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Pathway-based Bayesian inference of
drug–disease interactions†

Naruemon Pratanwanich and Pietro Lió*

Drug treatments often perturb the activities of certain pathways, sets of functionally related genes.

Examining pathways/gene sets that are responsive to drug treatments instead of a simple list of

regulated genes can advance our understanding about such cellular processes after perturbations. In

general, pathways do not work in isolation and their connections can cause secondary effects. To

address this, we present a new method to better identify pathway responsiveness to drug treatments

and simultaneously to determine between-pathway interactions. Firstly, we developed a Bayesian matrix

factorisation of gene expression data together with known gene–pathway memberships to identify

pathways perturbed by drugs. Secondly, in order to determine the interactions between pathways, we

implemented a Gaussian Markov Random Field (GMRF) under the matrix factorization framework.

Assuming a Gaussian distribution of pathway responsiveness, we calculated the correlations between

pathways. We applied the combination of the Bayesian factor model and the GMRF to analyse gene

expression data of 1169 drugs with 236 known pathways, 66 of which were disease-related pathways.

Our model yielded a significantly higher average precision than the existing methods for identifying

pathway responsiveness to drugs that affected multiple pathways. This implies the advantage of the

between-pathway interactions and confirms our assumption that pathways are not independent, an

aspect that has been commonly overlooked in the existing methods. Additionally, we demonstrate four

case studies illustrating that the between-pathway network enhances the performance of pathway

identification and provides insights into disease comorbidity, drug repositioning, and tissue-specific

comparative analysis of drug treatments.

1 Introduction

Cellular processes before and after drug treatments often result from
the concerted interactions of certain sets of genes. Traditionally,
microarray-based case–control studies provide the information
about such mechanisms through a list of differentially expressed
genes. It has currently become of great interest to analyse at the level
of pathways/gene sets instead of individual genes. This is because
firstly looking at the pathway/group level can reduce the complexity
of the analysis due to the dimension reduction. Secondly, some of
the important differences may not be detected in the simple gene
list because of the dominating noise inherent to the microarray
technology.1 Finally, the gene-wise approach limits the scalability of
comparative studies, since the gene list profiles may marginally
overlap between two independent experiments despite being under
the same biological conditions (e.g. drug treatments or disease
states).1 In contrast, the pathway-based approach can overcome

these limitations since pathways already embody functionally
related genes, providing interpretable information with low
dimensionality. This also allows a certain variation of genes
that are differently expressed under the same biological
conditions.

Notably, connections between genes may trigger unexpected
effects. On one hand, the interactions can cause negative out-
comes such as comorbidity, the presence of one or more diseases
co-occurring with the primary disease. In particular, Goh et al.
have assumed that diseases could comorbid with each other
through overlapping disease-causing genes, as represented by
the human disease network (HDN).2 On the other hand, the links
between genes can also bring medical benefits that enable poly-
pharmacology and drug repositioning. For example, the network
of drug targets and disease-related genes can help determine the
new potential indications of the existing drugs.3 As connections
exist not only within a pathway but also across different pathways,
the network of pathway interactions still remains to be established.

To better understand cellular processes in case–control
settings, we aim to source microarray data in an efficient
manner. Firstly, we have developed a Bayesian matrix factorisa-
tion of gene expression data and taken advantage of known
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gene–pathway memberships to identify pathway responsiveness.
Secondly, we have augmented the Bayesian factor model with a
GMRF to determine the interactions between pathways. Assuming
the GMRF prior of pathway responsiveness, we used the precision
(inverse co-variance) matrix of a Gaussian distribution to model the
correlations between pathways.4 In this study, we applied the
combination of the Bayesian factor models and the GMRF to
analyse gene expression data of drug treatments.

GMRF models have been widely developed to learn spatial
interactions.5,6 Recently, they have been used for the analysis of
genomic data to identify causal or marker genes and simultaneously
to reconstruct between-gene interactions.7,8 To the best of our
knowledge, this is the first effort to apply the GMRF model to
reconstruct the network of between-pathway interactions.

As for responsive pathway identification, many studies
extracted responsive pathways by leveraging gene expression
data for the network of gene interactions, regardless of the
prior knowledge about gene–pathway memberships.9–11 These
results would leave a burden of expertise for interpretation. Ma
and Zhao developed a Bayesian factor model for identifying
pathway responsiveness, called FacPad, which utilises the prior
knowledge of gene–pathway memberships.12 Similarly, a well-
known method, Gene Set Enrichment Analysis (GSEA), deter-
mines whether a pre-defined pathway is enriched in a given
gene expression profile using statistical scores.1 However, both have
assumed that individual pathways are independent, which limits to
reflect the realistic molecular activities. We have overcome this
limitation by implementing a GMRF to model the dependencies
between pathways. This GMRF extension improves the perfor-
mance of responsive pathway identification.

