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Evolutionary game theory: cells as players

Sabine Hummert,ab Katrin Bohl,cd David Basanta,e Andreas Deutsch,f Sarah Werner,c

Günter Theißen,g Anja Schroeterc and Stefan Schuster*c

In two papers we review game theory applications in biology below the level of cognitive living beings. It

can be seen that evolution and natural selection replace the rationality of the actors appropriately. Even

in these micro worlds, competing situations and cooperative relationships can be found and modeled by

evolutionary game theory. Also those units of the lowest levels of life show different strategies for

different environmental situations or different partners. We give a wide overview of evolutionary game

theory applications to microscopic units. In this first review situations on the cellular level are tackled. In

particular metabolic problems are discussed, such as ATP-producing pathways, secretion of public goods

and cross-feeding. Further topics are cyclic competition among more than two partners, intra- and inter-

cellular signalling, the struggle between pathogens and the immune system, and the interactions of cancer

cells. Moreover, we introduce the theoretical basics to encourage scientists to investigate problems in cell

biology and molecular biology by evolutionary game theory.

1. Introduction

Replicating units such as living organisms practically never
exist alone. Rather, they interact with each other in various
ways, in cooperative or competing relationships. Not least, this
applies to cells within multicellular organisms (where usually
cooperative types of interaction prevail). Evolutionary theory
often tries to understand heritable changes of organisms and
cells in terms of better adaptation to a well-defined or even
constant environment. This reasoning regarding optimization
is, however, often insufficient for understanding biological
evolution. It needs to be acknowledged that evolution is almost
always co-evolution.1,2 That is, the properties of interacting
macromolecules or cells evolve in dependence on each other. This
may affect the optimum on all sides and leads to an ‘‘open ended’’

dynamics of evolution rather than to the approximation to a
fitness optimum.3

An appropriate framework for analysing evolution in dynamic
fitness landscapes is evolutionary game theory because it allows
one to describe the maximization of fitness of several interacting
partners.4–7 Game theory had originally been developed mainly
for applications in economics,8 besides inspirations from
parlour games such as poker. Later, it was also applied and
adapted to applications in biology, resulting in the field of
evolutionary game theory.

The metaphor of games is wide-spread in human society.
Companies describe themselves as ‘‘global players’’, the sentence
‘‘The game is over’’ occurs in many thriller movies, and the
German word ‘‘Beispiel’’ (example) refers to ‘‘Spiel’’ (game).
Especially, the ‘‘Games people play’’9 have always been of strong
interest. Thus, thinking in terms of games helps us to understand
complex phenomena in an intuitive way, even if these phenomena
are very serious things like conflicts among animals, companies
or nations. The book ‘‘Game Theory’’ by Nobel prize winner Roger
Myerson10 is thus aptly subtitled ‘‘Analysis of Conflict’’.

Independently of evolutionary game theory, Eigen and
Winkler11 considered many biological processes including pre-
biotic evolution to have properties of games. In this and an
accompanying review,12 however, we use the term ‘‘game’’ in
the sense of classical game theory as introduced by Neumann and
Morgenstern8 and developed further by Nash13 and Maynard
Smith.4 A game describes the interaction of two or more agents
(players) in which the outcome of each player depends not only
on the own decision, but also on the strategies adopted by the
coplayers. Since the pioneering work by Maynard Smith and
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Price,14 Hamilton15 and others, evolutionary game theory has been
applied for decades to the interaction among higher organisms on
a macroscopic scale. Examples concern animal behaviour,14,16–20

competition among plants21,22 and interactions between animals
and plants.23 Its application to the microscopic scale – the cellular
and subcellular levels of life – is much less common, but of
increasing interest and importance.

Not only multicellular organisms as a whole, but also cells
and some macromolecules within cells can be considered as
players in the sense of game theory. Many of their traits can then
be regarded as strategies, such as usage of metabolic pathways,
expression of virulence factors or generation of different splice
variants. The change between strategies can occur by mutations
or epigenetic modifications and the succeeding strategy is
chosen by natural selection. Therefore, cognitive and rational
capabilities are no prerequisites for being considered as a player
in the sense of game theory. Merely the property of having a
trait (strategy) that is subject to selection and, thus, influences
the replicational success (the payoff of the game) makes them
potential players.

In this and an accompanying review,12 we provide a broad
overview of applications of evolutionary game theory in molecular
and cell biology. While the accompanying review12 focuses on the
potential of the application of game theory to interactions on the
subcellular level, the present one is devoted to interactions
between cells. Examples include the formation of biofilms,24

division of labour in consortium pathways,25,26 intercellular
signalling,27,28 and tumour biology.29,30 An outline of the math-
ematical fundamentals of game theory is given in the Appendix.

The sections of this review are ordered according to different
biological applications rather than different theoretical game
types. Thus, it is structured with respect to biological players.
It is worth noting that one and same game type such as the
hawk–dove game occurs in different applications.

In our view, the potential of game theory is largely under-
estimated in molecular and cell biology. One intention of our
two reviews is certainly to motivate more researchers to employ
the powerful tools of game theory.

2. Respiration versus fermentation

During evolution of metabolic pathways, several alternatives have
evolved. Examples are provided by glycolysis and the Entner–
Doudoroff pathway, both of which degrade glucose to trioses.
While most present-day organisms use glycolysis, the bacterium
Zymomonas mobilis (used technologically for producing Tequila)
relies on the Entner–Doudoroff pathway, and Escherichia coli and
several other bacteria harbour both pathways. Alternatively or in
addition, many organisms can use the pathway of respiration
(oxidative phosphorylation). Pathway usage can be changed by
regulation even during the life-span of one individual.

Over the last decade, metabolic games have attracted more
and more interest. Different metabolic pathways can be regarded
as different strategies in the sense of game theory. Pathways can
be restricted to the interior of the cell as well as comprise

reactions outside of the cell, as in the case of degradation of
substances by means of extracellular enzymes.

The publication of Pfeiffer and coworkers31 is a pioneering
paper on game-theoretical approaches in biochemistry, dealing
with cooperation and competition in ATP-producing pathways.
They analyse the two ATP-producing pathways of respiration and
fermentation. Both pathways start with glycolysis and differ in
that respiration involves the tricarboxylic acid cycle and respira-
tory chain, while fermentation includes one or several steps in
which pyruvate is converted to an excreted product such as
lactate, acetate or ethanol. The former pathway has an ATP-
over-glucose yield of about 20–3032 and a relatively low rate,
while fermentation only has a yield of two but its rate of ATP
production is usually higher than that of respiration (Fig. 1). For
example, in striated muscle cells, where both pathways exist,
fermentation is up to 100 times faster (cf. Voet and Voet32).
Mixed strategies in the sense of simultaneous usage of two or
more pathways occur as well: for example, baker’s yeast uses
respiro-fermentation, meaning that, when sufficient glucose is
available, respiration proceeds at maximum rate and fermenta-
tion is used to a large extent in addition. While respiration
utilizes the common pool of the resource efficiently, it has the
drawback that it leads to a lower growth rate for pure respirators.
The proportions in mixed strategies may differ. For example, in
baker’s yeast, so-called ‘‘ants’’ have lower glycolytic gene dosage
and have a small cell size but reach a high carrying capacity,
while the ‘‘grasshoppers’’ have higher glycolytic gene dosage,
consume glucose more rapidly, and reach a larger cell size and
lower carrying capacity.33

In a spatially homogeneous environment, a model of ordinary
differential equations leads to a ‘‘tragedy of the commons’’, where
all cells use the shared resource inefficiently by additionally
fermenting sugars (defector strategy).31 The ‘‘tragedy of the
commons’’ is a situation widely considered in evolutionary
game theory to describe evolution towards the inefficient use
of a common resource.31,34–36 It also occurs frequently in an
economic context, for example, in the overfishing of oceans or
over-extraction of groundwater.37 The short-term ‘‘advantage’’
of inefficient resource usage may explain why many micro-
organisms such as Saccharomyces cerevisiae (baker’s yeast) and
Dekkera bruxellensis (used technologically for brewing Belgian beer)
mainly rely on fermentation even under aerobic conditions. In
contrast, other micro-organisms such as Kluyveromyces marxianus

Fig. 1 Two cells feeding on the same resource (sugar, e.g. glucose), using
two different metabolic strategies. The left cell uses respiration, with a low
rate (thin arrows) but high yield (high ratio of arrow thickness). The right
cell uses fermentation, with a high rate (thick arrows) but low yield (lower
ratio of arrow thickness). Thus, the right cell can grow faster but partly
wastes the resource and uses it up much faster. This can be compared to
two factories utilizing a common resource such as ore, water or wood with
different efficiency and speed.
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and Pichia fermentans use respiration under aerobic conditions
and fermentation under anaerobic conditions. They can be
considered as cooperators. A compilation of data on the
trade-off between rate and yield in several micro-organisms
can be found in MacLean.36 The question arises how they could
escape the ‘‘tragedy of the commons’’ during evolution.

A transition to cooperation can be achieved by spatial struc-
ture.38 Implementing spatial structure in a model consisting of
partial differential equations (PDEs) where cells as well as nutrients
are allowed to diffuse can promote respirators. For low resource
influx rates as well as low diffusion rates, respirators coexist with
respiro-fermenters or even take over the population.31

Frick and Schuster39 study the non-spatial version of the
Pfeiffer model31 at the level of competing populations rather
than cells. The fermentation–respiration game can then be
interpreted as a Prisoner’s Dilemma, the two-player analog of
the ‘‘tragedy of the commons’’.40 The cooperative strategy is to
use respiration because it uses the common resource more
economically. Fermentation is the defector strategy because it
provides a short-term advantage but wastes the common
resource. In the Prisoner’s Dilemma, the only Nash equilibrium
is where both players defect, although they would obtain higher
payoffs if they cooperated, see Appendix B. This is because the
highest payoff is obtained by a defector playing against a
cooperator, so that there is an incentive to defect. In fact, this
applies to the respiration–fermentation game. As shown by
Aledo et al.,34 a similar game can arise when only the glycolytic
pathway is considered, but operates in a more efficient and a
less efficient mode. Also in this situation, rapid and inefficient
use of glucose is favored by natural selection when the environ-
ment is spatially homogeneous.

MacLean and Gudelj41 extend the game-theoretical problem
of yield versus rate in ATP production by including temporal
structure. Their ordinary differential equation model introduces
seasonality, resembling a batch culture. Their results are in line
with results from ecology saying that oscillations in the environ-
ment promote coexistence.

