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Inferring cellular regulatory networks with Bayesian
model averaging for linear regression (BMALR)†

Xun Huang and Zhike Zi*‡

Bayesian network and linear regression methods have been widely applied to reconstruct cellular regulatory

networks. In this work, we propose a Bayesian model averaging for linear regression (BMALR) method to

infer molecular interactions in biological systems. This method uses a new closed form solution to compute

the posterior probabilities of the edges from regulators to the target gene within a hybrid framework of

Bayesian model averaging and linear regression methods. We have assessed the performance of BMALR by

benchmarking on both in silico DREAM datasets and real experimental datasets. The results show that

BMALR achieves both high prediction accuracy and high computational efficiency across different

benchmarks. A pre-processing of the datasets with the log transformation can further improve the

performance of BMALR, leading to a new top overall performance. In addition, BMALR can achieve robust

high performance in community predictions when it is combined with other competing methods. The

proposed method BMALR is competitive compared to the existing network inference methods. Therefore,

BMALR will be useful to infer regulatory interactions in biological networks. A free open source software tool

for the BMALR algorithm is available at https://sites.google.com/site/bmalr4netinfer/.

Introduction

With advances of high-throughput experimental technologies,
plenty of network inference methods have been developed
to identify regulatory interactions in cellular networks from
quantitative experimental data. These network inference methods
are becoming increasingly important in the field of systems
biology to address many biological problems. Examples of network
inference approaches include Bayesian networks,1–5 mutual
information,6–8 linear regression,9–11 ordinary differential
equations12,13 and the statistical test.14,15 Among these
approaches, Bayesian networks have become popular due to
the following reasons: (1) Bayesian networks use the probability
theory, which is suitable for dealing with noise in biological
data. (2) The prior knowledge of molecular interactions from the
literature or curated databases can be well encoded in the prior
distribution structure of Bayesian networks. In addition, linear
regression based methods are also widely used in biological
network inference due to their high computational efficiency.

A Bayesian network is a graphical model that describes
probabilistic relationships between network variables. Such
relationships are encoded within the structure of a directed

acyclic graph. To infer the interactions of network variables,
one strategy is to find a directed acyclic graph that most likely
generates observed experimental data, which are assumed to be
a steady data set for static Bayesian networks. This is performed
by evaluating each possible graph with a score-based approach
in the Bayesian context and subsequently search for the graph
that maximizes the score.16 The score function is defined with
two common probabilistic models: linear Gaussian models and
multinomial models.3 However, it is a computationally laborious
problem to evaluate all possible graphs that correspond to all
possible interactions and choose the best scoring graph.17,18 To
address this problem, heuristic search methods (e.g.: the greedy-
hill climbing approach) were proposed.5 On the other hand, given
limited amounts of data, a variety of graph structures may
describe the data similarly well. Therefore, a network-averaging
strategy was proposed to find the consensus interactions present
in most of the high-scoring graphs.5,19

To improve the computational efficiency of network recon-
struction, a decomposition technique is applied in regression-
based methods. The inference of regulatory interactions targeting
all N genes is decomposed into N independent sub-problems by
inferring the interactions from regulators to a single target gene.
Linear regression models have been proposed to solve these
sub-problems. One popular method uses singular value decom-
position to construct a set of candidate networks that match the
observed data sets and regression approaches are employed
afterwards to choose the most likely solution.20–22 Another
widely-used linear regression algorithm is Lasso (Least Absolute
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Shrinkage and Selection Operator),23 which uses L1-norm regular-
ization to efficiently select a parsimonious set of regulators for each
target gene. Different Lasso derived methods have been developed,
which include LARS,24 GLASSO10 and Inferelator.25,26

The combination of a Bayesian network and linear regression
could be a good strategy for the inference of cellular networks as
it can take advantage of the strengths from both methods. For
example, Rogers et al.27 proposed a Bayesian regression method
to reconstruct regulatory networks from gene expression data
with a fast sparse Bayesian regression algorithm of Tipping and
Faul.49 This method does not require the discretization of data
and requires no setting of the heuristic threshold for the
predicted interactions. Moreover, a Bayesian model averaging
method integrated in a regression context has been applied to
inferring regulatory networks from time series data.28–30 These
studies have shown the advantages of Bayesian network methods
in incorporating prior knowledge and the computational efficiency
of regression approaches.