Modeling pathway dependencies, which are regarded as latent
structures, is challenging because they cannot be observed directly
from the data. Although the issue of dependency structure in latent
space has been solved,13,14 the literature concerning between-
pathway relationships is still limited. Luo et al. connected two
pathways through the overlapping perturbed member genes in time
series gene expression data,15 but only a few pathways were analysed.
Recently, Pang and Zhao developed a large-scale pathway clustering
method based on the inferred distances where each pathway was
used as a classification tree to predict classes of phenotypes from
gene expression data, and two pathways were considered similar if
they predicted the same class of phenotypes.16 However, while they
predicted the between-pathway relations deterministically after the
classification tasks, we probabilistically modeled such interactions
concurrently with the pathway responsiveness identification task.
Due to the simultaneous tasking in our model, not only can the
results from the identification part reflect pathway dependency
behaviours, but also the pathway interactions help improve the
accuracy to identify pathway responsiveness to drug treatments.

2 Data

Our model requires two types of data inputs – differential gene
expression data and known gene–pathway associations informing
gene memberships in each pathway. We utilised gene expression
data of drug treatments from the human breast epithelial

adenocarcinoma cell line (MCF7) provided by CMap (build
02),17,18 and exploited the prior knowledge of gene–pathway mem-
berships from Kyoto Encyclopedia of the Genes and Genomes
(KEGG) database.19 After pre-processing (see the ESI† for more
details), 3041 genes, 1169 drugs, and 236 known pathways (90% of
the total KEGG pathways), 66 of which were disease pathways,
remained in our analysis. We applied our model to another gene
expression data set of the epithelial cell line of human prostate
adenocarcinoma (PC3) from CMap17,18 for tissue comparative
analysis as discussed in the final case study.

3 Results and discussion

Identifying pathway responsiveness under any biological conditions
(e.g. drug treatments and disease conditions) can be accomplished
using a Bayesian factor model.12 We modeled pathways as latent
variables, of which gene members were pre-defined.12 More
importantly, we implemented a GMRF prior in order to capture
the network structure of interactions between pathways.

Given the differential gene expression data and the prior
knowledge of gene–pathway memberships, we inferred the
following: (1) pathway responsiveness specific to each biological
condition and (2) interactions between pathways (Fig. 1). The
novelty of this study lies in the latter, which contributed the
network of between-pathway interactions.

In the next section, we show the results of model verification and
validation including comparison with the other existing models,
followed by four case studies as to how this inferred pathway
network helps us to understand the underlying mechanisms among
drugs and diseases.

Fig. 1 Diagram of our methodology. The inputs are (a) differential gene
expression data under conditions of interest (e.g. drug treatments or disease
states) and (b) pathways/gene sets, in which individual gene members
are defined. We developed a Bayesian factor model with GMRF to infer
(c) pathway rank profiles specific to each condition and (d) the interactions
between pathways, which can be viewed as a pathway network.
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3.1 Model verification with simulation studies

To verify our model, we synthesised different gene expression
data sets of 3000 genes and 2000 drugs from a Gaussian
distribution with respect to a random but known underlying
network of between-pathway interactions that varied over 10,
20, 50, and 80 pathways. Next, we assigned some pathways to
each drug as its responsive pathways. Finally, we assessed for
our model how many original between-pathway interactions
were recovered and how many responsive pathways were identified
correctly. We used recall and precision metrics to evaluate the
performance of our inference on the pathway network and accuracy
metric for the assessment of pathway identification.

Fig. 2 shows the overall performance of our model on the
different synthetic data sets. Although the performance was
dropping when the number of pathways was increasing, it was
no less than 80% (Fig. 2a). On the other hand, an increase in
density slightly affected the model performance (Fig. 2b). We
also conducted the robustness analysis of noise tolerance. Here,
noise can be originated from both inputs, the gene expression data
and the information of gene–pathway memberships. However, we
tested our model only with the noise caused by the latter case
because we already incorporated the noise model from the first
case. Our model proved its robustness up to 30% of noise (Fig. 2c).

3.2 Model validation and comparative studies

To validate, we applied our model to analyse gene expression
data of drug treatments from CMap and exploited the prior
information of gene–pathway memberships from KEGG. We
then evaluated two outputs: the pathway rank profiles responsive

to drug treatments and the network of between-pathway
interactions.

3.2.1 Analysis of the inferred pathway responsiveness to drug
treatments. Pathways that were perturbed by chemical exposures
were documented in the Comparative Toxicogenomics Database
(CTD).20 The significance of the enrichment for each pathway was
computed by a hypergeometric distribution and adjusted by a
Bonferroni approach for multiple hypothesis testing. We validated
the inferred pathways responsive to drug treatments with the CTD
data as of June 4th 2013. After post-processing, 500 drugs, 193
pathways, and 14 502 chemical-pathway associations were left for
the validation.