The respiration–fermentation game is also relevant in the
competition between cancer cells and healthy cells in humans
and higher animals (see Section on Malignant tumour growth).
This is one possible explanation for the Warburg effect,42 saying
that tumour cells mainly rely on glycolysis. As shown by a simple,
analytically tractable model, the choice of optimal pathway
depends on protein costs as well.43 If the enzymes of the high-
yield pathway are costly in their synthesis, which is the case for
the enzymes of the respiratory chain, the low-yield pathway is
favoured. If not, then the high-yield, low-rate pathway is favoured.

The secretion of intermediates that are toxic to other cells
(ethanol, acetate and lactate in the cases of Saccharomyces cerevisiae,
E. coli and tumours, respectively) is a further effect in the competi-
tion.41,44 MacLean and Gudelj41 include the ethanol excreted by
respiro-fermenters into their model, thus imposing a cost in terms
of reduced reproductive yield to those cells. This effect also promotes
coexistence of respirators and respiro-fermenters.

Using ordinary differential equation models and calculating
evolutionarily stable strategies (ESSs, see Appendix A), Frank45,46

analyses further factors relevant for the trade-off between rate and
yield: kin selection, mutation rates and colony demography. Lower
genetic relatedness as well as higher mutation rates favour rate over
yield. Yield is favoured over rate for long colony survival times.

3. Public goods

Besides the trade-off between rate and yield, public goods games
play a major role in metabolism. The production and secretion
of, for example, extracellular enzymes is costly to the cooperating
cell and benefits surrounding cells (even if the latter do not
contribute to the public good). Productivity is often reduced by
‘‘cheater’’ mutants. This is known since the early 20th century as
for the secretion of proteases by Streptococcus lactis in milk and
represents a major problem in the dairy industry.47

Besides general models on exoenzyme games, models tailored
to specific extracellular enzymes have been proposed. Greig and
Travisano48 published an experiment on the secretion of invertase
in baker’s yeast. They find that the individual advantage of
cheaters increases with total cell density. Their interpretation that
the invertase game would always have the structure of a Prisoner’s
Dilemma is, however, doubted by several groups, among them
Schuster et al.40 Gore et al.49 presented experimental results
supported by a phenomenological model. Both their experiments
and model show that the secretion of invertase is a harmony game
when the cost-to-benefit ratio of secretion is low, hawk–dove game
(medium cost-to-benefit ratio) or Prisoner’s Dilemma (high cost-to-
benefit ratio). The different game types are explained in Appendix
B and the transition between them upon parameter change can be
seen in Fig. 8. The same conclusion is derived by Schuster et al.,50

based on a model that is closer to biological mechanisms and
simulating the effect of total cell density. Coexistence can arise
because of spatial gradients of the nutrient – the glucose concen-
tration is lower around defector cells than around cooperators.
This is consistent with numerical simulations based on a grid
model51 and with experimental studies and a model of protease
secretion by Lactococcus lactis.52 These results can be interpreted in
that secreting cells do not cooperate due to altruism but because it
is favourable to increase glucose concentration locally. Both cell
types can coexist when this advantage outweighs the higher costs
of production and secretion of the extracellular enzyme (Fig. 2).

In the case of a Prisoner’s Dilemma, the defectors may even
drive the population to extinction.50,52 An even more detailed
model of invertase secretion by yeast (including the metabolism
of fructose in addition to that of glucose) is proposed by MacLean
et al.53 They derive the interesting conclusion that, under certain
conditions, a mixture of cheaters and cooperators can be better
for the population than the absence of cheaters. This may be
due to a nonlinear upregulation of invertase in cooperating
cells when glucose goes down due to cheater cells.

4. Cross-feeding

Cross-feeding occurs whenever an organism uses metabolites
that are produced by another organism for its own growth
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and maintenance.54 ‘‘Cross-feeding’’ and ‘‘syntrophy’’ are
synonymous terms.55,56 Two different types of cross-feeding
can be distinguished. First, sequential cross-feeding in which
one species b1 partially degrades the primary resource and
excretes an intermediate or waste product, which is then taken
up by another species b2 (or another strain of the same species) and
used as a secondary resource57 (see Fig. 3). Second, cooperative
or reciprocal cross-feeding is the mutually beneficially exchange
of nutrients among species.58

Examples for cross-feeding in nature involve anaerobic methane
oxidation by methanogenic and sulfate-reducing bacteria,59

which leads to microbially mediated pyrite formation, degrada-
tion of xenobiotic compounds57,60 and the partial degradation
of glucose to acetate.61 It has been known since the end of the
19th century that nitrification is performed in two consecutive
steps by two distinct groups of bacteria: ammonia-oxidizing
and nitrite-oxidizing bacteria.26

The question arising here is why a homogeneous population
that degrades the primary resource completely does not perform
better than a population of cross-feeders.57 Some possible expla-
nations are outlined below. Moreover, an intriguing problem is
how mutualistic cross-feeding can be robust against cheaters. If
species b1 and b2 overproduce and secrete substances A and B
respectively, and these substances are taken up by the respective
counterpart, a cheater mutant of b1 that does not overproduce
nor secrete A would, in a spatially homogeneous habitat, always
have an advantage. It saves the cost for overproducing A while
still benefitting from taking up B (see Fig. 3).

Several theoretical studies examine the conditions under
which cross-feeding can evolve. Doebeli57 uses adaptive dynamics
(Appendix A or Hofbauer and Sigmund6) to investigate when an

evolutionary branching can occur so that the population splits
into two diverging phenotypic clusters representing the two
resource specialists coexisting in a (sequential) cross-feeding
polymorphism. Doebeli57 compares the situation in a chemo-
stat with that in a serial batch culture. He concluded that cross-
feeding is less likely in serial batch cultures, because the
secondary nutrient is available at appreciable levels only for a
relatively short period of time, thus making conditions harsher
for specialists on the secondary resource, which is in agreement
with experimental results.61

A different approach to study the evolution of sequential
cross-feeding is proposed by Pfeiffer and Bonhoeffer.25 They
search for so called evolutionary endpoints, which are analogous to
the concept of an evolutionarily stable strategy (ESS, Appendix A),
by simulating competing strains that differ in the expression of
the enzymes of a certain metabolic degradation pathway. They
assume that the rate of ATP production is maximized and that
the total concentrations of enzymes and of intermediates of the
pathway are minimized. These two assumptions provide a
straightforward explanation for the advantage of sequential
cross-feeding: both species or strains may thus carry less
enzymes and also less intermediates. They predict that partial
resource degradation is more advantageous than complete
degradation if the resource concentration is high or if the
concentration of intermediates is restricted to a low value. They
find that for intermediate dilution rates of the chemostat the
coexistence of complete and partial degradation and coexistence
between two partial degraders is possible. At very high or
very low dilution rates a coexistence of these strains is very
unlikely, which is in agreement with the results from Doebeli.57

It is concluded that cross-feeding emerges naturally under the

Fig. 2 Scheme of invertase secretion by baker’s yeast. Defector cells (marked
D) do not produce invertase and benefit from the glucose (hexagons)
released by the enzyme (indicated by scissors) secreted by cooperating
cells (C). The glucose concentration is higher near cooperating cells unless
the system is well mixed, providing an advantage to these cells, while the
cost of secretion is a disadvantage. Fructose, the second constituent of
sucrose, is indicated by pentagons.

Fig. 3 Two different types of cross-feeding as described in the text.
(a) Sequential cross-feeding. Species b1 takes up a primary substrate and
secretes an intermediate which is taken up by b2.The cross-feeding
chain can comprise more than two species. Cheating cannot occur.
(b) Reciprocal cross-feeding. Two different metabolites A and B (essential
for the growth of the respective organism) are exchanged between
bacteria b1 and b2. Cheating occurs for bacterium bc which does not
return any metabolites.
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above-mentioned extremality principles. On the basis of similar
principles, Costa and coworkers26 explained division of meta-
bolic labour by bacteria in nitrification.

A consortium degrading xenobiotics is studied by Katsuyama
et al.60 They develop a mathematical model based on Sphingomonas
sp. TFEE and Burkholderia sp. MN1 degrading fenitrothion,
both lacking the complete pathway. Therefore, both bacteria
partially degrade fenitrothion. Burkholderia lives on the intermediate
excreted by Sphingomonas. These findings are in accordance
with Pfeiffer and Bonhoeffer:25 each bacterium uses a minimum
number of enzymes and the total concentration of the inter-
mediates is minimized.

Another, rather different approach is chosen by Gerlee and
Lundh.62 They investigate the evolution of cross-feeding in a
population of artificial individuals that are capable of succes-
sively degrading artificial metabolites from which they extract
energy for self-maintenance and reproduction. By computer
simulations, Gerlee and Lundh62 find out that cross-feeding is
the more favoured the more the flow rate of new metabolites
into the system is decreased. This is explained by arguing
that with low influx rates of new metabolites each metabolite
stays longer in the system, such that its probability to be
degraded by several organisms is increased. Thus, interactions
between organisms are strengthened. That is in accordance
with the result of Pfeiffer and Bonhoeffer25 that a coexistence of
bacterial strains is more likely to evolve if the dilution rate of
the chemostat is low.

In a theoretical study by Bull and Harcombe,58 a model for
the growth of two populations interacting by reciprocal cross-
feeding is developed. Therein, ordinary differential equations
are used to model a system that resembles Maynard Smith’s
haystack model.63 Three general factors are found to affect the
evolution of cooperative cross-feeding. First, the population
needs to be spatially structured in order to ensure that a
returned benefit can be directed to individuals or clones, not
entire populations. Second, cross-feeding must pre-exist in
that, in the beginning, one partner already provides a benefit
to the partner by overproduction of, for example, a byproduct.
Third, cross-feeding is more easily selected when its cost to the
donor is low in comparison to the benefit of the recipient.
A further important finding of that paper is that cooperative
cross-feeding is favoured during growth at intermediate popula-
tion densities.

The model by Bull and Harcombe is subsequently revisited by
Estrela and Gudelj,64 using non-linear dynamics. The following
outcomes contradict those found by Bull and Harcombe: first,
instead of cross-feeding being favoured at intermediate densities,
cross-feeders may never be able to outgrow non-cross-feeders
at intermediate densities. Second, the shape of the trade-off
functions between the cost and benefit of cooperation has a
profound effect on the success of cross-feeders in comparison
to non-cross-feeders. Third, the result that a small population
of cheaters cannot invade an already established population of
cooperating cross-feeders requires the same carrying capacity
for all interacting populations. They come to the conclusion
that cooperative cross-feeding is a robust interaction.

Estrela et al.54 study a special interaction: a one-way byproduct
cross-feeding in which a cross-feeder species takes up a by-product
from a producer species that is toxic to the producer. This cross-
feeding interaction is favoured by intermediate toxicity degrees,
an increasing by-product production and an increasing con-
sumption of the by-product. Furthermore, the consequences of
environmental fluctuations are discussed. The authors speculate
that such a one-way by-product interaction could evolve to an
obligate interaction.

