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Experimental design, validation and computational
modeling uncover DNA damage sensing by
DNA-PK and ATM†

R. J. Flassig,‡*a G. Maubach,‡b C. Täger,b K. Sundmacherac and M. Naumannb

Reliable and efficient detection of DNA damage constitutes a vital capability of human cells to maintain

genome stability. Following DNA damage, the histone variant H2AX becomes rapidly phosphorylated by

the DNA damage response kinases DNA-PKcs and ATM. H2AX phosphorylation plays a central role in

signal amplification leading to chromatin remodeling and DNA repair initiation. The contribution of

DNA-PKcs and ATM to H2AX phosphorylation is however puzzling. Although ATM is required, DNA-PKcs

can substitute for it. Here we analyze the interplay between DNA-PKcs and ATM with a computational

model derived by an iterative workflow: switching between experimental design, experiment and model

analysis, we generated an extensive set of time-resolved data and identified a conclusive dynamic

signaling model out of several alternatives. Our work shows that DNA-PKcs and ATM enforce a biphasic H2AX

phosphorylation. DNA-PKcs can be associated to the initial, and ATM to the succeeding phosphorylation

phase of H2AX resulting into a signal persistence detection function for reliable damage sensing. Further,

our model predictions emphasize that DNA-PKcs inhibition significantly delays H2AX phosphorylation and

associated DNA repair initiation.

1. Introduction

Cells are constantly affected by DNA damage, resulting from
ionizing g-irradiation (IR), genotoxic or replication stress and
reactive oxygen species. DNA damage, including single and
double strand breaks (DSB), base modification, deletions or point
mutations, seriously affects genome stability and cell integrity if
not properly detected and repaired by the DNA damage response
(DDR).1

Upon DNA damage detection, higher order chromatin has to
be made accessible by various modifications before DSB can
be repaired.2 Among several DNA-damage associated histone
modifications, phosphorylation of H2AX is widely accepted as
an indicator of DSB. H2AX becomes rapidly phosphorylated at

serine 139 (gH2AX) to generate foci at the DSB site.3 The
assembly of chromatin remodeling complexes at the DSB site
greatly depends on gH2AX and enables the accessibility of the
damaged DNA to repair proteins.4

Depending on the stimulus, gH2AX is induced by different
members of the phosphoinositide 3-kinase like kinase (PIKK)
family; ataxia telangiectasia mutated (ATM), ataxia telangiectasia
and Rad3-related (ATR) and DNA-dependent protein kinase
catalytic subunit (DNA-PKcs). ATR phosphorylates H2AX upon
replicative stress,5 whereas ATM and DNA-PKcs are responsible for
this phosphorylation upon DNA DSB, which are induced by IR.6

ATM and DNA-PKcs have been studied on a qualitative basis
focusing on their impact of repair pathway choice for rebuilding
damaged DNA either via rapid (classical) non-homologous end
joining cNHEJ and/or slow homologous recombination repair
(HR) pathway.7,8 As for the pathway choice, the interplay between
ATM and DNA-PKcs regarding IR-induced H2AX phosphorylation
remains puzzling. Because although ATM is required,9 DNA-PKcs

can substitute for it.10

In this work we follow a model-based approach to analyze the
contribution of DNA-PKcs and ATM to H2AX phosphorylation
during the initial DNA damage sensing stage. Cucinotta et al.11

have created a dynamic model solely focused on DNA-PKcs to
predict dose and dose-rate effects on gH2AX dynamics. Very
recently, a mechanistic model describing DNA damage com-
plexity dependent sub-pathway choice in cNHEJ repair has
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been presented.12 Although several other mechanistic models
of DNA-PKcs and cNHEJ repair exist,13–16 mechanistic modeling
of ATM dynamics in the context of DNA damage is rare.17

A computational model for ATM and DNA-PKcs interactions
with regard to gH2AX activation integrating biochemical time
course data is missing so far. We describe an iterative workflow
to identify a predictive dynamic model involving ATM/DNA-PKcs

mediated H2AX phosphorylation. Starting from several models,
optimal experimental design (OED) was applied to optimize
experiments for model identification. The identified model was

used to analyze the dynamic contribution of ATM and DNA-PKcs

to H2AX phosphorylation.