In this work, we developed a new method that uses Bayesian
model averaging for linear regression (BMALR) to infer cellular
regulatory networks. In this method, we applied a new closed
form solution to calculate the posterior probabilities of the
edges from putative regulators to the target gene, which leads
to high computational efficiency and high prediction accuracy.
We assessed this new method by benchmarking with in silico
datasets from the DREAM (Dialogue on Reverse Engineering
Assessment and Methods) project31–34 and the datasets of real
experiments. The results indicate that our method BMALR is
competitive in terms of prediction accuracy and computational
efficiency when it is compared to the best existing methods.
The log transformation of datasets can further improve the
performance of BMALR. In addition, we evaluated the performance
of community predictions34 with and without BMALR on DREAM
benchmarks. The community prediction methods with BMALR can
achieve robust high performance, which suggests that BMALR has
a complementary advantage in community predictions.

Methods

The proposed method BMALR integrates a Bayesian model
averaging method with a linear regression approach. In general,
BMALR implements linear regression of the data of the target
node on all combinations of other nodes. The final score of the
edge from a parent node to the target node is the sum of the
posterior probability of the linear regression models that contain
this edge.

In the following sections, we introduce more technical details
about Bayesian model averaging and a new close form solution for
calculating the likelihood of each local structure in a Gaussian
Bayesian network. At the end, the datasets, performance metrics
and network inference methods used for comparison are described.

Bayesian model averaging

To infer regulatory interactions in cellular networks, one way is
to find the Bayesian network structure G that best explains the

data. This is normally achieved by maximizing the likelihood of
the observed dataset generated from the network structure
G (maximum likelihood) or the posterior probability of the
structure G given the observed data (maximum a posteriori).
However, given a limited number of observed datasets, many
Bayesian network models may explain the data almost equally
well. It would be risky to make an inference on the interactions
of network variables depending on a single optimized Bayesian
network structure.5,19

Instead of searching for the best Bayesian network structure,
Bayesian model averaging was proposed to find the edge
features ( f ) that are present in most high-scoring Bayesian
network structures.5,19 An edge feature ( f ) is the edge relation
feature between network variables Xi and Xj in a Bayesian
network structure (G). Such a feature can be quantified with
the posterior probability of f:

Pð f jDÞ ¼
X
G

f ðGÞPðGjDÞ (1)

This probability shows our confidence in edge feature f given
the observed dataset (D). If the Bayesian network structure G
contains f, f (G) equals to 1, otherwise 0.

As the number of candidate network structures increases
exponentially with the number of node variables, it is not
feasible to exactly compute eqn (1) from all possible candidate
networks.

Local model averaging for linear regression

In order to have an efficient and accurate estimate for posterior
probability of the edge feature, the global network is decom-
posed into a set of local networks.27,28 Each local network is
composed of one target variable and its possible parents
(regulators). The local network can be reconstructed by model
averaging with the local structures composed of all the possible
parent sets of a target variable,19 which is similar to the local
learning approach based on the Markov blanket.35 Here we
model the local structures with a weighted linear combination
of the values of their parents:

Xi ¼
X
jai

wjiXj þ ei (2)

where Xi is the value of variable i. wji is a weight constant
representing the influence of variable j on variable i. If wji is
zero, there is no edge from j to i in the regulatory network. If wji

is non-zero, j is one of the i’s regulators (parents). ei denotes
the noise.

The posterior probability of each edge is the sum of posterior
probabilities of all the putative local structures containing the
edge. This leads to the following approximation (in comparison
with eqn (1)) for posterior probability of an edge feature f:

Pð f jDÞ �
X
Pa2Si

f GPað ÞP GPajDPa;Xi

� �
(3)

where the node Xi is the target of the edge feature f. Si is the set of
all possible parent sets of Xi. GPa is a local structure that is
composed of the edges from the nodes in Pa, a parent set of
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node Xi. DPa,Xi
denotes the data restricted to Xi and the node

variables in Pa. If the local structure GPa contains f, f (GPa) is
equal to 1, otherwise 0.