In each drug d, we ranked all pathways according to their
inferred responsiveness values. The ranked list of pathways is
called a pathway rank profile where pathways at the upper ranks
are more likely to be responsive to drug d. Fig. 3 demonstrates
the frequency of pathways that were documented in CTD in
each rank of the inferred pathway rank profiles. We found that
210 drugs were identified at the first rank, which was 1.5–2.6 times
higher than random expectation. Furthermore, our method
identified the perturbed pathways at the upper ranks than those
inferred by FacPad and GSEA ( p o 0.0001).

Using the validation set from CTD, we also calculated the
average precision (AP)21 over the recall ranged from 0 to 1, as
shown in eqn (1) for each drug d:

AP ¼

PR
r¼1

Pr � lrð Þ

N
;Pr ¼

nr

r
(1)

where lr is 1 when the pathway at rank r was documented in
CTD and 0 otherwise, nr is the number of pathways validated by

Fig. 2 Performance of our model on the synthetic data sets varied by
(a) the number of pathways, (b) degree of density, (c) and the noise level.
We found that by increasing the number of pathways, model performance
decreased by a negligible amount, whereas varying the degree of density
only slightly affected the model performance. Additionally, by sensitising
noise levels in the data up to the 30% level, the model results remained
robust, but began to fail from 40% onwards.

Fig. 3 Performance of three methods for identifying pathway respon-
siveness. We first created pathway rank profiles, each of which was specific
to a drug and pathways in the upper ranks are more likely to have high
responsiveness. Out of 500 drugs in the validation set, the number of
pathways that were documented by CTD as true responsive pathways in
the rank profiles of each method is shown in the y-axis across the pathway
rank positions in the x-axis. In the upper ranks, our model recovered more
true responsive pathways than the other methods.
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CTD from the top r ranks, thus Pr is the precision at the rank
r th, N is the total number of enriched pathways defined by
CTD, and R is the total number of pathways. The number of
drugs with the highest AP of each model was plotted across
the number of enriched pathways per drug as documented in
CTD (Fig. 4). As shown, FacPad and GSEA were excellent for
identifying pathways responsive to the drugs that perturbed not
more than ten pathways. However, when the number of perturbed
pathways per drug increased, our model yielded the higher AP
( p o 0.0001).

3.2.2 Analysis of the inferred between-pathway interactions.
In this study, we inferred the interactions between pathways
solely from the presence of their co-occurrence in the observed
data. As a result, not only were the interactions of any pathway
pairs that shared genes together likely to be drawn, but any other
pathway pair without overlapping genes could be also inferred if
they co-occurred in the observed gene expression data.

Theoretically, there are many factors why pathways interact
with each other, one of which is the overlapping of their gene
members. Thus, we used the number of the overlapping genes
between two pathways from the curated KEGG database to
quantify the validity of our results. We first ranked the pathway
interactions according to their correlations derived from our
approach (eqn (5)). We then applied the cumulative gain (CG),22

to determine whether the inferred interactions at the upper
ranks were more likely to imply true interactions. Here, the
number of overlapping genes indicated the possibility of true
interactions between pathways. For each rank r, we calculated
the ratio between the CG of our model and that of the random

expectation, called fold enrichment of cumulative gain (FE_CGr)
as in eqn (2):

FE CGr ¼
Model CGr

Random CGr
¼ nr

N � r=R
(2)

where Model_CGr stands for the cumulative gain at rank r of our
model, where nr is the cumulative number of overlapping genes
at rank r, and R is the total number of rank entries. Random_CGr

stands for the expected CG value by chance. Thus, FE_CGr

indicates how many times that the interactions inferred at the
top-r rank are likely to be true interactions compared to those
occurring by chance.

In addition, we calculated the significance of each pathway
interaction in terms of perturbed member genes using a
hypergeometric distribution15 (see the ESI†). Here, a perturbed
gene was a gene with the absolute fold change deviated from
the mean of all genes by more than one standard deviation. Let
N, n, and x be the number of all perturbed genes under given
conditions, in either of a pathway pair, or in both pathways
respectively. The significance is the probability of at least X
genes that are perturbed in both pathways, which follows the
hypergeometric distribution15 as shown in eqn (3):

Probðx � XÞ ¼
Xminðn1 ;n2Þ

k¼X

n1
k

� �
N � n1
n2 � k

� �
N
n2

� � (3)

After ranking the between-pathway interactions according to
their correlation values (eqn (5)), we found that the top 500
interactions had high possibilities to be true interactions,
approximately 2–6.5 times as much as expected by chance
(Fig. 5a). Each of them had the correlation ranging from 0.05
to 0.5, while approximately 10 000 interactions stayed unconnected
with zero values (see Methodology). Fig. 5b also shows that these
interactions significantly contained more overlapping genes than
the rest ( p o 0.001).