2. Results
2.1 Model identification

2.1.1 Defining network structures for cH2AX activation
upon IR. The network structures (Fig. 1A) have been constructed
based on meta-analysis7,17–20 focusing on the initial activation

Fig. 1 Network structure and initial data (OED 0). (A) The network structures of four different models based on meta-analysis is shown as an interaction
graph. Interactions are modeled via state transitions (arrows with squares), enzyme catalysis (lines with circles) and complex formation (joined lines).
Stimulus and inhibitors have round-edge boxes. Abbreviations: IR ionizing irradiation; DDNA1 initial, damaged DNA; RC11 Ku70/80 to DDNA1 association;
RC12 Ku70/80-DNA-PKcs complex; RDNA1/2 repaired DNA (cNHEJ/aNHEJ or HR); RC20 MRN complex to DDNA1 association; RC21|ATM MRN-ATM
complex at damage site; RC22 RAD52 mediated repair complex; DDNA2, unsuccessful cNHEJ repair moved to aNHEJ/HR. Four mechanisms have been
considered for branching (A1, A2, B1, B2). A and B refer to the location of the catalytic activity of ATM and indices 1 and 2 refer to the kinetic law used. For
model index 1 branching to DDNA2 is catalyzed by the total amount of damaged DNA. Index 2 does not use the total amount of damaged DNA. (B) MDCK
cells were irradiated with different doses and the insoluble nuclear extracts were analyzed by immunoblot. Lamin B2 or HDAC1 served as loading control.
(C) Model simulation and quantified experimental data for OED 0 using the estimated band intensities of gH2AX. Data represent mean � 2SD of
3–5 independent experiments.
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dynamic within the nucleus and the interplay between ATM
and DNA-PKcs. DDR initiates with recognition of damaged
DNA (DDNA1). Ku70/80 as a sensor for cNHEJ associates
to the damage site (RC11) forming the DNA-PK complex
(RC12).21 Then, the catalytic subunit of DNA-PK is either phos-
phorylated by active ATM or/and autophosphorylated at the
T2609 cluster to initiate cNHEJ.8 The MRN complex (Mre11-
Rad50-Nbs1), a sensor for the HR pathway, can also co-localize
to the damage site to promote ATM autophosphorylation at
Ser1981.

Failure of DNA repair via cNHEJ potentially allows HR
proteins to access the damage site. This is modeled by splitting
the initial DSB pool (DDNA) into DDNA1 and DDNA2, whereby
DDNA2 is associated to HR and/or alternative non-homologous
end joining (aNHEJ).22 Phosphorylation of H2AX can be
achieved by active DNA-PKcs or active ATM. We generated four
alternative models describing various interplays between ATM,
DNA-PKcs and gH2AX (Fig. 1A).

2.1.2 Experimental design for model calibration and
identification. For model calibration purpose, an initial time
course of H2AX phosphorylation in response to IR was studied
in MDCK cells in a dose-dependent manner using 0.5, 1, 2, 5,
40 Gy. gH2AX levels increased with IR dose, while concurrently
signal attenuation was delayed (Fig. 1B). These results agree
with data from Burma et al.9 From the competing network
structures, we derived ordinary differential equation models
and calibrated them (see Materials and methods). Simulations
of the initial data set for all models are shown in Fig. 1C. Based
on w2 statistics, none of the models could be rejected at a
significance level of a0.05 = 0.05 (Table 1, OED 0). p-Values of
Anderson–Darling (AD) residual statistics also indicated that all
models seemed adequate for the initial data.

To discriminate between models, we subsequently designed
(i) an IR double-pulse (Fig. 2A–D) and (ii) an IR double-pulse in
combination with kinase inhibitors (Fig. 3). The IR double-
pulse was parameterized with 2 design variables, namely inter-
pulse time D1 and second pulse dose D2, whereas the first pulse
was fixed at 1 Gy. The objective was to maximize O = [TredhV ihSi]T.
Herein Tred is the reduced, modified T criterion to measure

discriminative power,23 whereas hV i, hSi represent mean model
prediction variance and variance-entropy. The latter two criteria
measure parameter information and distribution within the
gH2AX signal (see Materials and methods).