The evolution of cross-feeding can be explained by the
concept of an evolutionarily stable strategy or by adaptive
dynamics. Interestingly, in the studies cited above, payoff
matrices were not used. Especially for the case of sequential
cross-feeding on glucose and acetate we suggest a payoff matrix
of the form:

(4.1)

where the strategies Ac and Glc stand for feeding on acetate or
glucose, respectively. This would be the game type ‘‘Leader III’’
(Appendix B). The strain degrading glucose to acetate would be
the ‘‘leader’’. The second strain can either accept the offered
acetate and, thus, be the ‘‘follower’’ or try to use glucose as well. It
is impossible that both strains use acetate (payoffs of 0) because
this must be produced by one of them. If both use glucose, they
have to share the resource and, thus, get a comparably low payoff
of 1. The highest payoff is obtained by the ‘‘leader’’ in the above
sense, while the ‘‘follower’’ gets a somewhat lower payoff (acetate
is the less rewarding nutrient), which is nevertheless higher than
1. Also, the Prisoner’s Dilemma and the hawk–dove game are
discussed as potential games in this context.65,66

However, for reciprocal cross-feeding the concepts of two
individuals playing against each other or one individual playing
against a population are not sufficient.67 Here, the game
is running on the level of two (or more) populations against
each other. Usually, cross-feeding is an N-player game.67

Furthermore, we can have four types of players: two partners
each of which can cooperate or cheat. Also, the game does not
necessarily have to be symmetric. Thus, existing concepts need
to be refined or new ones need to be developed. Archetti and
Scheuring66 discuss the importance of non-linear public good’s
games and propose for the problem of cooperative cross-
feeding between two species a game of two simultaneous public
good’s games. Assuming that the fitness function of the public
goods are non-linear, they show that, without the ability to
discriminate between cheater and cooperator and in the absence
of sanctions, a stable coexistence between cooperators and
cheaters is possible.

5. Cyclic competition

A central question in evolutionary biology is to identify mechanisms
maintaining and even increasing biodiversity. How can different
phenotypes (strategies) of the same species coexist?
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In several ecosystems a non-transitive, cyclic competition of
three species has been observed, which resembles the famous
rock–paper–scissors (RPS) game, where rock is wrapped by
paper, paper is cut by scissors and scissors are crushed by
rock. Jackson and Buss68 describe such cyclical dynamics of
coral reef invertebrates and Sinervo and Lively69 observe
the rock–paper–scissors structure of mating strategies of the
side-blotched lizard Uta stansburiana.

An interesting aspect of the RSP game is that it arises from the
Prisoner’s Dilemma game by adding a strategy called ‘‘loner’’.70

This additional strategy implies that the players are no longer
stuck in the situation ‘‘defect, defect’’ (see Appendix C).

The most famous and frequently investigated example in
microbiology is given by colicin producers and non-producers
in Escherichia coli populations.71,72 An early work describing the
difference between two competing strains and three competing
strains is that of Durrett and Levin.73

Strains that produce colicin (P) also have to be resistant against it.
Non-producing strains can either be resistant (R) or sensitive (S).
Producing toxins against competitors is called allelopathy. Pairwise
competitions show that P strains poison S strains, S beats R because
of R having the costs of being resistant and R outcompetes P
because of P bearing additionally the costs of producing colicin.
Neumann and Schuster74,75 investigate a model with intrinsic
growth rates and self-limitation terms. Due to the competition for
nutrients among the three strains and the poisoning effect caused
by the colicin producers, all interaction coefficients are assumed
to be negative. This model is structurally stable. Depending on
parameter values a stable steady state, stable limit cycle or
heteroclinic cycle is obtained. The latter describes an oscillatory
dynamics converging to one of the three pure states. Such a
dynamics is indeed found in experiments.71 In Neumann and
Jetschke76 this model is developed further by the use of adaptive
dynamics. This leads to the interesting prediction that the
toxicity should decrease during evolution.

In many situations of cyclic dominance in biology, spatial
structure is of importance. To include this, partial differential
equation (PDE) systems, here reaction-diffusion models, can
appropriately be adapted. Nakamaru and Iwasa77 consider the
boundaries (traveling waves) between areas dominated by
different strains. Adamson and Morozov78 use the spatiotem-
poral reaction-diffusion scheme based on the three-species
Lotka–Volterra competition approach, as considered by May
and Leonard.79 Focussing on a variable mobility of the species
results in a wide range of spatiotemporal patterns.

Several spatial models using cellular automata that represent
structured environments and finite populations have been estab-
lished, often hand in hand with and in comparison to a differential
equation model. In Durrett and Levin73 the spatial model shows
coexistence for a long simulation time, in contrast to the mean-field
ordinary differential equation model. The ordinary differential
equation model of Frean and Abraham81 shows that the popula-
tions are not controlled by their own invasion rates, but by the rates
of the type they invade. Adapting the spatial model, it still holds
that the most aggressive species does not have the largest popula-
tion (‘‘survival of the weakest’’).

An important experimental work is that of Kerr et al.71 They do
experiments with three E. coli strains that satisfy a rock–paper–
scissors competitive relationship and modify the simulation of
Durrett and Levin.73 When dispersal and interaction are local,
coexistence occurs over a substantial range of model parameter
values. However, regarding a global neighborhood coexistence
never occurs and only the resistant strain survives (contrary to
ordinary differential equation models). Károlyi et al.82 introduce a
mixing step to simulate chaotic flow.

Berr et al.83 investigate asymmetric interaction rates and
compare small and large population sizes with the help of
ordinary differential equations. Wang et al.84 consider mobile
species that can carry a virus. The authors study the epidemic
spreading (intra- and interspecific). Ni et al.85 find that the
structures of the basins of attraction yielded by a PDE model
and by a lattice model are in good agreement.

Müller and Gallas86 try to find an explanation for the
different outcomes of the model in Kerr et al.71 (only the resistant
strain survives in long-range interactions) and the model in
Károlyi et al.82 (the winner is the sensitive strain). They discover
that cyclic competition has a characteristic quasiextinction period,
during which the sensitive population remains smaller than the
other strains, so that the critical factor controlling the final strain
surviving is actually the size of the community.

Further cellular automaton models are used to explain the
promotion of biodiversity87,88 and to investigate the influence
of mutation rates35,89 or of mobility.90,91 Shi et al.80 emphasise
the dependence of dynamical properties on initial conditions
(see Fig. 4). Venkat and Pleimling92 study mobility and asym-
metry effects in one-dimensional rock–paper–scissors games.

Szolnoki and Szabó93 and Szabó et al.94 compare the behaviour
of the rock–scissors–paper game on different networks (for
example square lattice, honeycomb lattice, random networks).

Well-mixed and large but finite populations can be modeled
with the help of stochastic processes. This approach also
emphasises the underlying stochastic character. It was used,
for example, by Tainaka,95 Ifti and Bergersen96 (introducing
mutations and migrations), and Traulsen et al.97 (including
mutation rates). Claussen and Traulsen98 recall the replicator
dynamics for large populations. With the help of microscopic
stochastic processes it is shown that also the population size
determines whether extinction or coexistence occurs. A critical
population size is calculated, above which coexistence is likely.

Last, but not least, there are studies that consider more than
three strains.99–102 Different modeling techniques and inter-
action topologies are investigated.

There is a lot of literature describing the dynamics of the rock–
paper–scissors game. Different modeling techniques depending
on the investigated population (finite or infinite) and on the space
(homogeneous or structured) can be found as well as different
parameters of interest. There are studies concerning the invading
probability (speed/interaction rate),35,81,83,103 mutation
rates,35,89,96–98,104,105 the toxicity of the bacteriocin,73,74,76,88 the
death rate,73,88 mobility of the species,78,80,84,85,90–92,96 population
size,83,86,98 intraspecific competition85 and even one- or two-
dimensional space92,106 and the initial values.
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Not all of the literature cited in this section uses game theory
in a strict sense. However, as we are interested in the results of
the rock–paper–scissors dynamics, we find it worth mentioning
all the modeling approaches inspired by this game.

6. Signalling

Signalling is a concept that can be found in many fields like
sociology, economics, philosophy and of course in biology.107

The term of signalling is closely related with the concepts of
communication and information. Signalling games are two-
player games between a sender S and a receiver R.107 Both
players have different strategies. The sender has a potentially
infinite set of messages and the receiver can choose from a set
of actions.107 Furthermore, the sender has a certain type given
by nature, which is not known by the receiver. The type could
be for example male or female, venomous or non-venomous
insects. For example, a non-venomous insect could send
the message that it is non-venomous or pretend that it is
venomous. In contrast to some classical two-player games, like
the Prisoner’s Dilemma or the hawk–dove game (see Appendix
B), the players in a signalling game always act sequentially
rather than simultaneously (Fig. 5). R responds to the message
of S. The payoffs for the two players depend on the type of S, the
message sent by S and the action of R.108,109 In the signalling
games often the term quality is used. It describes a subset of
characteristics which are taken into account for the fitness of
an individual.

Signalling games in biology deal with the following aspects:
how costly is the signal for the sender and how to differentiate
between honest and dishonest (cheating) signalling. Often not
the real payoff values are calculated but only the ESSs are
identified on the basis of the payoff relations. Most of these
game-theoretical studies are focused on animals like mammals
and birds. John Maynard Smith, the developer of the concept of
ESS, and David Harper concentrate on animal signals in their
homonymous book.110 However, game-theoretical analysis of

signalling is not only possible for animals, but also for other
multicellular organisms such as plants, and on the cell level.

An important question arising in signalling games is, how
evolution produced ‘‘honest’’ or reliable signals between organ-
isms despite the incentive to betray the receiver of the signal.
Zahavi111 provides an attempt to explain this with a hypothesis
called ‘‘Zahavi’s handicap principle’’. It suggests that reliable
signals have also to be costly to the sender, and therefore
implying that other individuals without a specific trait could
not afford the cost for this honest signal. An ESS model of the
handicap principle is derived by Grafen.112 But the handicap
principle is not without controversy, e.g. Bergstrom et al.113 find
that reliable, honest signals need not be costly.

In a publication by Pagel28 the ESS of signalling between
gametes in lower eukaryotic organisms is analysed. The gametes
emit pheromones and affect movement or growth of other gametes
in the direction of the pheromone. The result is that with increasing
quality of the signalling gamete, also the level how strong
the signaller displays its fitness and the probability that the
receivers prefer that signaller increase.