However, we also modeled the interactions between pathways
that did not share any genes. Fig. 6 compares the networks of the
top 500 pathway interactions resulting from two methods. The
first network of pathway interactions derived from our Bayesian
factor model with GMRF (Fig. 6a). For the second network, two
pathways were linked if they shared perturbed member genes15

and their interaction strength was proportional to the number of
their overlapping genes (Fig. 6b). We mapped all 236 pathways
into 22 classes based on the definition by KEGG with different
colours. Fig. 6a contains 67% of inter pathway-class interactions
while 42% in Fig. 6b. The high percentage of inter pathway-class
interactions resulted from our model may imply the complex
relationships beyond gene connections. For example, we uncovered
the links between cancer and metabolism (Fig. 6b). According to
the recent study,23 metabolism first generates oxygen radicals
which contribute to loss of tumor suppressors and finally lead to
cancer. These cancer cells will in turn rewire back to metabolic
pathways for cell growth and survival. We also rediscovered the
interactions between cancer pathways and those of infectious
diseases caused by viral,24 bacterial,25,26 and parasitic26 agents

Fig. 4 Comparison of the average precision values for evaluating each
pathway rank profile from our model, FacPad, and GSEA. We calculated
the average precision (eqn (1)) for each profile and compared this metric
among the methods. Out of 500 drugs in the validation set, the number of
pathway rank profiles with the highest average precision in each model is
demonstrated in the y-axis. We classified drugs according to the number
of enriched pathways per drug as documented in CTD shown in the x-axis.
We found that our model outperformed the others for identifying respon-
sive pathways in the case of drugs that had an effect on more than
10 pathways. These results are illustrated in the refined scale with a
y-axis ranging from 0 to 20 in the inset plot.
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(Fig. 6b), while the other model reconstructed only the links
with viral agents.

3.3 Applications of the pathway network

Case study 1: disease comorbidity through pathway-based
interactions. Recently, comorbidity has been studied through
different networks, where nodes represent diseases and edges
represent the overlapping of mutated genes,2 protein complexes,27

metabolic reactions,28 or pathways29 between diseases. How-
ever, these networks are insufficient in case two diseases are
linked by the concerted interactions of multiple pathways.
Utilising our inferred pathway network can overcome this
limitation, as nodes in our network can represent both disease
and non-disease pathways.

In this case study, we explored a sub-network of the top 500
interactions, which contained the largest hub namely the hepatitis B
pathway. We found that infectious diseases, especially hepatitis B

and C, connected with more than half of cancer types in our
study (Fig. 7a). This finding agrees with the statistics from a
survey of Cancer Research UK in 2008, showing that hepatitis B
and C viruses are the third most attributable risk to cancers
only after human papillomavirus and helicobacter pylori, which
were not included in our study. Additionally, the inferred
pathway network suggest that NF-kB, followed by FCeRI and
GnRH signaling pathways be the main contributions under-
lying the comorbidity among infectious diseases and cancers.

Particularly, we can make a hypothesis that hepatitis B may
comorbid with thyroid cancer through the mechanisms of
FCeRI and NF-kB signaling pathways. The processes may begin
with the increased level of serum Immunoglobulin E (IgE) in
hepatitis B patients30 that theoretically activates FCeRI receptors
as described in KEGG (inferred corr = 0.14, rank 33th, overlapping
perturbed genes with p o 0.0001 from a hypergeometric test). We
then confirmed the inferred interaction between NF-kB and FCeRI
(inferred corr = 0.23, rank 10th, overlapping perturbed genes with
p o 0.005) by the literature. Klemm and Ruland reported that the
inflammatory signals in mast cells could be transmitted between
these pathways through the following events: the activation of
the receptor-associated tyrosine kinases upon FceRI ligation,
the activation of PKC isoforms and the protein complex of
Bcl10/Malt1, the degradation of IkB-a, and finally the activation
of NF-kB31 (Fig. 7b). Moreover, we rediscovered the association
of the NF-kB signaling pathway and the thyroid cancer pathway
(corr = 0.10, rank 64th) even though they had no overlapping
genes. Several studies have claimed that the activation of
NF-kB blocks the PRARg tumor suppressor, promoting thyroid
carcinogenesis.32,33 As the relevance of NF-kB and FCeRI signaling
pathways as well as the high prevalence of thyroid cancer in
hepatitis patients34 have recently been reported,35,36 our hypothesis
that cancers may comorbid with infectious diseases through these
inflammatory signaling pathways should be further studied.

Case study 2: enhancement of pathway responsiveness
identification. In a pathway rank profile, pathways that have
higher responsiveness are located at the upper ranks. Fig. 8
demonstrates examples of drugs, each of which targets two
neighboring pathways in the sub network of Fig. 7a. Thanks to
the guidance of the pathway network that we inferred concurrently
with the pathway identification task, our method identified both
pathways at the upper ranks. In contrast, FacPad12 and GSEA1

identified one at the upper rank, but left the other far behind near
the bottom. These representatives prove the advantage of the
pathway network for identifying pathway responsiveness.