For OED I, the optimal design DI* was chosen by trading off
Tred, hV i and hSi (Fig. 2B). Recalibration of all models to data
from OED 0 and I, and additional inclusion of p53-P data
(Fig. 2E) from titration experiments did not allow for model
discrimination (all p-values 4 a0.05 for both fit statistics;
Table 1), but reduced prediction variances (Table 2).

Kinase inhibitors were employed for OED II to better dissect
DNA-PKcs and ATM contributions. Titration of two highly
specific inhibitors, namely Nu7441 and Ku55933 for DNA-PKcs

and ATM, respectively, identified the optimal concentration for
each. Further, we used the phosphorylation of p53 at S15 as a
read-out to show the specificity of the inhibitors. Two succes-
sive pulses with different intensities (1 and 20 Gy) show in the
immunoblot that the contribution of DNA-PKcs to this parti-
cular phosphorylation of p53 is marginal (Fig. 2E). This con-
firms earlier data.24,25

OED II was designed for three different inhibitor settings,
namely Nu7441 and/or Ku55933. The estimated optimal design
DII* potentially allowed for discrimination (Table 2, Tred* c 1,
Fig. 3A). The initial gH2AX peak showed a comparable reduction
for both inhibitors. Phosphorylation of H2AX after the second
pulse seemed to decay more rapidly for inhibited ATM compared
to inhibited DNA-PKcs. Both inhibitors together showed synergistic
effects on gH2AX (Fig. 3B).

According to the fit statistics of OED II (Table 1) only model
A2 cannot be rejected in terms of w2. However, we find signi-
ficant AD p-values for all four models, whereas models A2 and
B2 have non-significant AD3s p-values, which account only for
residuals smaller than 3s. This behavior may be attributed to
outliers in one of the experimental conditions (Fig. 1C and 3C)
owing to experimental variations or deficits of the models in
describing experimental conditions of OED 0, I, II. We selected
model A2 as the final model for further analysis, since it was
the only model with p-values of w2 and AD3s statistics exceeding
a0.05 for all 3 experimental runs.

Table 1 Fit statistics for initial (OED 0) and optimized experiments (OED I and II) Anderson–Darling p-values are indicated as AD. AD3s indicates p-values
of AD statistics where residuals larger than 3s have been excluded. The number of data points Ndata do not include the time point t = 0 [min]. Ny and NS

indicate the number of estimated kinetic and scaling parameters

OED Ndata Ny NS Fit statistics Model A1 Model A2 Model B1 Model B2

0 114 19 2 w2 93.45 91.74 92.79 91.69
p-Value w2 4.09 � 10�01 4.59 � 10�01 4.28 � 10�01 4.60 � 10�01

p-Value AD3s 3.44 � 10�02 1.21 � 10�02 3.04 � 10�02 2.32 � 10�02

p-Value AD 3.44 � 10�02 1.21 � 10�02 3.04 � 10�02 2.32 � 10�02

I 147 19 7 w2 135.98 131.53 125.84 125.64
p-Value w2 1.37 � 10�01 2.04 � 10�01 3.16 � 10�01 3.21 � 10�01

p-Value AD3s 1.38 � 10�01 1.84 � 10�01 9.22 � 10�02 5.64 � 10�02

p-Value AD 2.12 � 10�01 1.84 � 10�01 9.22 � 10�02 5.64 � 10�02

II 237 19 8 w2 290.60 208.2 286.22 479.10
p-Value w2 1.35 � 10�04 4.83 � 10�01 2.60 � 10�04 0.00
p-Value AD3s 1.97 � 10�05 6.52 � 10�02 3.11 � 10�02 1.12 � 10�01

p-Value AD 3.86 � 10�08 5.22 � 10�29 3.21 � 10�32 5.46 � 10�14
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2.2 Model predictions

2.2.1 Biphasic control of H2AX phosphorylation by DNA-
PKcs and ATM. To investigate the contribution of DNA-PKcs and
ATM to H2AX phosphorylation, we analyze their times of
maximal peak activity post irradiation. We simulated a single
IR pulse from 1 mGy to 100 Gy (Fig. 4A–C). Active DNA-PKcs

