microphthalmia-associated transcription factor (MITF) causes
a five-fold increase in the risk of developing melanoma and
renal cell carcinoma79,80) (see ESI,† S22 for more examples of
SLiM functionality disrupted in diseases). Thus, bioinformatics
tools that classify the functional impact of mutations should
take into account the fact that mutations may impair the
functions of proteins without impairing their structural proper-
ties such as folding. The proteome-wide analysis of mutated
SLiMs presented in this study stresses that these occurrences
are not isolated events and, as has been demonstrated before
for post-translational modification sites,15,16 loss of SLiM func-
tionality due to mutations can be a prevalent molecular mecha-
nism that may be used to explain the underlying causes of
human diseases.

Implications for SLiM prediction

As argued above, the tools that predict the functional impact of
mutations can/should benefit from understanding linear motif
biology. In the same way, SLiM prediction tools can benefit from
analyses of mutations in motifs. SLiM prediction algorithms
have utilised a variety of parameters to improve prediction
accuracy. These parameters include intrinsic disorder,26 evolu-
tionary conservation,43 surface accessibility,81 protein–protein
interactions,82 and GO term enrichment.83 In this study, when
compared to neutral mutations, an enrichment of disease-
related mutations was observed for the experimentally
validated SLiMs in disordered regions. Similar results could
be reproduced for SLiMs predicted in relatively conserved
segments of disordered regions. These results suggest that
analyses of mutations in the IDRs could suggest the presence
of potentially functional SLiMs. Therefore, mutation analysis
should be incorporated into prediction pipelines in order to
improve confidence in the predictions.

Moreover, we have observed that the inherited disease-
related mutations tend to occur on functionally important
residues and break the defined pattern of experimentally validated
SLiMs more often than neutral mutations. This finding suggests
that, as a complementary evidence to evolutionary conservation,
the distribution of the disease-causing and neutral missense
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mutations within SLiMs could be used to re-define, fine-tune,
and improve the existing regular expressions that are used to
define SLiM classes.

Implications for drug design and treatment strategies

SLiMs have been studied in the context of deregulated expres-
sion of IDPs84 and in the context of infectious diseases caused
by pathogens abusing SLiMs.31,85 Moreover, molecular com-
pounds and drugs designed to target SLiM-mediated interac-
tions have shown promising results for targeted treatment
strategies.31,86–89 In this work, by analysing the impact of
disease-related mutations on SLiMs, we have explored an addi-
tional important aspect that emphasises the therapeutic impor-
tance of SLiMs.

SLiMs can be deleterious to cells if used aberrantly, for
instance, in the context of deregulated expression of IDPs.84

Amplified human oncoproteins are enriched with SLiMs and
IDRs, and they are often involved in protein–protein interac-
tions.90 As an illustration, over-expression of the murine double
minute 2 (MDM2) protein, an E3 ubiquitin ligase, causes a
decrease in the apoptotic activities of p53 and promotes
tumourigenesis,91 because binding of MDM2 to a FxxxWxxL
motif in p53 promotes the proteasomal degradation of p53.92

Another aspect of SLiMs that has highlighted their therapeutic
relevance is the fact that SLiM-binding pockets are targets
of bacterial, fungal, or viral pathogens.31,85 Through SLiM
mimicry, pathogens gain access to cellular signaling and
regulation pathways of the host, and thus exploit SLiM func-
tionality to invade the host organism and create an environ-
ment that allows the pathogens to replicate and proliferate.31,85

For instance, a variety of DNA viruses replicate their genomes
by utilising the retinoblastoma-associated protein-binding
motifs (LxCxE) to force the host cell cycle to enter the S phase
and activate the DNA replication machinery.93 In short, imbalanced
expression of IDPs containing SLiMs and pathogenic mimicry of
the SLiMs of the host cell illustrate two important aspects of the
therapeutic relevance of SLiMs.

In this work, with an analysis of disease-related mutations
in the experimentally validated and predicted SLiMs, we
have explored a third aspect of SLiMs that emphasises their
therapeutic importance. SLiM-mediated interaction interfaces
have already begun to serve as non-classical targets for drug
development efforts.31 Currently, two of the most promising
drugs designed to target SLiM-mediated interactions are Nutlins
(competing for binding to p53-binding site on MDM2) and
Cilengitide (mimicking integrin-binding RGD peptides).
Nutlins are already in clinical trials for retinoblastoma86 and
liposarcoma,87 and Cilengitide has entered Phase III clinical
trials for glioblastomas.88 Considering the successfully devel-
oped drugs that specifically target SLiM-mediated interactions,
this may be a potentially high-promising avenue of investiga-
tion. Our analysis of mutations in SLiMs in the context of PPI
networks suggests that there are many more potential targets
within the proteome. Treatment strategies involving drugs that
can target such interactions will possibly show an increase in
the near future.