Based on the Bayes theorem, eqn (3) can be written as:

Pðf jDÞ �
X
Pa2Si

f GPað ÞP GPajDPa;Xi

� �

¼

P
Pa2Si

f GPað ÞP DPa;Xi jGPa

� �
P GPað Þ

P
Pa2Si

P DPa;Xi jGPa

� �
P GPað Þ

(4)

where P(GPa) is the prior probability of structure GPa. For
simplicity, we can assume that cardinalities of parent sets are
uniformly distributed, meaning P(GPa) � 1.19 Here, we set a
restriction on the maximum cardinalities of parent sets
(denoted as maxFanIn) in order to reduce the computation
cost. This strategy has been applied before in other Bayesian
learning approaches.3,36 In this paper, we set the default value
of maxFanIn as 2. It is worth noting that the inference results
are not sensitive to the value of maxFanIn,29 which is shown in
the Results and discussion section.

Probability in Gaussian Bayesian networks

To calculate P(DPa,Xi
|GPa), the likelihood that the local structure

GPa generates the data DPa,Xi
, we assume that the noise term in

the linear regression models (ei in eqn (2)) follows multivariate
normal distribution. As a result, variable i and its regulators Pa
will be in multivariate normal distribution, which corresponds
to a Gaussian Bayesian network.37,38 In Gaussian Bayesian
networks, we can compute the likelihood that the local structure
GPa generates the data DPa,Xi

as:37,38

P DPa;Xi
jGPa

� �
¼

r DPa;Xi

� �
r DPað Þ (5)

Assuming a normal-Wishart prior in the Gaussian Bayesian
network, the probability density of data, r(DPa,Xi

) and r(DPa)
can be approximated with the following formula.

r DWð Þ / EðWÞ þM � RðWÞ
�� ���lW�M2 (6)

where W is a set of variables (e.g.: for the calculation of r(DPa),
W = Pa). lW is cardinalities of W. E(W) is a lW-by-lW identity matrix.
R(W) is the lW-by-lW Pearson correlation matrix of DW. M is the
sample size.

The derivation of above equations and other technical
details for calculating probability density of data are provided
in the ESI† text.

Datasets

We evaluated the proposed method with a variety of datasets:
(1) the in silico benchmark data from DREAM4 ‘‘in silico net-
work challenge’’ and DREAM 5 ‘‘network inference challenge’’,
which are available at http://wiki.c2b2.columbia.edu/dream/
index.php/Challenges. (2) The real experimental data obtained
in single cell flow cytometry experiments,4 which measured the

expression level of 11 signaling molecules in the T-cell signaling
network upon various interventions.

Performance metrics

To assess the performance of BMALR and previous network
inference methods, we used a number of performance metrics,
which include the area under the precision–recall (AUPR) and
receiver operating characteristic (AUROC) curves, the F-score,39

empirical p-values of AUPR and AUROC for the DREAM project
benchmarks,34 as well as the p-value of the one-sided Fisher’s
exact test.40

To compute AUPR and AUROC metrics, we counted true
positive (TP), false positive (FP), true negative (TN), and false
negative (FN) by comparing the inferred network with gold
standard networks at a certain threshold setting. Accordingly,
true positive rate (TPR, or recall), positive predictive value (PPV,
or precision), false positive rate (FPR) are calculated. Then the
values of AUPR and AUROC were calculated by creating the
precision–recall curve (PR curve) and the receiver operating
characteristic curve (ROC curve) at various threshold settings.

The F-score is defined as:

F ¼ 2 � PPV � TPR
PPVþ TPR

(7)

The p-value of the one-sided Fisher’s exact test is defined as:

p ¼ 1�
XTP�1
i¼0

Np

i

� �
Nt �Np

NTP þNFP � i

� �

Nt

Np

� � (8)

where Np is the number of edges in the gold standard network.
Nt is the maximum number of possible edges in the network.
Nt = n(n� 1) for a directed network with n nodes (excluding self-
loop edges). NTP and NFP are the number of true positive and
false positive edges in the inferred network, respectively. This
p-value represents the probability to obtain no less than NTP

true positive edges by randomly selecting Np edges. The p-value
of the one-sided Fisher’s exact test is useful for the evaluation
of inference methods on small networks.