Case study 3: drug repositioning via pathway-based inter-
links. Given our inferred pathway network including disease-
related pathways, we are able to discover a new potential
indication of the existing drugs, known as drug repositioning.
Unlike the existing similarity-based methods,37,38 the inferred
pathway network provides the underlying pathways as inter-
links between the repositioned drugs and their new targeted
disease.

For example, we repositioned Verapamil, which has been
currently used for the treatment of angina and hypertension, to
the new indication for colorectal cancer. As documented in

Fig. 5 Relation of our inferred pathway interactions and the number of
overlapping genes. We defined true positives as the interactions of pathways
that had genes in common. To validate, we ranked the pathway interactions
by their correlations as calculated with our method in a descending order. We
then counted the number of genes shared by any two pathways for every
interaction. Next, we calculated the cumulative true positives weighted by the
number of overlapping genes in each rank, also known as cumulative gain
(CG),22 and compared this metric against random expected values. (a) Fold
enrichment of cumulative gain (FE_CG) as calculated in eqn (2), which is the
ratio between the CG of our model compared to random expectation,12

reached the peak of (6.5 fold) at the upper ranks (20th). Out of 27 730 possible
interactions, the top 500 interactions inferred by our model were likely to
share genes approximately 2–6.5 fold compared to the random expectation.
(b) Number of overlapping genes of each interaction in six intervals, each of
which equally spans to 500 rank positions. As shown, the density of spikes at
the first 500-rank interval was at the maximum then it continually declined,
and reached the minimum at the lower end of the ranks.
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CTD and inferred by our method, this compound targeted the
GnRH signaling pathway, which linked colorectal cancer in the
inferred pathway network as shown in Fig. 8 (corr = 0.06, rank
261th, shared perturbed genes with p o 0.001). This suggests
the new indication of Verapamil to recover the disease state of
colorectal cancer. Our hypothesis is in line with the independent
studies claiming that Verapamil could suppress the release of
GnRH hormone39 which is over-expressed in colorectal cancer.40

More recently, this drug repositioning has been confirmed
by a clinical study concluding that the use of Verapamil with
chemotherapy can improve clinical efficacy in metastatic colorectal
patients.41

Upon the integration of the pathway network and responsive
pathway identification from our method, we can provide infor-
mative hypotheses of not only the directions to reposition drugs
but also the underlying pathways to explain the new drug–
disease mechanisms.

Case study 4: tissue comparative analysis. Since whether or
not genes are active partly depends on tissue types, the
between-pathway relationships can be different from tissue to
tissue. Thus, we applied the model to two different tissue-
specific data sets from CMap, the breast cancer cell line
(MCF7) and the prostate cell line (PC3). Although some pathway
associations were inferred at the upper ranks in both tissues,
others were different. For example, the inferred interaction of
the FceRI signaling pathway and the NF-kB signaling pathway
fell from the rank 10th in MCF7 to 11 765th in PC3. There exist
evidences that both pathways are linked in mast cells;31 how-
ever, the study concerning the issue of tissue types is still
limited. Generally, FceRI plays a central role in the initiation
and control of atopic allergic inflammation42 and NF-kB

involves in many cancers.43 Thus, the existence of the inter-
action between these two pathways may account for the role of
allergic disorders differs between the development of cancer
cells in breast and prostate tissues.44 Such a difference in
between-pathway interactions in different tissue types can
improve our understanding of disease mechanisms, leading
to the advance in tissue-specific therapies.45,46

4 Methodology
4.1 Notation

In this paper, we represent a matrix, a vector, and a scalar with
a bold capital letter, a bold lowercase letter, and an italic
lowercase letter respectively. Moreover, we use double brackets to
represent a matrix and its elements such as X = [[xij]], indicating
that the matrix X consists of the scalar elements xij where i and j
denote a row index and a column index respectively.

4.2 Method overview

In this study, we have performed the analysis of the differential
gene expression data of G genes under D conditions. Our goal is
to identify responsive pathways for each condition and simulta-
neously to uncover between-pathway relationships. To begin
with, we assume that the differential gene expression data arise
from the effects of perturbed genes being members of the
pathways responsive to each condition e.g. a drug or a disease.
This concept can be implemented by a matrix factorisation,12

where the observed differential gene expression data matrix
X A RG�D is decomposed into two matrices: X B BS. The first
matrix B A RG�P denotes the strength of gene membership in