Conclusions

We observed significant differences in the distribution of
mutations in SLiMs between datasets of disease-related and
neutral mutations. In particular, an enrichment of disease-related
mutations in SLiMs compared to the background for both experi-
mentally validated and predicted SLiMs was observed. These
studies have allowed us to compile the most comprehensive list
of disease-related SLiMs. When analysing the functional impact of
mutations on proteins, the presence of SLiMs in the protein
sequence should not be neglected. As more and more SLiMs are
discovered and more genomes are sequenced, we will have a
clearer picture of the roles of SLiMs in human diseases. In the
next decade, an increase is expected in the number of studies that
will reveal different mechanisms of how SLiMs are associated with
human diseases and different treatment strategies.

Methods
Datasets

Protein sequences. UniProt Reference human proteome was
downloaded (July 2012). Using the protocol described for the
SLiMSearch motif prediction tool,42 19 991 protein sequences,
for which enough number of orthologs could be detected to
calculate a multiple alignment, were kept (ESI,† Table S5).

Experimentally validated SLiMs. The Eukaryotic Linear
Motif (ELM) resource28 is a collection of manually annotated,
experimentally validated SLiMs curated from the literature for
eukaryotic species. SLiM instances and classes annotated by the
ELM resource were downloaded (October 2013). Only instances
that are experimentally proven to be functional (annotated as
‘True Positive’) for Homo sapiens were kept. This set of SLiM
instances comprised 1262 individual instances categorised into
161 classes of SLiMs in a total of 726 proteins (ESI,† Table S4).

Mutation datasets. Inherited disease mutations in humans
are from UniProt annotations34 of Online Mendelian Inheri-
tance in Man (OMIM)35 mutations with 1941 proteins contain-
ing at least one disease-associated mutation at 19 630 unique
sites (ESI,† Table S1). This dataset consists of experimentally
validated missense mutations that contribute to inherited
diseases, so it serves as a high quality dataset. Inherited disease
mutations were downloaded from UniProt (http://www.uniprot.
org/docs/humsavar.txt). Only mutations that were associated to
‘Disease’ were kept. ‘Unclassified’ mutations or ‘Polymorphisms’
were excluded.

The second disease-related missense mutation dataset is
downloaded from the Catalog of Somatic Mutations in Cancer
(COSMIC).32 Missense mutations in the COSMIC dataset are all
derived from tumour samples. However, mutations found in
tumour samples are not always proven to contribute to cancer.94

So, the COSMIC dataset is larger, but, in terms of experimental
evidence for each reported mutation, has lower quality than the
OMIM dataset. Somatic cancer-associated missense mutations of
the COSMIC database version 66 were exported using COSMIC-
Mart (http://cancer.sanger.ac.uk/biomart/martview/), for genes that
were mapped to UniProt accession numbers. The COSMIC dataset
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consists of 13 941 proteins with 440 266 unique mutated sites
(ESI,† Table S2).

We used the 1000GP dataset as the control dataset to
understand the background distribution of neutral missense
mutations in the proteome. This dataset consisted of 207 720
mutated sites in 12 755 proteins (ESI,† Table S3). The functional
impact of the missense mutations from the 1000GP dataset is
individually weak, but the collective effect of multiple muta-
tions may have a bigger impact.95 Still, the majority of 1000GP
mutations are polymorphisms with an allele frequency of more
than 1%.33 Thus the majority, if not all, of the mutations from
the 1000GP dataset are presumably commonly found variants
in the population. On the other hand, mutations reported from
disease-related mutation datasets are either known to be causal
for disease or are found in disease samples (e.g. tumour tissue
sequencing data from the COSMIC database). Therefore, as the
1000GP dataset is more likely to contain neutral mutations, it
serves as a good control dataset to compare with disease-related
mutation datasets. Neutral missense mutations, i.e. polymorphisms,
published by the 1000 Genome Project Consortium were used based
on the ID mapping to UniProt accession numbers in the SQL dump
file generated by the SNPdbe database.96

PPI dataset. The non-redundant set of human protein–
protein interactions was downloaded from iRefWeb (November
2013),97 a meta-database of protein–protein interactions that
combines data from various PPI databases such as BIND,98

BioGRID,99 CORUM,100 DIP,101 IntAct,102 HPRD,103 MINT,104

MPact,105 MPPI,106 and OPHID.107 Only binary interactions
of those proteins that had UniProt accession numbers were
kept (ESI,† Table S17).