Log transformation of data

To test whether the preprocessing of datasets can improve the
performance of BMALR, we applied log transformation to
reduce the positive skew of the data so that the distributions
of transformed datasets are similar to normal distributions. We
first check the skewness of the variable X. If the distribution of
variable X is positively skewed, log transformation is applied as
the following:41 a constant C is added to X, then an optimiza-
tion procedure is applied to obtain an optimal C that makes the
nonparametric skew of log(X + C) as close to zero as possible.

Network inference methods used for comparison

We compared the proposed BMALR method with 5 popular
network inference methods: (1) GENIE342 based on feature
selection with decision tree. GENIE3 was the winner of both
DREAM4 and DREAM5 network inference challenges. (2) CLR7
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based on mutual information with background correction. (3)
ARACNE43,44 based on mutual information with data processing
inequality. (4) The PC-algorithm in the PCALG package. We
implemented pcSelect in the PCALG package,45,46 a simplified
PC-algorithm with variable selection. (5) The regression based
method, LARS (Least Angle Regression).24 (6) Bayesian model
averaging method using Markov Chain Monte Carlo sampling
(denoted as MCMC).19,47 We ran these tools with their default
settings.

Results and discussion
Performance on DREAM4 in silico size 100 multifactorial
sub-challenge

The aim of DREAM4 in silico size 100 multifactorial sub-challenge
is to infer the structures of five gold standard networks from given
in silico gene expression datasets that are simulated by 100 multi-
factorial perturbations of all the genes simultaneously.32,33 The five
gold standard networks have 100 components (genes) and they
have 176, 249, 195, 211 and 193 gold standard links, respectively.
The performance metrics of our method (BMALR) and other
applied inference methods for this sub-challenge is given in
Table 1. The results show that BMALR obtained the highest overall
score among all the applied network inference methods. More
specifically, BMALR achieved the highest AUPR and AUROC scores
in four networks and the second-highest scores in one network.
The individual PR and ROC curves of the inference methods on
each network are available in Fig. S1 and S2 (ESI†). The overall
performance of BMALR is slightly better than GENIE3, which was
the winner of this sub-challenge.

Gaussian Bayesian models assume that the datasets of
variables have normal distributions. However, if the datasets
of the variables have highly skewed distributions, the assumption
of normal distribution of the data would be invalid. To deal with
the skewed data, we applied the log transformation for the
datasets41 and tested whether such a strategy could improve the
performance of BMALR. As is shown in Table 1, a preprocessing
of the datasets with the log transformation improves the perfor-
mance of BMALR (16% increase of the overall score in this
benchmark).

Performance on DREAM5 network inference sub-challenge

To evaluate the performance of BMALR method on predicting
the interactions of large networks, we compared BMALR with

other methods by applying them to the DREAM5 network
inference sub-challenge with the dataset simulated from an
in silico network, which has 1643 genes, 195 transcription
factors (TFs) and 805 chips. The top 100 000 edge predictions
are used for the DREAM5 evaluation.34 The In silico DREAM5
network model assumes that the mRNAs are directly translated
into proteins without any further regulations. The simulated
data for TFs’ protein abundances are highly correlated with
corresponding mRNA abundance data. Therefore, we use TFs’
mRNA abundances as proxies for their protein abundances.

Table 2 shows the performance metrics of BMALR and
other inference methods on the DREAM5 network inference
sub-challenge. The results indicate that BMALR obtained the
best performance with the highest AUPR score and the second
highest AUROC score, as well as the best optimal F-score. The
log transformation of datasets can further increase the performance
of BMALR, leading to a best overall performance.

According to the individual PR and ROC curves of the
inference methods in this benchmark (Fig. 1), BMALR tends
to have higher precision than other methods at low recalls in
the PR curve, while the ROC curve profile of BMALR is almost
the same as GENIE3. In addition, it is worth noting that the
computational cost of BMALR in this sub-challenge is much
less than other competitive methods such as GENIE3, PCALG
and ARACNE (Table 2).