Fig. 6 Comparisons of pathway interactions. The colour of each pathway maps to each class of pathway defined by KEGG. The edge size is proportional
to the number of interactions from one pathway class to another. Each interaction is established by two methods. (a) Firstly, pathway interactions resulted
from our Bayesian factor model with GMRF. (b) Secondly, two pathways were linked if they shared perturbed member genes.15 Of top 500 interactions,
our approach yielded more interactions across different classes of pathways, nearly double the number of interactions relative to the second method (b),
which discovered more intra pathway-class interactions. For instance, the relationships between cancers and metabolism pathways23 rediscovered by
our method were absent from the second method (b). The second method limits to capture the interactions between pathways without overlapping
genes. In contrast, our method can model pathway interactions according to both overlapping genes and the co-occurrence of pathways observed in
the gene expression data.
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each pathway, called a gene–pathway matrix. The second matrix
S A RP�D corresponds to the degree of pathway responsiveness
to each condition, called a pathway-condition matrix. Note
that P is the number of pathways shared by the matrix B and
the matrix S, since pathways are regarded as the latent factors
underlying both genes and conditions. Similar to FacPad,12 we
used the prior knowledge of gene–pathway memberships
denoted by a matrix K A {0,1}G�P from KEGG19 to force the
sparsity (the pattern of 0’s entries) of the matrix B. We
developed a GMRF model within the matrix decomposition
with the aim of capturing pathway dependencies by imposing
a Gaussian distribution on the matrix S with a precision
(inverse covariance) matrix U A RP�P. Consequently, we drew
the undirected links between any two pathways according to
the non-zero off-diagonal elements of the matrix U. Meanwhile,
we determined pathway responsive to each condition from the
matrix S.

Fig. 9 shows our methodology in a schematic view. The
following subsections are the brief introduction of GMRF, the
mathematical description of our model in detail and our
inference method.

4.3 Gaussian Markov Random Field (GMRF)

GMRF, referred to as a Gaussian Graphical model (GGM)
interchangeably,47 is a special case of Markov Random Field
forming with respect to an undirected graph if it satisfies the
Markov properties.48 An N-dimensional random vector x which

Fig. 7 Application of the pathway network for disease mechanisms and
comorbidity (case study 1). (a) depicts a sub-network of between-pathway
interactions. Each node represents a pathway with the node size propor-
tionate to its degree and each edge represents an inferred interaction. The
inferred interactions in this community imply the comorbidity among
infectious diseases, especially hepatitis B and C, and more than half of all
cancer types in this study through the contribution of the inflammatory
signaling pathways namely, NF-kB and FCeRI. (b) illustrates the comorbid-
ity of hepatitis B and thyroid cancer through the interactions of NF-kB
and FCeRI. Those mechanisms were previously confirmed by separated
studies.30–33

Fig. 8 Application of the inferred pathway network to enhance the
identification of pathway responsiveness to drug treatments, (case study 2)
and drug repositioning (case study 3). Each node represents a pathway with
the corresponding KEGG ID. This part of the pathway network derived from
Fig. 6b is targeted by four drugs, Mecamylamine, Verapamil, Diclofenac, and
Sulfadimethoxine, as documented in CTD. In the diagram, there are three
pathway rank profiles inferred by our model, FacPad, and GSEA are shown
above each chemical structure. The position of any targeted pathway within
each rank profile is represented by a line with the same colour as the
corresponding targeted pathway. As seen on the pathway rank profiles
inferred by our model, any two pathways that were closely correlated
to each other were placed in the upper rank, unlike FacPad and GSEA. This
proves that the inferred pathway interactions can help improve the model
to identify pathway responsiveness to drug treatments. As seen in case
study 3, the pathway network also enables drug repositioning; particularly a
repositioning of Verapamil for recovering the colorectal cancer state.41

With the inferred pathway interlinks, we may make an assumption that the
GnRH signaling pathway is the underlying mechanism for such repositioning,
therefore, providing a bridge for Verapamil to counteract the effects of
colorectal cancer. These findings are consistent with the studies claiming
that GnRH hormone is activated by colorectal cancer,40 but inhibited by
Verapamil.39
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is defined by GMRF4 is assumed to follow a zero-mean multi-
variate Gaussian distribution with a precision matrix U = [[Fij]];
i,j A {1,. . .,N} as shown in eqn (4):

PðxÞ ¼ ð2pÞ�
N
2 Uj j

1
2exp �1

2
x>Ux

� �
(4)

According to the definition of GMRF,4 the interpretation of the
precision matrix is as follows. Zero elements in the off-diagonal
matrix indicate the conditional independence. Non-zero off-
diagonal entries in the precision matrix encode the undirected
connections between the two corresponding random variables. The
magnitude of the correlation for any two variables xi and xj; i, j A
{1,. . .,N} conditioned on the rest can be calculated in eqn (5):

Corr xi; xj jxnij
� �

¼
fijffiffiffiffiffiffiffiffiffiffiffi
fiifjj

p
�����

����� (5)

It is remarked that GMRF contains two desirable characteristics.
Firstly, it can encode any arbitrary typologies. Secondly, it allows us
to directly interpret the conditional independence from the preci-
sion matrix.