(DNA-PKcs-P) responds directly after irradiation within 2–10 minutes
and shows fast signal attenuation. Response time of active ATM
(ATM-P) in terms of maximal activity is delayed with respect
to gH2AX and much more dose-dependent ranging from 10 to
56 minutes. These model predictions are in line with the litera-
ture: DNA-PKcs activation peaks at 10 minutes after IR treatment,
whereas ATM has its peak activity at around 20 minutes.26

According to the model predictions, phosphorylation of
H2AX is biphasic, following a dose-independent temporal
activation order: the first activation phase of gH2AX right after
stimulation is associated to DNA-PKcs, whereat the second
phase is linked to ATM-P (Fig. 4A). The gH2AX signal decays
on the scale of hours and correlates with ATM-P. This dynamics

of fast initial and prolonged response is known from coherent feed
forward loops, which serve as a signal persistence detector.27 At
doses below 1 dGy peak level of gH2AX is dominated by DNA-PKcs,
whereas ATM dominates above 1 dGy (Fig. 4B and C). For larger
dose levels, ATM auto-phosphorylation results into a prolonged
activation phase, with gH2AX peak activity shifted from 10 minutes
at 10 Gy to 40 minutes at 100 Gy.

2.2.2 DNA-PKcs compensates inhibited ATM. Simulations
of gH2AX dynamics with inhibited DNA-PKcs or/and ATM show
that exclusive inhibition of ATM is nearly compensated by DNA-
PKcs replacing the ATM associated activation phase of gH2AX
by a prolonged DNA-PKcs associated phase (Fig. 5A left and B
black vs. magenta). In contrast, DNA-PKcs inhibition results
into loss of the DNA-PKcs associated activation phase. Owing to
slower activation kinetics, ATM cannot compensate this delay
(Fig. 5A left and B black vs. red). At doses where DNA-Pkcs dominates,
gH2AX peak activity is delayed by roughly 45 minutes. Simulations of
simultaneous inhibition of DNA-PKcs and ATM show a 3- to 10-fold
reduction in gH2AX peak level, depending on IR dosage, whereas
exclusive inhibition of either DNA-PKcs or ATM is not as much

Fig. 2 Parameterization of the stimulus design, design criteria and respective immunoblots. (A) Parameterization of the stimulus design for OED I/II.
(B) Design criteria predicted from the model simulations are plotted over the feasible design space. The optimal design point for OED I DI* and
corresponding criteria OI* = [TredhV ihSi]T are indicated. (C) A representative immunoblot from an experiment based on DI* is shown. MDCK cells were
irradiated as indicated and the insoluble nuclear extracts were analyzed by immunoblot. Lamin B2 served as loading control. (D) Corresponding model
simulation describe the acquired data for gH2AX (model colors as in Fig. 1). Data represent mean � 2SD of 3 independent experiments. (E) MDCK cells
were irradiated as indicated. Inhibitors Ku55933 and Nu7441 were used at different concentrations and whole cell lysates were analyzed for p53-P and
gH2AX. GAPDH served as loading control. Model simulation and quantified experimental data for p53-P are shown. Data of a single experiment.
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affecting peak activity of gH2AX (Fig. 5A right). For all inhibi-
tion scenarios, the biphasic phosphorylation kinetics of H2AX
is lost.

3. Materials and methods
3.1 Cell culture and treatment with c-irradiation

MDCK cells (ATCC CCL-34) were routinely cultured in RPMI-
1640 supplemented with 10% fetal calf serum, glutamine and
100 U mL�1 penicillin and 100 mg mL�1 streptomycin, and
incubated at 37 1C in a 5% CO2 humidified incubator. The
MDCK cells were seeded at a density of 2 � 106 per 10 cm

culture dish and cultured for 24 hours. The cells were irradiated
with the Biobeam GM 2000 (Gamma-Service Medical GmbH,
Germany) at a dose rate of 3.332 Gy min�1 using either single or
double-pulse conditions. After a single pulse of 40, 5, 2, 1 or 0.5 Gy,
the cells were harvested at 30, 90, 180, 300 and 720 minutes.
The double-pulse consists of a single pulse of 1 Gy, followed
6 hours later by a second pulse of 20 Gy. The cells were
harvested at 15, 35, 60, 160, 240, 370, 420 and 450 minutes.
The inhibitors, Ku55933 (ATM, Tocris Bioscience, Germany)
and Nu7441 (DNA-PKcs, Tocris Bioscience, Germany), used in
the double-pulse setting, were added 30 minutes before first
irradiation at a final concentration of 1 mM, either alone or
together. The titration of the inhibitors were performed at 0,