Performance on the benchmark of the T-cell signaling network
with real experimental data

In this section, we evaluated the performance of BMALR and
other methods on the benchmark of T-cell signaling network
with 11 components and 20 interactions. The experimental
data consist of 11 phosphorylated T-cell signaling molecules

Table 1 Performance metrics of inference methods on DREAM4 in silico size 100 multifactorial sub-challenge. The bold numbers indicate the best
value in each performance metric. BMALR* denotes the results of BMALR with the log transformation of the datasets

Method

NET1 NET2 NET3 NET4 NET5

Score Time (second)AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

BMALR 0.155 0.745 0.166 0.737 0.231 0.792 0.234 0.808 0.214 0.778 39.4 1.8 � 1000

GENIE3 0.154 0.745 0.155 0.733 0.231 0.775 0.208 0.791 0.197 0.798 37.4 3.5 � 1001

CLR 0.157 0.733 0.137 0.693 0.199 0.745 0.185 0.738 0.192 0.737 31.6 2.1 � 10�01

ARACNE 0.145 0.690 0.129 0.688 0.186 0.742 0.167 0.721 0.152 0.750 28.6 1.7 � 1000

PCALG 0.134 0.714 0.109 0.663 0.200 0.712 0.166 0.702 0.184 0.725 27.1 3.2 � 1000

LARS 0.136 0.619 0.123 0.619 0.205 0.673 0.206 0.656 0.209 0.644 25.7 2.0 � 1001

BMALR* 0.213 0.772 0.188 0.746 0.274 0.799 0.257 0.812 0.242 0.810 45.7 1.8 � 1000

Table 2 The performance metrics of inference methods on DREAM5
network inference sub-challenge with the in silico dataset. The bold
numbers indicate the best values among all methods. BMALR* denotes
the results of BMALR with the log transformation of the datasets

Method AUPR AUROC Optimal F-score Time (second)

BMALR 0.320 0.809 0.372 1.3 � 1002

GENIE3 0.291 0.815 0.346 1.2 � 1004

CLR 0.266 0.786 0.332 4.1 � 1002

ARACNE 0.192 0.771 0.280 2.5 � 1004

PCALG 0.265 0.714 0.340 7.0 � 1003

LARS 0.263 0.726 0.353 5.0 � 1002

BMALR* 0.362 0.815 0.403 1.3 � 1002
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under 9 perturbation conditions, which were simultaneously
measured with single cell flow cytometry.4 We first applied
z-score normalization for each dataset, so that all the proteins
have a mean of 0 and a standard deviation of 1.

The results shown in Table 3 suggest that BMALR is among
the top performing approaches, with the highest AUROC score.
The optimal F-score of BMLAR is the same as that obtained
with a Bayesian model averaging method using Markov Chain
Monte Carlo sampling (MCMC).19,47 The individual PR and
ROC curves of each network inference method on this benchmark
are shown in Fig. 2.

Fig. 3 shows the networks predicted by the top 2 performing
methods (BMALR and MCMC), which have the same number of
edges as the gold standard network derived by Sachs et al.4 The
two predicted networks are very similar. They have only 2
different edges: the MCMC predicted network has a false edge
pJNK - PKC that is not shown in the predicted network by
BMALR and a true positive edge MEK - ERK is missed in the
MCMC predicted network, while it is present in the predicted
network by BMALR. Interestingly, most of the false positive

Fig. 1 PR and ROC curves of different methods for DREAM5 in silico sub-challenge. BMALR* denotes the results of BMALR with the log transformation
of the datasets. (A) Precision–recall (PR) and (B) receiver operating characteristic (ROC) curves.

Table 3 The performance metrics of inference methods on the bench-
mark of the T-cell signaling network. The bold numbers indicate the best
values among all methods

Method AUPR AUROC
Optimal
F-score

p-Value of Fisher’s
exact test

Time
(second)

BMALR 0.343 0.720 0.500 2.70 � 10�04 1.3 � 10�01

GENIE3 0.304 0.607 0.462 1.14 � 10�03 3.7 � 1002

CLR 0.344 0.666 0.450 1.86 � 10�03 2.3 � 10�01

ARACNE 0.372 0.709 0.481 5.39 � 10�04 2.7 � 1002

PCALG 0.300 0.558 0.450 1.86 � 10�03 1.9 � 1000

LARS 0.275 0.585 0.313 4.09 � 10�02 8.6 � 10�01

MCMC 0.391 0.632 0.500 1.97 � 10�04 3.8 � 1002

Fig. 2 PR curve and ROC curve of the T-cell signaling network. (A) PR curves (B) ROC curves.
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edges in the two predicted networks have correct pairs of
molecular interactions, but the directions of these false positive
edges are wrong, which indicates that both BMALR and MCMC
methods are difficult to determine the directions of molecule
interactions in this benchmark.