4.4 Model description

The observed differential gene expression data matrix X = [[xgd]]
was linearly decomposed into two matrices: a gene–pathway
matrix B = [[bgp]] and a pathway-condition matrix S = [[spd]],

where g A {1,. . .,G}, d A {1,. . .,D}, and p A {1,. . .,P}. Such
decomposition can be represented in an element-wise linear
combination with an additive noise model as shown in eqn (6):

xgd ¼
XP
p¼1

bgpspd þ e; e 2 R ¼ random noise: (6)

Each variable was modeled as the following:

xgd ¼
XP
p¼1

bgpspd ¼ bgsd þ e; e � Normal 0; te�1
� �

te � Gamma ae; beð Þ

bgp ¼
0; if kgp ¼ 0

Normalðbgpj0; tB�1Þ; if kgp ¼ 1

(

tB � GammaðaB; bBÞ

sd � GMRF 0;U�1
� �

U � Wishartðn;WÞ

First of all, we modeled the noise e with a zero-mean
Gaussian with the precision te. We also put a conjugate prior
Gamma distribution with the shape parameter ae and the rate
parameter be on te. This noise model was applied for every
entry of the matrix X, known as an isotopic Gaussian
noise model.

Likewise, we put a zero-mean Gaussian distribution with the
precision tB on every entry of the matrix B. We also exploited
the pre-defined gene–pathway memberships matrix K = [[kgp]],
where kgp = 1 if gene g belonged to pathway p and kgp = 0
otherwise, to control the sparsity pattern of the matrix B.12

Therefore, the values in the matrix B suggested the strength of
the gene membership in each pathway, which was not specified
by the binary matrix K.

In order to capture the relations of the latent pathways, we
put the zero-mean GMRF with the precision matrix U on every
condition vector of the matrix S (eqn (4)). With the GMRF, the
conditional correlations between any two pathways were
described by the parameter U = [[Fij]];i,j A {1,. . .,P} (eqn (5)).
We next constructed an undirected graph illustrating such
relations. Let G = (V,E) denotes an undirected graph where
nodes represent hidden pathways and edges denote any pair-
wise relations. An edge between node i and j where (i,j) A V � V
is drawn if and only if fij 4 0. The Wishart distribution, a
conjugate prior of normal likelihood function, with the degree
of freedom n and the scale matrix W was used as the prior of U.

4.5 Inference

According to the models described above, we needed to make
inference on te, tB, B, S, and U with a setting of hyper-
parameters (ae, be, aB, bB, n, and W). However, only the matrix
S and the matrix U were our main interests for further analysis.
Under a Bayesian framework, we developed the correlated
pathways Gibbs sampling algorithm to approximate the joint
distribution of those five parameters (Algorithm 1).

Fig. 9 Bayesian matrix factorisation modeling with GMRF. Our model
requires two input types: an observed differential gene expression data
matrix X under conditions of interest and a pre-defined gene-pathway
membership binary matrix K. The main task is to decompose the matrix X
into a gene–pathway matrix B and a condition-pathway matrix S: X B BS.
The first step (1) is to make inference on the matrix B. The matrix K is used as
prior knowledge to guide the sparsity pattern of the matrix B.12 The
significant contribution to this work is the modeling of a Gaussian distribu-
tion with a zero mean and a precision U on the matrix S. Thus, the next two
steps (2 and 3) are to infer the matrix S and its precision matrix U. The values
in each column of the matrix S can reflect the pathway responsiveness to
the corresponding drug treatments or disease conditions. According to the
concept of GMRF that an undirected graph is encoded by non-zero entries
in the off-diagonal precision matrix, the values in the matrix U represent the
conditional correlation of every pathway pair. In the last step (4), a pathway
interaction network can be finally constructed, given the matrix U.

Paper Molecular BioSystems

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
A

pr
il 

20
14

. D
ow

nl
oa

de
d 

on
 7

/2
9/

20
25

 3
:3

2:
26

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4mb00014e


1546 | Mol. BioSyst., 2014, 10, 1538--1548 This journal is©The Royal Society of Chemistry 2014

Algorithm 1: Correlated pathways Gibbs sampling

Inputs: differential gene expression data matrix X and
gene–pathway memberships matrix K

Hyper-parameters: X = {ae, be, aB, bB, n, W}
Results: samples from the joint posterior distribution

P(t(t)
e , t(t)

B , B(t),U(t), S(t)|X, K, X)

Initialization: {t(0)
e , t(0)

B , B(0), U(0), S(0)}

begin
for each sampling iteration t do

Draw t(t)
e B P(te|X, B(t�1), S(t�1), ae, be)