Fig. 4 Simplex representation of the different outcomes of the rock–scissors–paper game.80 Each point of the simplex represents an initial three
species population and the pattern shows the final state (white, black and white, curled region, respectively). (a) High mobility (parameter) ends up in
extinction – only one of the three strains can survive, which one depends on the initial densities, (b) decreasing the mobility parameter leads to an area
(black region) in the middle where coexistence is possible.

Fig. 5 Tree diagram of a signaling game for the determination of the
payoff, which depends on the type (t1 or t2) given by nature. The messages
(m1 or m2) of the sender (S) and the actions (a1 or a2) of the receiver (R) can
be seen as strategies. WS and WR denote the payoffs for the sender and the
receiver, respectively, in dependence on the type, message and the action.
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In bacteria, signalling is often mentioned in the context of
quorum sensing. For example in biofilms quorum sensing in
combination with cheating plays a very important role.114

Brown and Johnstone27 develop a two-trait ESS function
describing the optimal level of cooperation and of signalling
depending on the costs to the individual, benefit to the group,
colony size and relatedness of the bacteria. For their ESS calcula-
tions, they fixed the costs and passive fitness (fitness of a non-
cooperating bacterium in a group of non-cooperators). There is
only a stable cooperation effort if the relatedness and colony size
are higher than certain threshold values. The highest stable
signalling effort is at a relatedness near 0.35 and large colony size.

Quorum sensing (QS) with a two-dimensional cellular auto-
maton of toroidal lattice topology is modeled by Czárán and
Hoekstra.115 They assume three genetic loci: C for cooperation,
S for production of signal molecules and R for signal response.
All loci can have an active allele or inactive allele, thus there are
eight different genotypes. Different scenarios, with different initial
combinations of genotypes and different costs for cooperation
are tested. In environments which promote cooperation, the C
allele is almost fixed. Simulation of the scenario, in which
cooperation is costly, results in a cyclic interaction pattern of
the genotypes ‘‘Honest’’ (CSR), ‘‘Vain’’ (CSr) and ‘‘Blunt’’ (Csr)
comparable to a rock–scissor–paper game (see Section 5). The
‘‘Vain’’ can invade a population of ‘‘Honest’’, because it saves the
costs for response. The ‘‘Blunt’’ has no costs for the QS, that is
why it invades the ‘‘Vain’’. This unconditional cooperator can be
invaded by the ‘‘Honest’’, because the last one only cooperates if
there are QS-signals, so if it is surrounded by ‘‘Blunts’’ it has not
to pay the costs for cooperation but benefits from the public
good. If cooperation is relatively cheap, the simulation results
in a dynamical coexistence of ‘‘Honest’’, ‘‘Vain’’ and ‘‘Blunt’’
genotypes reminiscent of the rock–scissors–paper game (see
Section 5). The authors also investigate other environments
with other fixed alleles or no fixed alleles.

The work of Lotem et al.116 deals with unconditional altruism
through signalling benefits. Three different strategies are
assumed: unconditional altruism, helping all other players;
defection by soliciting but never donating help; and conditional
altruism or tit-for-tat strategy.117 The latter is a strategy in the
iterated Prisioner’s Dilemma implying to replicate an opponent’s
previous action. There are a total of six ESSs. Provided that
the signalling benefit of donating help only exceeds the costs
for some individuals (high-quality players) and not for others
(low-quality players), the ESS is that the high-quality players are
unconditional altruists and the low-quality players are defectors
or play tit-for-tat.

Traulsen and Nowak118 develop a tag-based model for
cooperation. The basic idea is that individuals recognise each
other via arbitrary signals, so-called tags. A population of
cooperators (or a fraction of this population) is able to change
their secret tag when a defector misuses the tag. In the theore-
tical study of Traulsen and Nowak118 the authors find that there
are more cooperators than defectors if b/c 4 1 + (2u/v) (with
b benefit; c costs; u mutation rate changing only the strategy;
v mutation rate changing both strategy and tag). If there are

K different tags and the mutation rate between all phenotypes is
constant, the constraint is b/c 4 (K + 1)/(K � 1).

An example for a tag-based system is the csA gene in
Dictyostelium discoideum, encoding a homophilic cell adhesion
protein.119 In a mixed culture of wild-type and csA-knockout cells,
the wild-type cells are more altruistic but they can distinguish
between their neighbours and direct the benefit preferentially
to other wild-type cells. This effect is called ‘‘greenbeard’’
mechanism,119 meaning that cooperators can recognize each
other by a striking trait.

7. Host cells meet parasitic cells

Several papers analyse two-player games between a host and its
pathogen.120–122 In Renaud and de Meeüs120 a two-player game
between one host and one pathogen is analysed. The two players
can choose between an aggressive strategy that seeks to eliminate
the adversary (killer strategy) and a less aggressive strategy (diplomat
strategy). The killer strategy is always an ESS, whereas the diplomat
strategy is a second solution only under certain parameter settings
(costs of virulence and resistance).

In Frean and Abraham121 an endosymbiont–host association
is studied additionally by a two-populations simulation (intra-
and inter-specific competition). Huang et al.122 uses focal-point
theory to investigate three host-microbe game models (coopera-
tion, dilemma, conflict).

A spatial model on the basis of a cellular automaton is given
by Rauch and Bar-Yam.123 The effect of long-range mixing of
species is investigated, which occurs for example due to human
intervention and to global transport of an infectious disease.

A third general host–pathogen approach (considering infec-
tiousness) is based on epidemiological modeling and adaptive
dynamics: ordinary differential equations for susceptible and
infected subpopulations are established,124,125 subsequently
some fitness functions are found (function A in the Appendix
A) with the help of the solution of these ordinary differential
equations and final investigations on evolutionary stability.

Studies considering parasites competing within a ‘‘constant’’
host are for example the work of Bremermann and Pickering,126

van Baalen127 and Day et al.128 There, individual parasites are
considered as players. In Bremermann and Pickering126 it is
assumed that the disease-induced mortality rate of the host
grows with the increase of a parasite’s reproductive rate. In
order to extend the length of reproduction time, competing
parasites within a host may prefer to reproduce at rates below
their maximum reproductive rates. The work by van Baalen127

shows that different evolutionary outcomes are possible if the
parasites coevolve with the host (a common but quite avirulent
parasite in a host investing little in defence or a rare but virulent
parasite in a heavily defending host). In Day et al.128 parasite’s
virulence and host clearance rate are considered as strategies.
It is found that the total infection-induced mortality can be a
by-product of host immune response.

Several studies investigate the evolution of host defence
against a fixed parasite strain. While Boots and Haraguchi129
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examine resistance strategies of the host, Bonds et al.130 focus
on the evolution of host sociality with respect to an infectious
disease and Miller et al.131 study the influence of the host life
span on different host resistance mechanisms. In Best et al.132

the question why hosts are differently tolerant is analysed.
The coevolution of host and pathogen is modeled for example

by Taylor et al.133 The level of virulence that the pathogen exhibits
and the level of immune clearance that the host exhibits are
used as continuous strategies. Further coevolutionary population
models are reviewed in Boots et al.134

The interesting effect of host infection on the evolution of
biodiversity of pathogen strains is studied by Morozov and
Best.135 It is argued that the role of host–parasite interaction
can be important in explaining polymorphism. The model is a
combination of an epidemiological model and a predator-prey
model and is analysed by adaptive dynamics and evolutionary
game theory.

Alonzo and Calsbeek136 build a game with three strategies:
a reproductive parasite and two different resource defenders.
The model shows continuous sequential invasion and no
stable coexistence.

In order to investigate age-dependent behaviour variation137

and heterogeneous host populations,138 epidemic modelling is
combined with game theory. Williams138 argues that individuals
are differently susceptible and vulnerable to a pathogen and these
differences may also influence the pathogen evolution.

In the following, we present some interaction models with
specific biological application.

Wolf and coworkers139,140 explore the origin and utility of
random phase variation (RPV). This strategy can be described
as a random switching of phenotypes in order to adapt to rapidly
varying environments without requiring mutation. Bacteria as
players have sensors and a number of options to react (e.g. cell
states or phenotypes). A strategy is defined as a map from sensor
information onto behaviour. Certain sensor defects (unobservable,
incorrect, delays, noise) and different environments (time-
invariant, time-varying, stochastic) are analysed for combina-
tions that give rise to RPV as an ESS. As RPV can be seen as
random alternations between losing strategies, that form a
winning strategy when sensing is absent, an example for the
Parrondo paradox is found. The Parrondo paradox describes
the effect that mixing losing strategies can produce a winning
outcome. The problem is solved with a matrix population model,
that is based on Markov chains.

Endosymbiosis of proto-mitochondrial prokaryotes into
proto-eukaryotic host-cells is investigated in Bivort et al.141 A
game-theoretical two-player game analysis suggests that active
symbiosis would not have been favourable to both species as an
asymmetric Prisoner’s Dilemma arises from the payoff matrix,
indicating that some assumptions are not adequate. Agent-
based model simulations exhibited potential conditions that
could lead to a stable symbiosis.

Eswarappa142 studies persistent infections. Bacteria stay in
both intracellular (mostly phagocytes) and extracellular com-
partments of the host. Bacteria are safe inside phagocytes if
they can avoid lysis. Here, the bacteria are protected from

immune recognition and serum mediated extracellular killing
by the host system. Furthermore, bacteria can access the external
environment for dissemination. Examples for such bacteria are
Helicobacter pylori, Mycobacterium tuberculosis and Salmonella
spp. On the other hand, the host can use extracellular or
intracellular defense mechanisms. A very basic and heuristic
model shows three Nash equilibria: two pure equilibria that are
not biologically plausible and a mixed Nash equilibrium that
exists independently of the payoff relations and is biologically
relevant. Bacteria remain in extra- and intracellular compart-
ments of the host and the host uses extra- and intracellular
defense mechanisms.

The polymorphic fungus Candida albicans has two strategies
when engulfed by macrophages: avoiding lysis transiently
(silencing) or forming hyphae and escaping (piercing) (Fig. 6).
Two different games among C. albicans yeast cells inside the
macrophage (macrophage is considered as the environment)
are developed by Hummert et al.143 In the two-player game it is
assumed that each macrophage engulfs exactly two yeast cells.
If costs for silencing are not too high, the game is a hawk–dove
game with a single mixed ESS.

(7.1)

The left matrix of (7.1) shows the payoffs, where p stands for
the piercing strategy, s stands for the silencing strategy, l stands
for having survived, and c having payed the costs for piercing. In
the second game, which is a playing the field game (Appendix A),
a Poisson distribution for the number of ingested C. albicans
yeast cells is assumed. The fitness matrix is shown in the right
part of eqn (7.1). An entry gives the payoff of an individual
playing a row strategy against a pure population playing
the column strategy. The ESS in a mixed population (under
certain parameter conditions) can be calculated, but also a pure
piercing population can exist (under contrary parameter
conditions). Additionally, survival rates of phagocytosed yeast
cells can be calculated. A comparison with experimental studies
showed that there exist two different karyotypes, a pure pier-
cing population and a mixed population, the difference is
explained in the difference of the costs these two karyotypes
have, or in other words, in the ability to secrete proteins that
enhance producing hyphae.

