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High-content screening of yeast mutant libraries
by shotgun lipidomics†

Kirill Tarasov,*ab Adam Stefanko,cd Albert Casanovas,c Michal A. Surma,d

Zane Berzina,c Hans Kristian Hannibal-Bach,c Kim Ekroosa and Christer S. Ejsing*c

To identify proteins with a functional role in lipid metabolism and homeostasis we designed a high-throughput

platform for high-content lipidomic screening of yeast mutant libraries. To this end, we combined culturing

and lipid extraction in 96-well format, automated direct infusion nanoelectrospray ionization, high-resolution

Orbitrap mass spectrometry, and a dedicated data processing framework to support lipid phenotyping across

hundreds of Saccharomyces cerevisiae mutants. Our novel approach revealed that the absence of genes with

unknown function YBR141C and YJR015W, and the transcription factor KAR4 precipitated distinct lipid

metabolic phenotypes. These results demonstrate that the high-throughput shotgun lipidomics platform is a

valid and complementary proxy for high-content screening of yeast mutant libraries.

Introduction

The lipidome of eukaryotic cells consists of several hundreds to
thousands of molecular lipid species that constitute membranes,
store metabolic energy and function as signalling molecules.1,2

The structural heterogeneity of lipids is defined by a metabolic
network of enzymes and regulatory factors that synthesize
distinct lipid species by assembling or disassembling a multi-
tude of available hydrocarbon residues and polar head groups.
Lipid species can be divided into several categories based on
their chemical structures.3 The most abundant lipid categories
in eukaryotic cells include glycerophospholipids, sphingolipids,
glycerolipids and sterol lipids, which mediate distinct molecular
functions. Notably, several metabolic transitions interlink glycero-
phospholipid, sphingolipid, glycerolipid and sterol metabolism
such that perturbations are prone to induce lipidome-wide
ripple effects and prompt compensatory responses to sustain
lipid homeostasis.4 Compromising the lipid metabolic network
is known to cause dysfunctional lipid homeostasis and cellular
lipotoxicity that precipitate disorders such as obesity, athero-
sclerosis and neurodegeneration.5 Importantly, the regulatory
mechanisms that govern global lipid metabolism and relay

physiological signals to sustain lipid homeostasis are largely
unknown.

Genetic and biochemical studies using the yeast Saccharomyces
cerevisiae have been instrumental in elucidating the blueprint
of lipid metabolism and defining the physiological functions
of lipids.6,7 Early efforts have pinned lipid metabolism to the
framework of global metabolism as illustrated by the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway resource.8

Moreover, genetic and biochemical approaches combined with
molecular biology have paved the way to cloning and functional
characterization of key enzymes in the human lipid metabolic
network.6 The functional regulation of lipid metabolism depends
in part on a transcriptional circuitry that sets the cellular concen-
tration of lipid enzymes and accessory regulatory factors depending
on physiological requirements. The circuitry in S. cerevisiae includes
the transcriptional regulators Opi1p, Ino2p, Ino4p and Zap1p
that control the expression level of a subset of proteins required
for glycerophospholipid metabolism.9 In addition, the circuitry
also includes the regulators Mga2p and Spt23p, which are
involved in controlling the expression of the fatty acid desaturase
OLE1.10 Notably, regulatory mechanisms controlling most of
enzymes in the lipid metabolic network are still poorly understood.
Intriguingly, this raises the question of how the expression
levels of enzymes involved in, for example, sphingolipid and
sterol lipid metabolism are controlled.