Draw t(t)
B B P(tB|B(t�1), aB, bB)

for each element g A G do
Draw b(t)

g B P(bg|X, S(t�1), t(t)
B ,t(t)

e )

end

Normalise such that
PP
p¼1

bgp ¼ 1

Draw U(t) B P(U|S(t�1), n, C)
for each element d A D do

Draw s(t)
d B P(sd|X, B(t), t(t)

e , F(t))

end
end

end

Below is the conditional posterior distribution for each step
in the correlated pathways Gibbs sampling. The first two (1–2)
demonstrate those of the inverse variances in the noise model e
and the gene–pathway matrix B respectively. The calculation in
the third (3) is consistent to that of FacPad.12 The last two (4–5)
allow us to learn pathway responsiveness together with
between-pathway interactions (see the ESI† for the calculation
methods in detail):

(1) te B P(te|X, B, S, ae, be)

/
YG
g¼1

YD
d¼1
N xgd jbgsd ; te�1
� �

G tejae; beð Þ

/ G ae�; be
�ð Þ

ae� ¼ ae þ
GD

2
and be

� ¼ be þ
1

2

PG
g¼1

PD
d¼1

xgd � bgsd
� �2.

(2) tB B P(tB|B, aB, bB)

/
Y
ðg;pÞ2Z

N bgpj0; tB�1
� �

� G tBjaB; bBð Þ

/ G aB�; bB
�ð Þ

Z ¼ fðg; pÞ 2 G� Pjkgp ¼ 1g; aB� ¼ aB þ
jZj
2

,

and bB
� ¼ bB þ

1

2

P
ðg;pÞ2Z

bgp
2.

(3) bg B P(bg|X, S, te, tB)

p N(bg|mB*,(UB*)�1) if kgp = 1; p = 1, 2, 3,. . .,P

mB* = (UB*)�1(teS*xT
g ), UB* = teS*(S*)T + tBI|S*| and S* = the

submatrix of S with the row indices corresponding to the 1-
entries of the vector kg.

(4) U B P(U|S, n, W)

/
YD
d¼1
Nðsd j0;U�1Þ � WðUjn;WÞ

/ WðUjn�;W�Þ

n* = n + D and W� ¼ W�1 þ
PD
d¼1

sds
>
d

� �� ��1
.

(5) sd B P(sd|X, B, te, U)

pN (xd|Bsd,te
�1IG)�N(sd|0,U�1)

pN (sd|m*, (U*)�1)

m* = (U*)�1(teB
Txd) and U* = teB

TB + U.
Our MATLAB implementation of the correlated pathway

Gibbs sampling is available upon request to the corresponding
author. The burn-in period can be selected according to the
trace plots. Moreover, to decrease autocorrelation, samples
from the Gibbs sampling can be collected subject to the
thinning rate, and then be averaged across the collecting
iterations to form the final estimations.

5 Conclusions

Given differential gene expression data of drug treatments and
the prior knowledge of gene memberships in each pathway of
interest, we have presented Bayesian factor modeling with GMRF to
identify pathway responsiveness to drug treatments, concurrently
with the reconstruction of between-pathway interactions.

Specifically, we treated all pathways as latent variables, of
which gene members were pre-defined. We then applied a
Bayesian matrix factorisation model to determine pathways
that were perturbed specific to drug treatments.12 The under-
lying assumption is that gene expression data arise from the
effects of perturbed gene members of the pathways responsive
to drug treatments.12 Therefore, a gene expression data matrix
was decomposed into a gene–pathway matrix indicating gene
membership strength in each pathway and a drug-pathway
matrix reflecting pathway responsiveness to each drug.

More importantly, we extended the Bayesian matrix factor-
isation models with a GMRF prior. This augmentation was
inspired by the fact that genes could pass their signals across
different groups or pathways.16 We imposed a Gaussian dis-
tribution with a zero mean and a precision matrix (an inverse
covariance matrix) on the drug-pathway matrix. This precision
matrix was mapped to an undirected graph depicting pairwise
dependencies between pathways. Here, the interactions
between any pair of pathways were drawn if and only if they
were direct relationships without the mediation through any
other pathway. We quantified the between-pathway interactions
by calculating their correlations directly from the precision
matrix under the GMRF framework. However, we can explore
indirect relationships from the network of all direct interactions.
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Our method can infer complex relations between two pathways
through other layers of molecules such as proteins or metabolites,
which cannot be observed by only overlapping perturbed
genes. With our approach, the complexity can be simplified
by the replacement of a link between pathways derived from the
co-occurrence of pathways from the observed gene expression data.

The combination of the Bayesian factor model and the
GMRF prior allows us to identify pathway responsiveness and to
extract between-pathway interactions in a unified framework. As a
result, our method yielded a higher average precision than the
existing methods for identifying pathway responsiveness to drugs
that affect multiple pathways. This contribution is advantageous to
the analysis of disease gene expression data as the number of
associated pathways is increasing in proportion to disease
complexity, comorbidity,49 and progression time.50 In addition,
the network of between-pathway interactions can also provide
the mechanistic insights in terms of pathway-based functionality
that accommodate the studies of disease comorbidity, drug
repositioning, and tissue-specific comparative analysis.
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