Similarity of predictions from different inference methods

Recent work has shown that different network inference methods
provide different predicted interactions on the same regulatory
system. To address this problem, it was proposed to make
community predictions by integrating the results from multiple
inference methods because limitations of different methods
tend to be cancelled out.33,34 Therefore, it is important to
investigate the similarity and difference of the predictions from
different network inference methods.15,34

In order to compare the overlap and the difference of predicted
interactions between our method and others, we compared the
binary networks from each method at a certain cutoff, which is set
to ensure that the binary networks generated from each method
have the same number of edges (4012 edges for the DREAM5 sub-
challenge) with the gold standard network. To quantify the similarity
between the predictions of different methods, we performed single
linkage cluster analysis48 with a distance metric based on spearman
correlations of the ranks of predicted edges from each method. As
shown in Fig. S3 (ESI†), the interactions predicted by our method

BMALR are most similar to those predicted by LARS and PCALG.
This could be explained by the fact that linear regression is used in
BMALR, PCALG and LARS.

To test whether BMALR could help to achieve higher
performance by making community predictions with other
individual network inference methods, we performed community
predictions with combinations of every two individual methods for
gold standard network 1 (NET1) of DREAM4 in silico size 100
multifactorial sub-challenge following the approach proposed by
Marbach et al.34 As shown in Fig. 4, community methods with
BMALR can achieve robust high performance in the predicted
networks. Similar high performance of community methods with
BMALR is obtained with the application of other gold standard
networks of DREAM4 sub-challenge (Fig. S4, ESI†). In all the cases,
the highest performance predictions were obtained in the commu-
nity predictions with the combination of BMALR plus other compe-
tition methods such as CLR, GENIE3 and ARACNE. These results
suggest that BMALR is complementary to other inference methods
and could be a good candidate method for community predictions.

Fan-in error analysis

We next checked whether BMALR is resistant to the fan-in error
stemming from the difficulties in predicting combinatorial regula-
tions.33 We performed indegree based network analysis on DREAM5
sub-challenge to study the robustness of BMALR and other methods
to the fan-in error. Specifically, we investigated the overall perfor-
mance of each inference method on predicting the regulatory
input(s) of genes with one transcription factor (indegree = 1),
two transcriptional factors (indegree = 2), etc. As is described in
ref. 33, the prediction confidence for different regulatory inputs
of genes is quantified with their ranks in the corresponding list
of edge predictions (the first edge has a scaled prediction
confidence of 100% and the last edge has a confidence of 0%).

The data shown in Fig. 5 indicate that most inference
methods have high prediction confidence for the edge of genes
with 1 transcription factor input. In general, the prediction
confidence is reduced as the indegree of genes increases, but
the prediction confidence of BMALR and GNEIE3 seems to be
more robust on high indegrees.

Comparing BMALR with other Bayesian network based methods

BMLAR uses the framework of Bayesian model averaging that
integrates a linear regression approach. Therefore, we investigated

Fig. 3 The predicted T-cell signaling networks with top 20 edges by (A)
BMALR and (B) MCMC network inference method, respectively.