Predictions

Disorder score prediction. Residue-based disorder tendencies
of proteins were predicted using IUPred binaries58,108 using the
default profile ‘LONG’ considering sequential neighbourhood
of 100 residues (ESI,† Table S18). IUPred disorder scores above
0.5 denote regions of the proteins that have 95% likelihood to be
disordered.

Relative local conservation (RLC) score prediction. Per-residue
based relative local conservation scores (RLC) were calculated
using the SLiMSearch motif discovery tool42 (ESI,† Table S19).
RLC scores above zero denote regions of the proteins that are
more conserved than the surrounding regions. RLC scores below
zero denote regions of the proteins that are less conserved than
the surrounding regions.

Motif prediction. SLiM instances for all proteins (19 991
protein sequences in the sequence dataset) were predicted by
performing a regular expression search on the protein sequences
using the motif definitions of 202 SLiM classes. Each individual
SLiM instance was assigned start and end coordinates with
respect to the matched sequence segment of the protein. Also,
each SLiM instance was assigned disorder and RLC scores by
averaging the corresponding scores of each residue of the SLiM
instance. For filtering the candidate SLiMs, an IUPred disorder
score cut-off of 0.5 was applied.58 As a second filtering score,
based on the results of the mutation enrichment analysis in

experimentally defined SLiMs, a stringent RLC score cut-off
of 0.5 was chosen. This set of predicted SLiMs consists of
101 630 predicted SLiM instances from 177 SLiM classes in
10 243 proteins (ESI,† Table S10). These SLiMs take up 575 197
residues (5.2%) of the proteome, which is B68 fold more than
the experimentally validated SLiMs.

Protein domain prediction. Protein domains were detected
by scanning the protein sequences using the HMMER (v3.0)
toolset109 with the PFAM profile hidden Markov models
(HMMs)56 (ESI,† Table S20).

SLiM-mediated interactome construction. Known pairs of
PFAM domains and SLiM classes that can bind to each other
were downloaded from the ELM resource (http://elm.eu.org/
infos/browse_elm_interactiondomains.html) (ESI,† Table S21).
All protein sequences were scanned for PFAM domains and
SLiMs as described above. Each binary protein interaction in
the PPI dataset was queried for known interacting PFAM domains
and SLiM classes. An edge in the SLiM-mediated interactome was
created for each pair of interacting proteins if one of the proteins
contained a SLiM instance that can be recognised by a PFAM
domain in its partner (Fig. 5A).

Statistics

All the scripts for the analyses were written in Python 2.7.3
(http://www.python.org) and the statistics were calculated using
R (http://www.r-project.org/).110 The plots in Fig. 2, 4, 5B
and ESI,† Fig. S1–S3 were drawn using the ggplot2 library
(http://ggplot2.org/).111

Enrichment analysis of mutated sites in experimentally
validated SLiMs. A pairwise comparison of the distribution of
missense mutations was carried out between (a) the OMIM
dataset and the 1000GP dataset and (b) the COSMIC dataset and
the 1000GP dataset. For each pairwise comparison, proteins
that are not shared by the compared datasets were excluded.
Moreover, proteins that do not contain any experimentally
validated SLiM instances were also excluded. In order to avoid
biases for well-studied SLiM instances, a mutated site was
counted only once whether or not multiple mutations are
reported for that site. The mutated sites and SLiM instances in
the compared datasets were divided into two bins as ‘disordered’
or ‘ordered’. The classification was done based on the average
IUPred disorder score of the SLiMs and the individual IUPred
score of the mutated sites. SLiMs or mutated sites that have an
IUPred score above 0.5 were categorised as ‘disordered’ and the
rest were categorised as ‘ordered’. Mutated sites in ‘ordered’ or
‘disordered’ categories were further divided into two more
categories as ‘within motif’ if the mutated site overlaps any of
the SLiM instances and ‘outside motif’ if the mutated site does
not overlap any of the SLiM instances. For each category
of ‘disordered’ or ‘ordered’ regions, a 2 � 2 contingency table
(two rows for the mutation datasets and two columns for the
category of overlap with SLiMs, either ‘within motif’ or ‘outside
motif’) was created. To test if there is a significant difference in
the percentage of the mutated sites overlapping the SLiMs in
the corresponding categories, a Fisher’s exact test was applied
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using the contingency tables created specifically for the pair-
wise comparison of the mutation datasets.