Bewick et al.144 investigate two different HIV variants and
the corresponding adaptive immune responses. Two different
scenarios are analysed and the Nash-equilibria are calculated.

Fig. 6 Possible interaction scenarios: (a) C. albicans yeast cell population
and a macrophage before ingestion, (b) both ingested cells silence, (c) both
ingested cells pierce (d) ingested cells adopt different strategies. Figure
taken from Hummert et al.143
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In another work Bewick et al.145 model the immune defense
against hepatitis B in the liver by comparing the immune
defense strategy with military defense strategies.

8. Malignant tumour growth

Cancer is known to be a genetic disease where accumulation of
mutations can transform cells from a homeostatic tissue into a
complex ecosystem of individualistic cells that compete for
limited space and resources.146–148 Cancers are also very hetero-
geneous, both genotypically and phenotypically. A single tumour
may contain several different types of tumour cells,149 with each
type potentially having different traits and ways to interact with
other cells and the local microenvironment. This heterogeneity
is passed on from parent to daughter cells and affects their
probability of proliferation and survival. Furthermore, this
heterogeneity is key to explain important aspects of cancer
such as the emergence of increasingly more aggressive cell
types and resistance to treatments.

Tumour cells are thus part of an ecosystem where interac-
tions between different cells and the environment determine
the somatic evolution.146,147,150 Any given tumour can be made of
a number of different highly dynamic microenvironments.149,151

Studying cancer progression requires access to mathematical
tools where the competition of different cancer phenotypes
and strategies can be taken into consideration.152 The use of
evolutionary game theory to model and analyse cancer progres-
sion is still a nascent field with only about 15 years of history
and just a few papers.153 In that time it has been used to study
cancer progression both in vitro (as a loose collection of tumour
cell populations growing out of control) and also in vivo in
organs such as the brain, bone, prostate or the lung. Indeed,
most uses of evolutionary game theory in cancer so far involved
studying how certain tumour phenotypes are selected for. This
is a particularly important part of cancer progression as new
phenotypes emerge in the tumour population and, provided
they are fitter than the current mix of phenotypes, grow
and become an important (but rarely the only) subpopulation
in the tumour. The emphasis on phenotypic transitions as
hallmarks of cancer has been previously highlighted154–156

and considered therapeutically.
The evolution of increasingly more aggressive phenotypes is

studied in the context of the competition between different cell
lines by Anderson and colleagues.157 The study focuses on the
emergence of phenotypes with ever decreasing dependence on
the local microenvironment, one of the hallmarks of cancer
aggressiveness.156 The results of the game between cells that
are microenvironmentally independent and those that can rely
on the microenvironment, show that the two types are likely to
be found coexisting under most circumstances. Other studies
on the emergence of aggressiveness focus on glioblastomas,
malignant brain cancers characterised especially by high invasive-
ness and motility of the constituting cancerous glia cells. In
particular, the emergence of invasiveness is studied in the
context of glioblastomas using a cellular automaton model

whose rules are based on game theory but where fitness is not
defined explicitly but implicitly via the phenotype.158 A more
conventional evolutionary game theory approach30,159 considering
invasive and proliferative subpopulations, highlights the impor-
tance of the microenvironment in the progression to malignancy.
The model results are later corroborated via an agent-based
model.30 Both models consider a population of rapidly prolifer-
ating cells where a mutation might confer a higher degree of
motility to certain cells at the cost that cells that move cannot
divide at the same time. In essence, both models present a
game that is similar to the standard hawk–dove game4 so
that the local population of proliferative cells is better off
interacting with the new motile cells than with other prolifera-
tive cells but a population composed of proliferative cells is still
susceptible to be invaded by invasive ones. This is akin to
hawks receiving a higher fitness payoff from their interactions
with doves but still being susceptible of being invaded by a
small number of doves (under the assumption that injuries can
be costly). As in most evolutionary game theory, a payoff matrix
completely describes the model:

This simple game leads to an equilibrium described by this
equation:

p ¼ 1� 2c

1� c
;

where p is the proportion of motile cells in the population, c is
the cost of motility and the ESS is calculated with the Bishop–
Cannings theorem. This model has been extended by including
glycolytic cancer cells.162 Emergence of glycolytic cells with a
less efficient metabolism that does not require oxygen and
produces lactic acid as a byproduct, is considered one of the
hallmarks of cancer160 and known as the Warburg effect42 (see
also Section 2). The Warburg effect has been previously studied
with the help of mathematical models that show that there are
circumstances under which glycolysis can be beneficial to a
tumour cell. This is important because traditionally glycolysis
has been viewed as a low yield alternative to regular metabolism.
However, cells with a glycolytic metabolism are known to emerge
in hypoxic regions of the tumour. It has been hypothesised that, in
rare occasions, glycolysis can lead to a Prisoner’s Dilemma game
in which cells with glycolytic metabolism could be considered
cooperators whereas the traditional aerobic cells would be defec-
tors of the game.44 Lactic acid being produced by glycolytic cells
can be viewed as a common good for these cells. Alternatively,
as done in Section 2, one may argue the other way round and
consider the glycolytic cells as cheaters.

Meanwhile, the invasion/proliferation game mentioned before
has been enriched with the addition of cells with a glycolytic
phenotype and interpreted in a glioblastoma context.162 The
results of this game suggest that invasiveness is more likely to
emerge in tumours where there are glycolytic cells present,
strengthening the notion that non-competitive interactions
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between tumour cells play an important role in glioblastoma
progression. Further work studying secondary glioblastomas
characterised by the IDH1 (isocitrate dehydrogenase) mutation,
suggest the following mechanism: rapidly proliferating cells
grow beyond oxygen reach leading to glycolytic phenotypes that
incentivise the emergence of the invasive phenotypes typical in
glioblastomas.161 Building on the research by Basanta162 and
Kareva,44 Archetti163 has recently modelled the Warburg
effect following the idea of lactic acid viewed as a public good
(it helps the tumour in small doses but it harms if there is
too much of it). A modelling approach that would allow for a
nonlinear dependence of the benefit on lactic acid concen-
tration could yield new insights on its role in cancer progres-
sion. Archetti uses a non-linear public goods game based on the
properties of Bernstein polynomials and suggests that reducing
the acidity of the environment might not significantly change
the dynamics of the game and thus should not be a useful
therapeutical approach.

Evolutionary game theory is thus a very powerful mathe-
matical modeling tool in which to study how the interactions
between different cellular populations could give rise to the
different hallmarks of cancer.155 Work by Axelrod and colla-
borators150 nonetheless suggests that not all tumour cells have
to acquire all the traits in the hallmarks for the tumour to develop
a cancer. The interactions between tumour cells or even stromal
cells are not always exclusively competitive. There is then the
potential that tumour cells with different capabilities could
cooperate so that while no single cell would have all the
hallmarks of cancer, a group of cells would collectively have
them. Similar types of interactions between individuals in a
population have been studied by Nowak before164 and it is clear
now that these interactions play an important role in cancer
progression165 (see Fig. 7). They can be mutualistic (if both cells
interacting benefit from the interaction), competitive (if both
cells can be harmed as a result of the interaction), predatory
(if the benefit of one of the cells comes at a huge cost to the
other cell), parasitic (if the benefit to one cell comes at a small
cost to the other cell) or commensalistic (if the benefit to one
cell comes at no cost to the other cell).

Interestingly, the first known application of evolutionary
game theory in cancer investigates how angiogenesis can emerge
if not all tumour cells contribute,166 thus constituting a model
of commensalism. In their model, Tomlinson and colleagues
consider two subpopulations of tumour cells, one producing
VEGF (an angiogenic factor) whereas the other one devotes all
its energy to proliferation. The coexistence shown by their game-
theoretical model is also later confirmed in a more sophisticated
threshold model by Bach and colleagues167 where the benefits of
angiogenesis can only be realised when a majority of interacting
cells are producing VEGF. The general mechanism describing
the dynamics of cancers with cooperating and cheating sub-
populations (where cooperation is defined as the production of
growth factors such as VEGF) is also studied using a spatial
implementation of evolutionary game theory in the paper by
Bach et al.168

The interactions between tumour cells and non tumour cells are
equally important. It is well known that tumour cells interact with
stromal cells such as fibroblasts, endothelial cells and macrophages,
in ways that could be considered co-option.169 Dingli et al.170

study interactions between different types of tumour cells and
stromal cells in the bone (osteoclasts and osteoblasts) in multi-
ple myeloma. The model shows that targeting the cancer cells
directly is unlikely to be an effective long term cure of myeloma
but targeting the interactions between the tumour and the
stromal cells so that those can effectively outcompete the
tumour is a more promising approach. In a similar line, game
theory is used to study interactions between a heterogeneous
tumour with fibroblasts in prostate cancer.171 In this game
tumour cells can co-opt the fibroblasts to obtain certain growth
factors or ignore the microenvironment at the cost of having to
produce those factors. The study of different treatment options
demonstrates the role they have as selection forces. In some
occasions, these forces can potentially eliminate the bulk of the
tumour but only at the expense of increasing the relative fitness
of more aggressive and less treatable phenotypes.

This last study highlights not only the role of evolutionary game
theory to understand the role of cell interactions in cancer
progression but also how therapies can influence the evolutionary
dynamics of a cancer. One example is the use of evolutionarily
enlightened therapies such as the evolutionary double bind
as advocated by Gatenby and colleagues.172 The evolutionary
double bind suggests that combination therapies, where treat-
ments can be considered as tumour cell predators, can be
applied so that tumour cells that are resistant to one of the
treatments are so at the expense of being even more susceptible
to the second treatment. Mathematical models are used to inves-
tigate this intriguing hypothesis173 but more recently a game-
theoretical approach is used to study a specific case where
researchers at the Moffitt Cancer Center find that chemotherapy
and a p53 vaccine could work synergistically in lung cancer.174,175

The model assumes that, given the two treatment options, a
heterogeneous tumour can be composed of three subpopulations:
susceptible to both treatments, resistant to the p53 vaccine and
resistant to chemotherapy. The interactions between these
populations are important since the clinical work could be

Fig. 7 Four types of interaction among tumour cells and among tumour
and healthy cells. For further explanation see text.
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explained by the parasitism of the p53 resistant populations
(providing protection from the immune system to their neigh-
bours) by the subpopulations that are sensitive. The study also
suggests that the key to the synergistic effect is the sequence in
which the treatments are applied which results in an increasing
reduction of tumour heterogeneity.