Fig. 4 The performance (area under precision–recall curve, AUPR) of individual methods and community methods with combinations of every two
individual methods for gold standard network 1 (NET1) of DREAM4 in silico size 100 multifactorial sub-challenge. The dashed horizontal line denotes the
highest performance level in all the methods.
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whether the combination of Bayesian model averaging with a linear
regression method could improve prediction performance com-
pared with other Bayesian network methods. We applied previously
reported Bayesian network methods such as the PC-algorithm
method (PCALG),45,46 BNFinder2 and the SBM method with the
sparse Bayesian model27,49 to the DREAM4 in silico size 100 multi-
factorial sub-challenge. The results shown in Table 4 indicate that
BMLAR achieves the highest prediction accuracy over the other
comparable Bayesian network methods. In addition, the computa-
tional efficiency of BMLAR is among the top method, with a similar
magnitude of used computational time to the PC-algorithm
method with pcSelect (feature selection version of PCALG). It is
worth noting that both BMALR and pcSelect methods combine a
Bayesian network with a linear regression method. The difference
is that BMALR uses model averaging to calculate the posterior
probability of each edge, while pcSelect uses the partial correlation
based independence test to score each edge.

Similar to the method proposed by Geiger and Heckerman
(referred as Geiger–Heckerman in the following),37 BMALR
calculates the probability of local linear regression models
using Gaussian directed acyclic graphical (DAG) models. The
major difference between BMALR and Geiger–Heckerman is
that BMALR integrates the idea of model averaging to compute
the edge posterior probabilities, which has been applied to
infer the regulatory network from time series data by Hill
et al.29 However, Hill et al. computed the probability of local

linear regression models using Bayesian linear models with
interaction terms, which is different from the Gaussian DAG
models used in BMALR. Therefore, BMALR is a hybrid method
for network inference, which is based on the method frame-
works developed by Hill et al. and Geiger–Heckerman.

The influence of the maximum number of parents (maxFanIn)
on the performance of BMALR

To analyze whether the performance of BMALR depends on the
setting of the maximum number of parents (maxFanIn), we
applied BMALR to the benchmarks of DREAM4 and DREAM5
in silico sub-challenges, and the T-cell signaling network with
different settings of the maximum number of parents (maxFanIn
was set between 2–7). The results shown in Tables S1–S3 (ESI†)
suggest that the performance metrics of BMALR are robust to the
maxFanIn parameter (when maxFanIn Z 2). Biological networks
are usually sparsely connected, in which most network nodes
have a few upstream regulatory links.50 Therefore, the probabil-
ity of local structures with large numbers of parents is relatively
small, which might explain the observed insensitivity of the
BMALR method to the maxFanIn parameter.

Conclusions

In this work, we propose a Bayesian Model Averaging for Linear
Regression (BMALR) method to reconstruct cellular regulatory
networks. This method used a new closed form solution to
compute the posterior probabilities of the edges from putative
regulators to the target gene with the integration of Bayesian
model averaging and linear regression methods. We compared
the performance of BMALR with other network inference
methods by applying to a variety of benchmarks including both
in silico datasets in DREAM projects and real experimental
datasets. BMALR shows high performance across these bench-
marks with different performance metrics. We have also shown
that the log transformation of the datasets can further improve
the performance of BMALR in different benchmarks. In addi-
tion, BMALR is competitive in terms of computational effi-
ciency, especially for large-scale network inference. Our results
indicate that BMALR is complementary to other inference
methods as it can achieve robust high performance when it is
used in combination with other methods for community pre-
dictions. Last but not least, BMALR seems to be resistant to the
fan-in error stemming from the difficulties in predicting com-
binatorial regulations. Therefore, BMALR is expected to be
useful to infer regulatory interactions in biological networks.

Fig. 5 Fan-in error analysis of the inference methods on DREAM5 net-
work inference sub-challenge with in silico datasets.

Table 4 Performance metrics of Bayesian network based methods on DREAM4 in silico size 100 multifactorial sub-challenge. The bold numbers
indicate the best value in each performance metric

Method

NET1 NET2 NET3 NET4 NET5

Score Time (second)AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

BMALR 0.155 0.745 0.166 0.737 0.231 0.792 0.234 0.808 0.214 0.778 39.4 1.8 � 1000

PCALG 0.134 0.714 0.108 0.665 0.209 0.714 0.173 0.705 0.181 0.722 27.5 3.2 � 1000

BNfinder 0.125 0.584 0.0799 0.601 0.191 0.663 0.171 0.652 0.123 0.602 19.3 1.4 � 1003

SBM 0.111 0.635 0.100 0.600 0.199 0.668 0.182 0.680 0.172 0.663 22.8 4.0 � 1002
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