Enrichment analysis of mutated sites in predicted SLiMs.
A pairwise comparison of the distribution of the missense
mutations was carried out between (a) the OMIM dataset and
the 1000GP dataset and (b) the COSMIC dataset and the
1000GP dataset by considering only the shared proteins
between the compared datasets as described for the ‘Enrich-
ment Analysis of Mutated Sites in Experimentally Validated
SLiMs’. Again, each mutated site was counted only once regard-
less of the number of unique mutations in that mutated site.
The predicted SLiMs (see Methods – ‘Motif prediction’) and
the mutated sites were grouped based on their relative local
conservation (RLC) scores. For each of these groups, a 2 � 2
contingency table was created (two rows for the categorisation
of mutated sites as ‘within motif’ and ‘outside motif’ and two
columns for the two datasets that were compared) and a Fisher’s
exact test was applied to see if there is any significant difference
between the compared datasets in terms of the frequency of the
mutated sites overlapping the SLiMs.

Classification of unique mutations overlapping experimen-
tally validated SLiMs. Each unique mutation overlapping the
SLiMs from each mutation dataset is classified as ‘only motif-
breaking’, ‘only motif-conserving’, and ‘both motif-breaking and
motif-conserving’. A mutation is classified as ‘motif-breaking’ if
the mutation changes the sequence of a SLiM instance in such a
way that the regular expression pattern that defines the SLiM no
longer matches the mutated sequence. On the other hand, if the
mutated sequence still matches the regular expression pattern of
the SLiM, the mutation is classified as ‘motif-conserving’. As the
SLiM instances may be overlapping each other, some mutations
may overlap multiple SLiM instances. Depending on the pattern
of the different overlapping SLiMs, a mutation that overlaps both
SLiMs may be classified as ‘motif-breaking’ for one SLiM
instance or ‘motif-conserving’ for another SLiM instance. Such
mutations are classified as ‘both motif-breaking and motif-
conserving’. In order to test if there is a significant difference
in the frequency of mutations to be classified as ‘motif-breaking’
in different mutation datasets, a pairwise comparison of muta-
tion datasets was carried out. For each comparison (e.g. COSMIC
vs. 1000GP), a 3 � 2 contingency table was created. The table
consisted of two rows for the compared mutation datasets and
three columns for the sizes of the mutually exclusive categories
of mutations as described above. Fisher’s exact test was applied
to see if there was a significant difference between the datasets
in terms of the frequency of mutations in different categories.

Analysis of the impact of mutations on the amino-acid
properties of SLiMs. The twenty main amino acids found in
the human proteome were classified for each of the six main
physicochemical properties including charge, hydropathy,
polarity, volume, chemical characteristics, and hydrogen donor/
acceptor availability.112 For the ‘charge’ property, amino acids
were grouped as positively charged (R, H, K), negatively charged
(D, E), or uncharged (A, N, C, Q, G, I, L, M, F, P, S, T, W, Y, V).
For the ‘hydropathy’ property, amino acids were grouped as
hydrophobic (A, C, I, L, M, F, W, V), neutral (G, H, P, S, T, Y), or

hydrophilic (R, N, D, Q, E, K). Based on their ‘polarity’, amino
acids were grouped as polar (R, N, D, Q, E, H, K, S, T, Y) or non-
polar (A, C, G, I, L, M, F, P, W, V). Based on their ‘volume’,
amino acids were grouped as very small (A, G, S), small (N, D, C,
P, T), medium (Q, E, H, V), large (R, I, L, K, M), or very large
(F, W, Y). According to the chemical characteristics of the side
chains, amino acids were grouped as aliphatic (A, G, I, L, P, V),
aromatic (F, W, Y), sulfur (C, M), hydroxyl (S, T), basic (R, H, K),
acidic (D, E), or amide (N, Q). Finally, based on the hydrogen
donor/acceptor availability of atoms, the amino acids were
grouped as donor (R, K, W), acceptor (D, E), donor and acceptor
(N, Q, H, S, T, Y), or neither (A, C, G, I, L, M, F, P, V).