In summary, cancer is an evolutionary disease where cells
that can adapt to the tumour environment will thrive whereas
those that cannot become extinct. The evolutionary dynamics
of cancer can be understood with the help of mathematical
models based on evolutionary game theory, especially regarding
two key and intertwined aspects of evolution: the role of inter-
actions between individuals and the emergence of new traits
in a population.

Current evolutionary game theory approaches have a number
of limitations: they assume homogeneously mixed populations
where all the relevant phenotypic strategies are known from the
start. Although not a limitation of evolutionary game theory,
current game-theoretical models of cancer usually disregard
the role of space and usually consider the proportions of
phenotypes in a tumour as opposed to the total numbers.
This can obscure the fact that in many situations the propor-
tion of a phenotype could be going down as the number of
cells with that phenotype keeps increasing during tumour
growth. Despite the limitations, evolutionary game theory is
a very useful tool in which to study the emergence of new,
increasingly more aggressive phenotypes that characterise
tumour evolution and progression. It is also an ideal framework
in which to investigate how treatments can affect selection and
alter the evolutionary landscape.

9. Application in medicine and
biotechnology

As shown in the previous section by the example of cancer
treatment, evolutionary game theory is a promising tool also for
applications in medicine, producing counter-intuitive results
where conventional approaches fail. The same holds for appli-
cations in biotechnology. Both directions are discussed in the
present section.

In medicine, conventional treatments of tumours as well
as life-threatening infections by viruses like HIV or bacteria
often tend to fight tumour cells or pathogens by (single) drug
usage at high dosage. What seems to be a success on short-
sight often leads to resistance to the given drug and relapse on
the long run.

Optimal drug dosage over time is treated generally by Bewick
et al.176 in a model that combines evolutionary game theory
with optimal control theory.176 Based on the assumption that
viruses have to make a trade-off between replication capacity
and drug resistance, their results give advice for an optimal
treatment scheme in a rather non-intuitive way: when drug
resistance increases faster with mutations, leading to resistance,
than the replication rate decreases, the optimal strategy of drug
dosage is to give high dosages during the early phase of the

treatment regime, and then to lower dosages as the treatment
process proceeds. In the other case, if drug resistance increases
slower than the replication rate lowers during mutational
processes, leading to resistance, the optimal drug strategy is
to limit drug application during the first half of the treatment
phase, and then to increase the drug load over the second half
of the treatment phase.

In a similar manner, Wu and Zhang177 use the combined
approach of evolutionary game theory and optimal control
theory to propose optimal medication schemes for HIV
patients. They come to the conclusion that it is optimal to dose
the medication only moderately at later stages of the treatment,
so that T cells and HI-viruses attain a stable coexistence rather
than maximize the drug load which leads to a rapid resistance
mutation of HI-viruses.

Also in cancer treatment, evolutionary enlightened therapies
are promising (cf. Section 8). Tumours are now seen as hetero-
geneous formations consisting of interacting subpopulations,
each bearing different properties that can be seen as strategies.
Combination therapies successively weaken the cancerous
phenotypes, which may be susceptible to all treatments or suscep-
tible to one respective agent of the combination therapy.175

The key to the synergistic effect is the sequence in which the
treatments are applied, which results in a stepwise reduction of
tumour heterogeneity.

Interactions not only among tumour subpopulations but also
with surrounding cells in the microenvironment attracted more
and more interest as therapeutical targets in the fight against
cancer178 (cf. Section 8). Game-theoretic models illustrated the
role of different treatments as selection forces.170,171 Targeting
tumour cells directly often merely leads to short-term success,
clearing the way for more aggressive and less treatable pheno-
types. Instead, targeting interactions between the tumour and
surrounding cells, enabling the latter to outcompete the tumour
cells, is a promising approach to long-term survival.

Metastasis is one of the clinically most import transitions in
tumour progression, leading to more than 90% of cancer deaths.179

Intuitively, ‘‘starving out’’ the primary tumour by limiting its
resources to prevent metastasis seems to be a suitable therapeutical
approach. However, game-theoretic models show that the contrary
is the case. Providing a nutrient rich environment to the tumour
increases the fitness of proliferative cells over motile cells, acting as
a disincentive for a tumour to become invasive and metastasising.30

Improving tissue oxygenation, which increases the relative
fitness costs of tumour cells for switching to anaerobic glycolysis,
has a similar effect.162

As mentioned in the title of their paper, ‘‘An analogy between
the evolution of drug resistance in bacterial communities and
malignant tissues’’ is seen by Lambert et al.180 They suggest a
fundamental mechanistic similarity between the rapid evolution of
resistance to drugs in communities of cells in malignant tissues
and in bacterial communities. As a cause of the evolution, they
propose a programmed and collective stress response performed by
interacting cells und suggest bacterial communities as a model
system for tumour cells. From this perspective, a united view based
on game-theoretical models seems to be reasonable.

Review Molecular BioSystems

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
A

ug
us

t 2
01

4.
 D

ow
nl

oa
de

d 
on

 6
/9

/2
02

5 
2:

14
:0

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c3mb70602h


3056 | Mol. BioSyst., 2014, 10, 3044--3065 This journal is©The Royal Society of Chemistry 2014

Bacteriocins are of current interest as probiotic and bio-
protective agents181 as well as a potential viable alternative to
conventional antibiotics,182–184 showing promising success in
experimental studies on the treatment of chronic biofilm-
mediated infections.185 Kirkup and Riley72 emphasise the role
of bacteriocins in a game of rock–paper–scissors as potential
promoters rather than inhibitors of microbial diversity (in the
mammalian gut). Indeed, Brown et al.185 identify bacteriocins
as potential selective correctors of imbalances in the micro-
biome that are associated with chronic conditions such as
Crohn’s disease.

Evolutionary game theory is also a promising tool for
biotechnology. Game-theoretical analyses of the production of
extracellular enzymes bear a great biotechnological potential,
for example, in the context of renewable fuels and biodegrada-
tion of xenobiotics. Biotechnological processes are optimized
regarding their cost-benefit ratio. High density cell cultivation
is thus favourable.186,187 However, if production of extracellular
enzymes is involved in the biotechnological process, ‘‘cheating’’
mutants deficient in exoenzyme production can arise, which
benefit from the exoenzymes produced by ‘‘cooperating’’ cells.
Game-theoretical models predict a high percentage of ‘‘cheating’’
mutants at high cell densities and suggest optimal densities for
maximised volumetric productivity to be lower.50

10. Challenges and future prospects

In this and an accompanying review,12 we discuss the use
of evolutionary game theory in cell and molecular biology
including biochemistry. In spite of its ‘‘playful’’ name, game
theory has manifold practical applications, as witnessed by
several Nobel prizes in economics. As outlined above (especially
in Sections 7–9), evolutionary game theory can be applied bene-
ficially in medicine and biotechnology.

While evolutionary game theory has been applied in ecology
and behavioral biology since the mid-20th century, applying it
to ‘‘lower’’ levels in biology is more recent. As mentioned in the
Introduction, an important aspect in this development is that,
earlier, it was assumed that the players should have a certain
degree of cognitive and rational capabilities, so that only
humans and sufficiently complex animals could be considered
as players. However, applying the conceptual toolkit of game
theory does clearly not require that the players are conscious,
rational beings (cf. Maynard Smith and Price14). This becomes
even clearer from the numerous examples reviewed above. By
selection, certain behaviours or features outcompete others, so
that, in retrospect, it may look as if a certain appropriate
strategy had been chosen deliberately. Interactions between
micro-organisms can obviously be described by game theory
very successfully. Importantly, human behaviour is often super-
imposed by moral and social factors. This enables more
complex solutions such as mutualism based on trust leading
to non-Nash states, equilibria based on a rationality in favour of
the community or apparently irrational responses like defiance
or spite. Therefore, it might be argued that the concept of Nash

equilibrium is often much better suited to micro-organisms
than to human behaviour.

This raises the general question as to what can be gained by
applying game theory to non-cognitive systems that is not
provided by more conventional approaches such as optimiza-
tion theory or classical evolutionary theory. The arguably most
important aspect is a better understanding of seemingly counter-
intuitive findings such as ‘‘survival of the weakest’’,81 as it can
occur in the rock–paper–scissors game. As explained in more
detail above, the probably most intriguing example is provided
by a bacterial strain that is sensitive to a toxin but can eventually
be the only survivor in an oscillatory dynamics because it grows
with a higher intrinsic rate than the toxin producer and resistant
strains, although it is the least competitive strain. Phenomena
like this apparently contradict Darwin’s notion of the ‘‘survival of
the fittest’’. Whether they actually do so, however, depends on
how fitness is defined. The attribute ‘‘weakest’’ strongly depends
on definition. In terms of growth rate, the sensitive strain is
actually the fittest. In any case, the rock–paper–scissors game is
more complex than traditional Darwinian concepts because the
transitivity relation of fitness is violated.102 That is, if A is fitter
than B and B is fitter than C, (counter-intuitively) C needs not be
fitter than A. This non-transitivity actually implies that there is
no weakest, so that ‘‘survival of the weakest’’ is just a provocative
notion to make the point.

When analysing multi-cellular organisms, the question arises
as to what entities can be considered to be players. One obvious
option is to consider entire organisms as players. However, in
the case of cancer, the tumours or even the particular tumour
cells act (more or less selfishly) as independent agents. This
can be considered as an evolutionary regression to unicellular
forms of life.188 Interestingly, also adipocytes can act indepen-
dently to a certain extent. These cells excrete signalling sub-
stances, so-called adipokines, regulating glucose metabolism. In
obese individuals, that signalling is perturbed so that adipocytes
become, in a sense, selfish.189

Game-theoretical approaches can be extended in several
directions in the future. They can be extended to involve spatial
dimensions, for example, using individual-based models.
They can involve a temporal dimension (for example, using
differential equations such as in several rock–scissors–paper
models, Section 5) and stochastic components. Many dynamical
processes can be regarded as iterated games, such as the iterated
Prisoner’s Dilemma.117 These often show very complicated
dynamics or it may even occur that no optimal time pattern
exists.117 This is one possible explanation for the open-endedness
of evolution.