Fig. 3 (A) DII* is obtained as in Fig. 2(B). (B) MDCK were incubated with 1 mM of the indicated inhibitor and irradiated as indicated. The insoluble nuclear
extracts were analyzed by immunoblot. HDAC1 served as loading control. (C) The corresponding model simulations compare the acquired data for
gH2AX before and after OED II (mean � 2SD of 2–4 independent experiments, model colors as in Fig. 1).

Table 2 Design criteria for OED hVi and hSi represent mean variance and variance-entropy over all models, time points and specific experimental
conditions (initial = subscript 0, OED I, II)

Criterion

OED I OED II

Prediction Final Prediction Final

T*|T0* 107.13|6.5 45.1|0.3 4.6 � 10�03|44.7 1.5 � 10�03|51.5
Tred*|Tred,0* 0.05|3 � 10�3 0.02|1 � 10�04 28.2|0.3 9.3|0.3
hVi|hVi0 1.53|4 � 10�08 0.52|2 � 10�07 2.2|6 � 10�08 0.6|1 � 10�05

hSi|hSi0 7.05|2.26 7|2.29 20.1|7.5 5.1|3.1

Molecular BioSystems Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
M

ay
 2

01
4.

 D
ow

nl
oa

de
d 

on
 7

/2
3/

20
25

 1
2:

52
:1

9 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4mb00093e


This journal is©The Royal Society of Chemistry 2014 Mol. BioSyst., 2014, 10, 1978--1986 | 1983

0.1, 1, 10 and 0, 0.01, 0.1, 1 mM for Ku55933 and Nu7441,
respectively. Both inhibitors belong to the class of ATP compe-
titive inhibitors.10,28

3.2 Nuclear extraction, SDS-PAGE and Immunoblot

Cells were lysed in hypotonic cell lysis buffer (20 mM Tris/HCl
pH 7.9, 10 mM KCl, 1.5 mM MgCl2, 10 mM K2HPO4, 10% glycerol,
0.5 mM DTT) supplemented with 0.5 mM AEBSF, 1 mM sodium
vanadate, 1 mM sodium molybdate, 10 mM sodium fluoride,
20 mM 2-phosphoglycerate and protease inhibitor mix (complete,
Roche Germany). After addition of 1.25% NP-40, the cytosolic
fraction was obtained by centrifugation at 13 000 � g for
10 minutes. The nuclear pellet was resolved in 20 mM Tris/HCl
pH 7.9, 420 mM KCl, 1.5 mM MgCl2, 10 mM K2HPO4, 10%
glycerol, 0.2 mM EDTA, 0.5 mM DTT supplemented with the
same inhibitors as before. The sample was incubated for
40 minutes on ice and centrifuged for 10 minutes at 13 000 � g.
The insoluble nuclear fraction was achieved by digesting the
resulting pellet with nuclease (Calbiochem, Germany) at 37 1C for
30 minutes. The protein concentration was estimated using the
BCA protein assay kit (Perbio Science, Germany). The samples were
separated in Tris-Glycine gels (15%), transferred onto PVDF
membranes (Millipore, Germany) and blocked for 1 h at room
temperature with 5% skim milk in TBS-Tween (TBS-T).

The primary antibodies were incubated overnight in 5% skim
milk in TBS-T at 4 1C. The membranes were washed thrice in
TBS-T. The appropriate HRP-conjugated secondary antibody
was added at a dilution of 1 : 5000 in 5% skim milk in TBS-T for
1 hour at room temperature, followed by three washes in TBS-T.
The membranes were developed using a chemiluminescence
substrate (Millipore, Germany). The respective bands were visua-
lized using the ChemoCam Imager (Intas, Germany), followed by
the estimation of the band intensities using ImageJ.29

Antibodies used in this work were as follows: LaminB2
(sc-133722) and HDAC1 (sc-7872) were obtained from Santa
Cruz (USA, CA). gH2AX (ab26350) was from Abcam (UK). The
secondary anti-rabbit-HRP or anti-mouse-HRP antibodies were
from Jackson ImmunoResearch Laboratories Inc. (USA, PA).