Firstly, the unique missense mutations that overlap the
experimentally validated SLiMs were found for each missense
mutation dataset (OMIM, COSMIC, and 1000GP datasets). Then,
for each mutation, the physicochemical properties of the wild type
and the mutant residues were determined. Based on the transi-
tions between the amino acids and their properties from the wild
type to the mutant, a (N by N) matrix of transition frequencies was
calculated for each class of amino acid properties (charge, hydro-
pathy, polarity, volume, chemical characteristics, and hydrogen
donor/acceptor availability), where N is the number of sub-classes
of the corresponding property. From these matrices, the frequen-
cies of transitions were compared between the disease-related
missense mutation datasets (OMIM and COSMIC) and the neutral
mutation dataset (1000GP).

The percentage of mutations that cause a ‘change’ in a
physicochemical property is calculated by the sum of the values
outside of the main diagonal in the given matrix (where the row
and the column are not defined by the same sub-class of the
property) divided by the total sum of all the values in the
matrix. Thus, for the comparison between the disease-related
mutation dataset and the neutral mutation dataset, a 2 � 2
contingency table is created, where the rows are denoted by the
compared mutation datasets and the columns are denoted by
the frequency of SLiM mutations that change or do not change
the corresponding physicochemical property. A Fisher’s exact
test is applied to find out if the disease-related mutation
dataset has significantly more mutations that cause a change
in the physicochemical properties of SLiM residues.

In order to find out if there are specifically unfavourable
transitions between the sub-classes of physicochemical proper-
ties (for example, hydrophobic to hydrophilic transition causing
a change in hydropathy), the calculated transition matrices
were used again. This time, a Fisher’s exact test was applied
for each transition between every pair of sub-classes of each
class of physicochemical properties. Let P denote an amino-
acid property (e.g. hydropathy) and S1, S2,. . .,Sn denote ‘n’
different sub-classes of a physicochemical property (e.g. S1 =
hydrophobic, S2 = hydrophilic, S3 = neutral). For each transi-
tion from Si to Sj (where 1 ( i,j ( n), a p-value was calculated
to find out if the transition frequency from sub-class Si to sub-
class Sj is significantly different between different mutation
datasets. For this, a 2 � 2 contingency table was created where
the rows are the compared datasets and the columns denote (1)
the number of mutations that cause transitions from Si to Sj
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and (2) the total number of mutations that cause transitions
from Si to every other sub-class except Sj. A Fisher’s exact test
was applied on this contingency table to find out if there was a
significant difference between mutation datasets for this type
of transition of physicochemical properties in SLiM residues.

Analysis of mutations in the SLiM-mediated interactome.
For proteins that contain a predicted SLiM instance, a SLiM-
mediated interaction network was constructed as described in
‘SLiM-mediated interactome construction’. Based on this inter-
actome, for each mutated site in disordered regions of the
human proteome, the number of protein–protein interactions
mediated by SLiMs that overlap the mutated site was counted.
In order to account for the size differences between the muta-
tion datasets, the number of mutated sites (per number of
interactions) was divided by the dataset size (total number of
mutated sites in the disordered regions) and multiplied by
10 000. A pairwise comparison of disease-related missense
mutation datasets with the neutral missense mutation dataset
(COSMIC vs. 1000GP, OMIM vs. 1000GP) was carried out.
A Wilcoxon rank-sum test was used to find out if there is any
significant difference in the number of SLiM-mediated inter-
actions that are disrupted by disease-related mutations com-
pared to neutral mutations.

Pathway enrichment analysis. SLiMs were predicted as
described in ‘Motif prediction’. COSMIC mutations were mapped
onto the SLiMs and mutations were classified as ‘motif-breaking’
or ‘motif-conserving’ mutations. Those proteins that contain a
SLiM prediction with at least one motif-breaking mutation were
further filtered for SLiM classes that have a motif occurrence
probability below 0.01. UniProt accession numbers of proteins
that contained predicted SLiM instances with a motif-breaking
mutation were uploaded to the DAVID bioinformatics tools113

to retrieve the KEGG pathways53 that are most enriched for the
uploaded proteins.
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