Here, we have concentrated on spatially homogeneous
situations. Of course, many processes of cooperation and
competition occur in heterogeneous setups. Accordingly, many
game-theoretical analyses have been performed by spatial
models, either continuous models31,38 or discrete models on
lattices (grids) (e.g. Reichenbach et al.,90 Szolnoki and Perc,190

Allison51). The boundary between game theory and other
modelling methods such as lattice models is not clear-cut then.
Also in other extensions of game theory, the boundary is not
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clear-cut, for example, with respect to ordinary differential
equation models in population dynamics.74

Appendix A: mathematical background

Typical tools and concepts in evolutionary game theory
are payoff matrices, Nash equilibria and evolutionarily stable
strategies (ESS). In a Nash equilibrium, no player would gain
an advantage (e.g. in terms of growth rate) when changing
strategy unilaterally, that is, without coordinated changes by
other players. The related concept of ESS describes a strategy
that, if adopted by a population, cannot be invaded by any
mutant strategy.

A.1. Two-player games

Each player can choose a particular strategy from a predefined
strategy set. For each strategy combination there are defined
payoffs for each player, written down in the payoff matrix
(outcome of the game).

Example: A symmetric two-player game with strategy set
{A,B}. The payoff for strategy A versus B is given by W(A,B).
Because of symmetry it is sufficient to fill the payoff matrix with
the outcomes of the row-player (player 1):

(A.1)

A strategy is said to be a dominant strategy if for every choice
of strategies of the other players the payoff from choosing
this strategy is greater than the payoffs from choosing any
other strategy. Strategy A is dominant if W(A,A) Z W(B,A) and
W(A,B) Z W(B,B), for all strategies B a A.

Given a certain amount of pure strategies, a further possi-
bility is to adopt each (pure) strategy with a certain probability.
Such a set of probabilities is said to be a mixed strategy.
Of course, the probabilities have to sum up to one. In the
symmetric two-player game with pure strategies A and B, we
write x for the mixed strategy to adopt A with probability x and B
with probability (1 � x).

An important notion in game theory is the Nash equilibrium.
It is a situation (a certain strategy combination of all players)
where no player has an incentive to choose another strategy
given that all other players stay at their chosen strategy. In a
Nash equilibrium, the strategy of each player is the best response
to the strategies chosen by all other players.191

Example: Given the symmetric game formalized in matrix
(A.1), possible Nash equilibria in pure strategies are:
� (A,A) is Nash equilibrium, if W(A,A) Z W(B,A)
� (B,B) is Nash equilibrium, if W(B,B) Z W(A,B)
� (A,B) and (B,A) are Nash equilibria, if W(A,B) Z W(B,B) and

W(B,A) Z W(A,A)
Note that in the cases (A,A) and (B,B) one can also say

that the strategies A and B, respectively, are Nash equilibria.

In general, in a Nash equilibrium where all players adopt
the same strategy, also the strategy itself is called a Nash
equilibrium. Further, if the above inequalities hold as strict
inequalities, then the Nash equilibria are called strict.

According to the Bishop–Cannings Theorem,192 the idea to
find a mixed strategy that is a Nash equilibrium in a symmetric
game is the following. Each single pure strategy adopted
against this mixed strategy does equally well, i.e. the expected
payoff to a player is independent of its adopted strategy: W(A,x) =
W(B,x), where W(A,x) = xW(A,A) + (1 � x)W(A,B) and W(B,x) =
xW(B,A) + (1 � x)W(B,B). Solving this equation for x gives

x ¼ WðB;BÞ �WðA;BÞ
WðA;AÞ �WðA;BÞ �WðB;AÞ þWðB;BÞ (A.2)

Check if the solution is between 0 and 1, because it represents
a fraction or probability. If the solution is outside of that range,
only the pure Nash equilibria are relevant.

A.2. Evolutionary game theory

If applying the concepts of game theory to animals, plants,
micro-organisms, cells or even molecules the prerequisite
of rational choices made by the players is not required.
Without rational players a Nash equilibrium can be found by
an evolutionary process in a population. Individuals using a
strategy that is not optimal in the population will reproduce at a
lower rate than individuals with an optimal strategy, which
will thrive and pass this strategy on to the next generation.
New strategies can appear by (epi-)mutation or by immigration
into the population.

Among an infinite population we consider repeated random
encounters of opponents. In terms of a population, a mixed
strategy can also define the state of the population, where
certain fractions of the population play one of the strategies.
Again, the fractions have to sum up to unity.

A strategy is evolutionarily stable if a whole population using
that strategy cannot be invaded by a small group with a mutant
genotype. Strategy x is evolutionarily stable if and only if for any
mutant type p we have: W(x,x) Z W(p,x) and if W(x,x) = W(p,x),
then W(x,p) 4 W(p,p). The first condition is the Nash equilibrium
condition and the latter one is the evolutionary stability condi-
tion, meaning that x can invade any p population.

A.2.1. Theorems. (1) Every game (given by an n � n payoff
matrix) has at least one Nash equilibrium.193

(2) If all players have a dominant strategy, then the situation
where all players adopting it is a Nash equilibrium (NE in
dominant strategies).191

(3) Every evolutionarily stable strategy is a Nash equilibrium,
but not every Nash equilibrium is evolutionarily stable.193

(4) Every strict Nash equilibrium is evolutionarily stable.191,193

(5) In asymmetric games (asymmetric in payoffs) only strict
Nash equilibria are evolutionarily stable.191

A.2.2. Playing the field. Several situations are imaginable,
where the success of a strategy does not depend on the outcome
of pairwise encounters, but on the average strategy used in the
population, for example the success of a sex ratio. Another example
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is the production of exoenzymes by yeast cells49,50 (see Section 3).
Each yeast cell interacts with many cells rather than only in
pairwise encounters. As a first step, we can draw up the fitness
matrix, where the fitness of a single A strategist in a population
of B strategists W(A,B) is written down. Clearly, A will be an ESS if
W(A,A) 4 W(B,A) and B will be an ESS if W(B,B) 4 W(A,B). If
neither of these inequalities hold, then the ESS is a mixture of
A and B. To find the mixed ESS, again W(A,s) = W(B,s) must hold,
but the payoff for A and B in a mixed population s is often hard to
find and may be a nonlinear function of frequency.

Because a Nash equilibrium does not necessarily have to be
evolutionarily stable, one has to check for the evolutionary
stability of the (mixed) Nash equilibrium.

Evolutionary stability is a particularly useful concept because
it says something about the dynamic properties of a system
without being committed to any particular dynamic model.

A.3. Dynamic game theory

Dynamic game theory is important if one wants to study the
behaviour of a system beyond an ‘‘equilibrium based view-
point’’.194 Investigating the long-term change of the strategies’
frequencies is only possible when considering dynamics. It can
also be used for studying frequency dependent selection.7

Further, the notion of evolutionary stability relies upon implicit
dynamical consideration. In certain situations, the underlying
dynamics can be modelled by differential equations.6

Another point of dynamic game theory is the question
whether games do reach a Nash equilibrium, and if so, by what
process?191 Further questions include: if there are several Nash
equilibria, to which one does the game converge? The answers
can be found by studying the behaviour of dynamical systems.

The dynamical behaviour of a game is interesting especially
if the long-term outcome is not a Nash equilibrium (this is the
case for e.g. variants of the rock–scissors–paper game). In such
a case, the behaviour over time is characterized by endless
regular or irregular oscillations.7 Hence, the static approach
often is not sufficient for a full analysis. Only a dynamical
theory can describe e.g. the ‘‘Red Queen’’ aspect of ‘‘Alice’s
Wonderland’’. (There, in the kingdom of the Red Queen one
has to run to remain on the same spot.) Such phenomena reign
in evolution as in the arms races between hosts and parasites or
predators and prey.

A.4. Spatial games

Individuals are arranged on a regular lattice (with arbitrary
dimension, but usually two- or three-dimensional) playing the
game (a two-player game) with its immediate neighbours.7,195

Different neighbourhoods can be defined: the von Neumann or
the Moore neighbourhood,193 both using different distances.
The update can be either synchronous or asynchronous.7

An example for one of the first spatial games is a spatial
Prisoner’s Dilemma by Nowak and May.196 There, the payoffs
from these interactions are added up for each individual. In the
following round (i.e. generation) each player adopts the strategy
with the highest payoff in its immediate neighbourhood. All
cells are updated in synchrony. This and other simple spatial

games investigate deterministic evolutionary dynamics without
random mutations.

Often, the boundary conditions are defined as periodic
boundaries, but also other boundary conditions are possible (e.g.
fixed boundaries). Different initial settings (e.g. initial random
distribution of strategies) can be chosen. Furthermore, different
lattice geometries can be used (e.g. triangular or hexagonal).

To analyze invasion conditions, it is useful to start with one
mutant strategy among a homogeneous array. Another aim of
exploring spatial games is to find interesting sequences of
patterns (e.g. dynamic fractals, evolutionary kaleidoscopes,
chaos).196 Empty sites or more than two competing strategies
can lead to spiral waves. For example, in the spatial Prisoner’s
Dilemma, coexistence between cooperators and defectors can
be observed.196 Cooperators survive in clusters and under
certain conditions, cooperators can invade defectors. Often,
spatial structure tends to allow more diversity than well-mixed
populations do.7,196

A.5. Evolutionary game dynamics

A.5.1. Replicator dynamics. The replicator dynamics was
described e.g. by Hofbauer and Sigmund6 and Page and
Nowak.197 It describes the evolution (dynamical changes) of
the frequencies of finite strategies in a heterogeneous population
by mimicking the effect of natural selection. Such dynamical
changes of frequencies of discrete phenotypes in evolutionary
game dynamics are described by the replicator equation:

dxi

dt
¼ xi fiðxÞ � FðxÞð Þ (A.3)

where xi denotes the frequency of strategy i, fi(x) denotes the
(expected) payoff (fitness) for playing strategy i in a population
with a distribution given by the vector x = (x1,. . .,xn) and F(x)
denotes the average (expected) payoff in an x-population. The
replicator equation is equivalent to the Lotka–Volterra equa-
tion.197,198 The replicator equation is directly computable from
a two-player matrix game.6

� Every Nash equilibrium of a matrix game is a rest point
(= fixed point) of the replicator equation, but not every fixed
point of the replicator equation is a Nash equilibrium.
� Every evolutionarily stable state of a matrix game is an

asymptotically stable fixed point of the replicator equation.
A.5.2. Adaptive dynamics. Adaptive dynamics is based on

calculations of the invasion fitness function for a minority
mutant phenotype in the ecological environment generated by a
resident phenotype.194,199 The approach of adaptive dynamics seeks
to answer the question whether this mutant, which has a strategy
close to the resident population, can invade. Therefore, one can
compare this approach with the playing-the-field scenario proposed
by Hamilton.15 In contrast to the replicator equation one calculates
the dynamical change of continuous strategies or traits6,197 under
frequency dependent selection and mutation in a homogeneous
population. Mutations are assumed to happen rarely.6

The approach considers a resident population which is
invaded by mutants. The most fit mutant (in comparison to
the resident population) is chosen by natural selection.197
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We assume that the whole population uses strategy x and a
mutant uses strategy y = x + h which is close to x. A(y,x) denotes
the total payoff obtained by a y strategist against an x-opponent.
The relative advantage W(h,x) is calculated by A(y,x) � A(x,x). The
adaptive dynamics is then calculated by the differential equation

dxi

dt
¼ @

@yi
Aðy; xÞ (A.4)

evaluated at y = x and i = 1,. . .,n. This vector (a gradient of
y - A(y,x)) points into the direction of the maximal increase
of the fitness advantage of the mutant.6 This is mimicking an
evolutionary process.