3.3 Building of a dynamic signaling model network of cH2AX
activation

Initially, 4 dynamic models in the form of ordinary differential
equation systems were derived from the network structures in
Fig. 1A and implemented in MATLAB using the solver CVODES.30

Details on the choice of kinetic rate laws are given in the ESI†
Section S2. After the poor discrimination performance of OED I, we
extended the models to contain also p53. The tumor suppressor p53
is an important effector protein during DDR. Phosphorylation of p53

Fig. 4 Model predictions for the dynamic contribution of DNA-PKcs and ATM to gH2AX. (A) Simulated time courses of active DNA-PKcs and ATM and
resulting biphasic gH2AX activity for IR pulses of different dose levels (1 mGy to 100 Gy). At larger dose, ATM shows a damped oscillation as a result of a
positive feedback (autophosphorylation), which contributes to peak level of gH2AX at doses above 10 Gy. (B) Model prediction of the corresponding dose
response in terms of time points at maximal activity of gH2AX, DNA-PKcs and ATM. Thin lines indicate 95% confidence regions of the model predictions,
estimated from simulations along the profile likelihood. (C) Ratio of maximal DNA-PKcs-P to ATM-P. Thin lines indicate 95% confidence region of the
model predictions, estimated as in (B).
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at Ser15 by ATM promotes its release from MDM2 and results
in p53 activation.24,31 Activation of p53 by DNA-PKcs has also
been described.32 However, DNA-PK�/� MEFs show normal p53
activation.25 We did not find evidence for a DNA-PKcs contribu-
tion to the p53 phosphorylation (Fig. 2E), which agrees with
earlier data.33 Therefore, we implemented the p53 activation as
an ATM-dependent process only. As described in detail in the
ESI,† 19 kinetic and 8 scaling parameters were estimated by
maximizing the likelihood function, whereas the variance has
been estimated from data replicates. Parameter estimation was
performed for each model in an iterative manner, according
to the 3 datasets, OED 0/I/II. Optimization of the likelihood
function was performed iteratively, using a hybrid strategy. We
combined a genetic algorithm (‘ga’ function from the global
optimization toolbox of MATLAB), which was used to obtain a
population of suitable starting solutions for a local, gradient-
based optimization. Here we used an interior-point algorithm
(‘fmincon’ function from the optimization toolbox of MATLAB).

Before analyzing DNA-PKcs, ATM and gH2AX dynamics with
model A2, we performed an identifiability analysis based on the
profile likelihood to assess the uniqueness of the model pre-
diction and to also derive prediction uncertainty bands (see
Fig. 4B and C). This analysis revealed that 8 kinetic parameters
were not fully identifiable for the given optimization con-
straints, i.e. upper and lower bounds restricting the parameters
to fall within 4 orders of magnitude. Six of these parameters

were non-significant at the upper bound, whereas the other two
were non-significant at the lower bound. One parameter was
structurally non-identifiable. The non-identifiable parameters
were not decisive for the question of kinase contribution to
H2AX phosphorylation. More details on the identifiability
analysis, parameter dependencies and impact on the prediction
power are given in the ESI† in Section 2.

3.4 Experimental design criteria for model identification

Model identification is the process of comparing plausibility
amongst models from a pool of competing computational
models in the light of given experimental data. Plausibility is
typically derived from some kind of lack-of-fit measure, for
instance w2 statistics. Experimental design for model identifi-
cation aims at generating new experimental conditions and
therefore data, to support this identification process in an
optimal way using the models at hand. In the early phase of
modeling a biochemical system with ODEs, parameters are
typically very uncertain. Consequently, model predictions
including design criteria are uncertain as well. Accounting for
these uncertainties during design robustifies the optimal
experiment against these uncertainties. In this work we use a
multi criterion approach to identify optimal stimulus designs
for model identification. We use three criteria that measure
discriminative power, parameter information and its distribu-
tion along the time points of the model predictions for gH2AX.