Functional genomics strategies including gene–gene11,12

and protein–protein interactions assays13–15 can be powerful
approaches for identifying regulatory factors in lipid metabolism.
Recently, epistatic miniarray profiling has been instrumental
in defining the molecular mechanisms of how the fatty acid
chain length is determined by conserved membrane-imbedded
elongase complexes,16 how conserved Orm proteins interact
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with the serine palmitoyltransferase to control sphingolipid
biosynthesis17 and linking the GDP/GTP exchange factor
Rom2p to the regulation of sphingolipid metabolism.18 These
findings were prompted by high-content datasets showing
particular genes interacting with known constituents of the
lipid metabolic network. Notably, such interactions can also be
observed in other types of publically available resource data.
For example, the yeast protein interactome displays an over-
representation of interactions between genes involved in lipid
metabolism and genes with other cellular functions.13 Thus, public
repositories of gene and protein interaction data combined with
function prediction algorithms can be a potential resource for
shortlisting genes/proteins with a putative functional role in lipid
metabolism.19 Importantly, several studies have successfully
combined function prediction methods with experimental
confirmation to elucidate the molecular mechanisms of mito-
chondrial biogenesis in yeast20 and tissue-specific regulation
patterns in worm.21 The success of these studies demonstrates
that mining resource data and integrating lipidomic analysis
can be an avenue for identifying novel lipid enzyme activities
and regulators of global lipid metabolism.

Shotgun lipidomics is a relatively novel omics tool that
affords comprehensive and quantitative profiling of cellular
lipids. The efficacy of the technology has been documented in
numerous studies of biological membrane organization, lipid–
protein interactions and the regulation of lipid metabolism.17,22–25

Shotgun lipidomics implies that lipid extracts of cells are directly
infused into a mass spectrometer without up-front time-consuming
liquid chromatographic separation thereby shortening the time
required for analysis, and that identification of lipid species relies
on accurately determined masses and/or tandem mass spectra
acquired from corresponding lipid species.1,26 Shotgun lipidomics
enables extensive lipidome characterization by combining analyses
of the same lipid extract in positive and negative ion mode, and
by implementing data processing routines to merge, normalize
and visualize lipidomic datasets.27 In addition, a more recent
shotgun lipidomics technology based on high-resolution
Orbitrap mass spectrometry and automated direct infusion
nanoelectrospray ionization offers high-throughput capabilities
with high sensitivity, a broad dynamic quantification range and
extensive lipidome coverage spanning lipid species molar
abundances over 3 to 4 orders of magnitude.4,28,29 Notably,
these analytical hallmarks are ideally suited for exploratory
lipidome analysis in yeast and provide a mean to screen
libraries of mutant strains to identify regulatory modules in
global lipid metabolism.

Here we describe a high-throughput platform for high-
content lipidomic screening of yeast mutant libraries that
utilizes culturing and lipid extraction in 96-well format, auto-
mated direct infusion nanoelectrospray ionization, high-mass
resolution Orbitrap mass spectrometry and a dedicated data
processing framework to support systematic monitoring of
lipid species across hundreds of yeast strains. To catalog lipid
phenotypes, we made use of ‘robust principal component
analysis’ and a quantitative scoring system that we term SoamD
(sum of absolute mol% difference). As a test bed, we employed

the platform to array a shortlist of deletion mutants of distinct
transcriptional regulators and genes with unknown function
predicted to play a role in lipid metabolism. Our novel approach
revealed that the absence of genes with previously unknown
function YBR141C and YJR015W, and the transcription factor
KAR4 precipitates distinct lipid metabolic phenotypes. These
results show that combining functional genomic workflows
and high-content lipidomic profiling can be a powerful proxy
for identifying regulators of global lipid metabolism.

Materials and methods
Chemicals and lipid standards

Synthetic lipid standards were purchased from Avanti Polar
Lipids and Larodan Fine Chemicals. Chemicals, growth media
and solvents were purchased from Sigma-Aldrich, Rathburn
Chemicals, MP Biomedicals and BD Biosciences.