Appendix B: types of games

Here we present an overview over all possible symmetric games
with two players and two strategies. Similar classifications are
proposed by Hauert200 and Stark.201

The payoff matrix of any symmetrical two-player game can
be written as:

(B.1)

The payoffs are termed according to the Prisoner’s Dilemma,
where they mean R-reward for mutual cooperation (strategy c),
T-temptation to defect (strategy d), S-sucker’s payoff and
P-punishment for mutual defection. If we set R 4 P, the
remaining two values (S and T) span a plane, where 12 different
regions can be distinguished. This plane is depicted in Fig. 8.
The character of a game does not change if rows and columns
are permuted simultaneously. We now characterise the various
games with an exemplary payoff.

(1) Prisoner’s Dilemma

2 0
3 1

� �

Cover story: two suspects in a crime are put into separate
cells. If they both confess, each will be sentenced to three years
in prison. If only one of them confesses, he will be set free and
used as a witness against the other, who will receive a sentence
of five years. If neither confesses, they will both be convicted of
a minor offence and spend one year in prison. The highest
payoff represents the best output of this situation (to be set
free) and 0 stands for the worst case (five years in prison).

Game properties: the dominant strategy is to defect. It is the
only Nash equilibrium and evolutionarily stable strategy (ESS).
This solution is Pareto inefficient.

(2) Hawk–dove game (also: game of chicken, snowdrift
game) (Leader II)

2 1
3 0

� �

Cover stories: Hawk–dove game. The opponents are fighting
for food, a territory or a potential mate. To be a hawk is an
aggressive strategy (defect), while dove is to denote a peaceful

(cooperate), surrendering strategy. Two hawks damage each
other, two doves share the good (or one dove gets the whole
good with probability 0.5). A dove meeting a hawk flees, resulting
in no fitness gain nor loss, while the hawk gets the good.

Game of chicken, also Chicken-game. Two cars are speeding
towards each other on a collision. The loser must chicken out,
or both suffer from a bad accident. If none of them stays on
track, they stay unhurt but share the disgrace.

Snowdrift game. Two car drivers are stuck in a snowdrift. If
both refuse to shovel, none of them will get home. If one of them
shovels, while the other refuses to do so, both will get home.
However, the shoveling player cooperates and pays a cost. If both
shovel, both will get home, and share the cost of shoveling.

Game properties: the two pure Nash equilibria are on the
secondary diagonal (to choose different strategies). The defec-
tor has the greater payoff. One mixed Nash equilibrium can be
found, which is also an ESS.

(3) Leader (I)

1 3
2 0

� �

Cover story: a strategic game in economics is played by the
leader firm that moves first and by the follower firm that moves
sequentially, while competing for quantity. The leader always
has an advantage, similar to the hawk–dove game. However,
here the cooperator has a lower disadvantage.

Game properties: the two pure Nash equilibria are on the
secondary diagonal (to choose different strategies). The defec-
tor has the greater payoff. One mixed Nash equilibrium can be
found, which is also an ESS (cf. hawk–dove game).

Fig. 8 Classification diagram for two-player games. A point in the diagramm
represents the complete relation of R, S, T and P. The diagram is read as the
following example: region 2 (cf. hawk–dove game) lies in the area above the
diagonal T = S, therefore T 4 S holds true there. Also, it is above the line T = R,
therefore T 4 R holds true. In addition, it is below the line, so that S o R holds
true. Since P o R holds true for the whole diagramm, we can follow the order
T 4 R 4 S 4 P for region 2 (cf. hawk–dove game).
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(4) Battle of the sexes (Leader III)

1 3
2 0

� �

Cover story: a couple wants to meet this evening.
The husband prefers to visit the football game, while his
wife would like to go to the opera. Both prefer to go out
together rather than to different places. They are not able to
communicate.

Originally this game is asymmetric (i.e. the payoffs are
different, though both choose the same strategy), but it can be
transformed into a symmetric one by renaming the strategies in
e.g. ‘‘my preference’’ and ‘‘his/her preference’’.

Game properties: the battle of the sexes has the same
properties as the hawk–dove game, but the cooperator (in terms
of the Prisoner’s Dilemma), the player applying ‘‘my preference’’,
has the greater payoff. The two pure Nash equilibria are on the
secondary diagonal. One mixed Nash equilibrium can be found,
which is also an ESS (cf. hawk–dove game).

(5) Stag Hunt (Coordination III)

3 0
2 2ð1Þ

� �

Cover story: two huntsmen have the choice to hunt a stag or
a hare. They can only hunt the stag cooperatively and share the
stag afterwards. Also, each one can hunt a hare on its own, but
half a stag is worth more than a hare. If they are not able to
communicate, which is the best strategy?

Game properties: the two pure Nash equilibria are on the
main diagonal. One mixed Nash equilibrium can be found,
which is not an ESS.

(6) Harmony games
(a) Harmony I

3 1
2 0

� �

(b) Harmony II

3 2
1 0

� �

Game properties: cooperation is the dominant strategy that
leads to a pure Nash equilibrium where both players receive the
highest possible payoff. Thus, they are ‘‘in harmony’’. The
difference between these two versions lies in the ‘‘strength’’
of the dominance of cooperation. In version II cooperation has
the stronger dominance.

(7) Route choice (Deadlock II)

2 3
1 0

� �

Cover story: there are two routes with different capacities: a
freeway and a side route. If both players decide to drive the
freeway (c strategy), they can drive fast, but have to consider the
other car, while a single car on the freeway can speed up. A

single car on the side route is still quick, while two cars on the
side route hinder each other.

Game properties: driving on the freeway is the dominant
strategy. There exists only one Nash equilibrium with the second
highest possible payoff. A player has the interest to encourage
the opponent to play the dominated strategy.

(8) Coordination games
(a) Coordination game I

3 0
1 2

� �

(b) Coordination game II

3 1
0 2

� �

Game properties: the two players have to coordinate their
actions (i.e. play the same strategies) to receive a high payoff.
The two pure Nash equilibria are on the main diagonal. Thus,
the system shows bistability. One mixed Nash equilibrium can
be found, which is NOT an ESS.

(9) Own goal (Harmony III)

3 2
0 1

� �

Game properties: cooperation is the dominant strategy.
There exists only one Nash equilibrium with the highest
possible payoff. A unilateral deviation of one player from the
dominant strategy would be an ‘‘own goal’’ because the loss is
very high.

(10) Deadlock (I)

2 3
0 1

� �

In terms of the cover story of the route-choice game,
one may say that when both drivers choose the side road, they
are better off (for example, because they can help each other in
case of an accident) than a driver that goes alone on the
side road.

Game properties: the c strategy is dominant. There exists
only one Nash equilibrium with the second highest possible
payoff. A player has some interest to encourage the opponent to
play the dominated strategy.

The game properties are summarised with the classification
tree in Fig. 9.

Appendix C: rock–scissors–paper
game

This popular children’s game, where rock is wrapped by paper,
paper is cut by scissors and scissors are crushed by rock can
also be described by a game-theoretical model. In a biological
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context the strategies are renamed to producer (P), resistant (R) and
sensitive (S), see Section 5. Consider the following payoff matrix:

(C.1)

where a, b and c represent the payoffs.
There is no Nash equilibrium in pure strategies, because for

each entry of the matrix one of the players can increase payoff
by changing strategy. For example, if a producer plays against a
resistant strain, the producer can improve by switching to any
other strategy. A mixed Nash equilibrium can be found by
applying the Bishop–Cannings theorem (Appendix A) with the
following distribution of strategies p = a/(a + b + c), r = b/(a + b + c),
s = c/(a + b + c). In this biological context, the distribution can be
interpreted as the corresponding fractions of the population. In
the special case of a = b = c, an equal distribution of one third is
obtained as is known from the hand game of the same name.

However, this mixed Nash equilibrium is not evolutionarily stable.
That is why it is interesting to study the dynamics of this game.
Different dynamical approaches are reviewed in Appendix A.

To illustrate the dynamics of a three species population,
often the simplex, an equilateral triangle, is used. It represents
the plane from the three-dimensional Cartesian coordinate

Fig. 9 Classification tree for two-player games summarising game properties. The dynamics is characterized as in Nowak and Sigmund.7

Fig. 10 Simplex representation. Left: Simplex in the three-dimensional
Cartesian coordinate system, right: simplex without the coordinate system.
Here, periodic orbits around a fixed point are shown, similar to ref. 81. Such
cyclic orbits correspond to oscillating sub-populations.
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system with p + r + s = 1, where each fraction stands for one
subpopulation, see Fig. 10.

Acknowledgements

Financial support by the International Max Planck Research
School (Jena), the Leibniz Institute for Natural Product Research
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S. Schuster, J. Theor. Biol., 2010, 264, 312–318.
144 S. Bewick, J. Wu, S. C. Lenaghan, R. Yang, M. Zhang and

W. Hamel, Bull. Math. Biol., 2011, 73, 2339–2356.
145 S. Bewick, M. Zhang and W. Hamel, IEEE Trans. Syst. Man

Cybern., 2011, 41, 583–588.
146 B. Crespi and K. Summers, Trends Ecol. Evol., 2005, 20,

545–552.
147 L. M. F. Merlo, J. W. Pepper, B. J. Reid and C. C. Maley, Nat.

Rev. Cancer, 2006, 6, 924–935.
148 P. C. Nowell, Science, 1976, 194, 23–28.
149 M. Gerlinger and A. J. Rowan, et al., N. Engl. J. Med., 2012,

366, 883–892.
150 R. Axelrod, D. E. Axelrod and K. J. Pienta, Proc. Natl. Acad.

Sci. U. S. A., 2006, 103, 13474–13479.
151 R. J. Gillies, D. Verduzco and R. A. Gatenby, Nat. Rev.

Cancer, 2012, 12, 487–493.
152 D. Basanta and A. Deutsch, in Selected Topics in Cancer

Modeling: Genesis, Evolution, Immune Competition, and Therapy,

ed. N. Bellomo and E. de Angelis, Springer, Birkhäuser
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