Fig. 5 Model predictions for the dynamic contribution of DNA-PKcs and ATM to gH2AX at inhibition for different dose levels (1 mGy to 100 Gy). (A) Peak
time and peak level of gH2AX for indicated inhibitors (color code), (B) corresponding time courses.
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The discriminative power is measured with the reduced, modi-

fied T criterion,23 Tred ¼
1

NMNt

PNM�1

i¼1

PNM

j¼iþ1
TijðDÞ, with TijðDÞ ¼

PNt

l¼1

ysim;i tl ;Dð Þ
� �

� ysim; j tl ;Dð Þ
� �� �2

2sexp2 tlð Þ þ ssim;i2 tl ;Dð Þ þ ssim; j2 tl ;Dð Þ, where h ysim,i(tl, D)i

represents the expected prediction of gH2AX of model i (total
number NM) at time point tl (total number Nt). Measurement
variances sexp

2(tl) are interpolated sample variances averaged
over all available experimental conditions. Expected model
predictions and their variances ssim,i

2(tl, D) have been derived with
the sigma point method as shown in Flassig and Sundmacher.34

Expectation is taken with respect to the parameters, whereas
parameter variance–covariances were derived from the w2

Hessian. Parameter information was measured by the mean
variance over time points of model predictions according to

hVi ¼ 1

NtNM

PNt

i¼1

PNM

j¼1
ssim; j2 ti;Dð Þ. Shannon’s entropy is used to mea-

sure the variance distribution over time points and model predic-

tions according to hSi ¼
PNM

j¼1

PNt

i¼1
�~ssim; j2 ti;Dð Þ log ~ssim; j2 ti;Dð Þ with

normalized variances according to
PNM

j¼1

PNt

i¼1
~ssim; j2 ti;Dð Þ ¼ 1. In each

experimental design, we chose the best design point as the trade-off
between maximal Tred, hV i and hSi. Maximal Tred yields best
discrimination, maximal hV i ensures large sensitivity of the para-
meters and maximal hSi represents maximal homogenous variance
distribution along time points and model predictions.

The evaluation of the objective in OED I was based on time
points t = [0 15 35 60 160 240 370 420 450]T minutes. The first 6
time points were chosen from simulating OED 0 conditions to
fully capture rising and falling flanks of the initial gH2AX peak,
whereas the remaining time points were placed based on the
estimated second signal peak. For OED II design criteria were
evaluated at the time points used in OED I.

4. Conclusions

Here we report an iterative workflow combining experimental work,
computational modeling and experimental design methodologies
to shed light on the interplay of two PIKK family members (DNA-
PKcs and ATM) to the rapid histone H2AX phosphorylation in the
context of DNA damage sensing upon g-irradiation. By performing
optimized dynamic stimulation experiments, we generated an
extensive set of time-resolved data to identify a computational
model for analyzing DNA-PKcs-P, ATM-P and gH2AX dynamics. A
parameter identifiability analysis revealed that the computational
model can be used to predict internal state dynamics, e.g. phos-
phorylation of DNA-PKcs and ATM. With a predictive model at
hand, we could then investigate the fast phosphorylation kinetics of
DNA-PKcs, ATM and H2AX post irradiation without the need of
direct kinase activity measurements, thus reducing confounding
effects from experimental manipulations.

Our model simulations show that H2AX phosphorylation
is biphasic, with initial and succeeding phases associated to

DNA-PKcs and ATM, respectively, in which the individual contribu-
tions to peak level of gH2AX are dose-dependent. It is tempting to
link the dose-dependent biphasic response of gH2AX observed
in silico to the known biphasic signaling responses of cNHEJ and
HR, that is fast DNA-PKcs and slower ATM-related repair activity.22

In fact, following DNA-PKcs inhibition Davidson et al.35 have
shown that HR activity is increased. Further, Neal et al.8 showed
that DNA-PKcs enzymatic activity inhibits HR in a titratable fash-
ion. From simulating DNA-PKcs inhibition we hypothesize that this
is a consequence of delayed gH2AX activation, associated chroma-
tin remodeling and DNA repair initiation of cNHEJ. We further
conclude that DNA-PKcs and ATM have distinct roles in H2AX
phosphorylation equipping cells with a signal persistence
detection function, i.e. fast initial response (DNA-PKcs) and
delayed signal attenuation (ATM). This ensures reliable damage
detection and repair signaling.
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