Yeast strains

In this study we used S. cerevisiae reference strain BY4742
(MATa his3D1 leu2D0 lys2D0 ura3D0) and the congenic deletion
mutants listed in Table S1 (ESI†). All strains were obtained from
EUROSCARF. Mutant strains without genes encoding transcriptional
regulators were shortlisted based on gene ontology (GO) annotation
in the Saccharomyces Genome Database (SGD).30

Prediction of uncharacterized genes with potential function in
lipid metabolism

A list of genes known to be implicated in lipid metabolism
(query list of lipid-related genes) was compiled based on automated
extraction of gene names with GO annotation ‘lipid metabo-
lism’ or ‘lipid binding’ in the SGD, and thorough manual
annotation based on literature (Table S2, ESI†). To predict
uncharacterized genes with potential function in lipid metabolism
we used the query list of lipid-related genes and the GeneMANIA
function prediction algorithm.31 Based on available protein–
protein interaction data from BioGRID,32 the GeneMANIA
function prediction algorithm was requested to output the
50 most related genes to the genes on the lipid-related query
list (Table S3, ESI†). From the 50 top scoring genes we selected
8 genes that were annotated with ‘‘biological process unknown’’,
and shortlisted the corresponding deletion mutants for first
round lipidomic screening.

First round screening: 96-well plate culturing

Yeast strains were plated and cultured at 30 1C for 24 hours in
0.3 ml 96-well plates (Eppendorf AG) on an agar-based solid
synthetic complete medium containing 2% glucose and supple-
mented with 100 mM inositol and 100 mM choline. In addition to
shortlisted deletion mutants each 96-well plate contained three
replicates of the control strains BY4742 and elo2D. Yeast cells
were harvested by resuspension in 100 ml of 155 mM ammonium
acetate (average yield 1.5–2.0 OD600 units), transferred to 2 ml
96-well plates (Eppendorf AG) and stored at �80 1C until
lipid extraction.
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Lipid extraction in 96-well plates at 4 8C

The yeast cell suspensions (100 ml) in 2 ml 96-well plates were
added to glass beads (425–600 mm, Sigma-Aldrich) and subjected to
cell disruption for 120 min at 1400 rpm and 4 1C on a ThermoMixer
(Eppendorf AG). (This high-throughput oriented cell lysis procedure
was benchmarked against conventional glass bead lysis4 by
showing no differences in lipid profile (data not shown).) Cell
lysates (70 ml) were transferred into a new 2 ml polytetrafluoro-
ethylene 96-well plate (Radleys Discovery Technologies) and
subjected to single-step lipid extraction in the 96-well plate.
Samples were extracted by adding 250 ml of chloroform/methanol
(2 : 1, v/v) and mixing in a ThermoMixer for 120 min. The lower
organic phase was collected by transferring 47 ml into two separate
150 ml 96-well plates (Eppendorf AG) that were subsequently
subjected to vacuum evaporation.

Mass spectrometric lipid analysis and data processing
for 96-well plate cultures

Lipid extracts in 96-well plates were dissolved in 20 ml of
7.5 mM ammonium acetate in chloroform/methanol/propanol
(1 : 2 : 4, V/V/V) for positive ion mode mass analysis, and 20 ml of
0.0075% methylamine in methanol/chloroform (1 : 5, V/V) for
negative ion mode analysis. The 96-well plates were covered
with aluminum sealing tape to avoid sample evaporation.
Samples were analyzed by direct infusion on a LTQ Orbitrap
XL mass spectrometer (Thermo Fisher Scientific) equipped with
a robotic TriVersa NanoMate ion source (Advion Biosciences) as
previously described.4,29 Positive ion mode analysis was performed
using multiplexed FT MS with scan ranges m/z 220–530 (for
monitoring lysophosphatidylcholine (LPC) and lysophosphatidyl-
ethanolamine (LPE) species) and m/z 500–1200 (for monitoring
phosphatidylcholine (PC), phosphatidylethanolamine (PE),
diacylglycerol (DAG), triacylglycerol (TAG), sterol ester (SE)
and ceramide (Cer) species). Negative ion mode analysis was
performed using multiplexed FT MS with scan ranges m/z 200–605
(for monitoring lysophosphatidic acid (LPA), lysophosphatidylserine
(LPS) and lysophosphatidylinositol (LPI) species) and m/z 505–1400
(for monitoring phosphatidylinositol (PI), phosphatidic acid
(PA), phosphatidylserine (PS), and inositol-phosphoceramide
(IPC) species). The total time of FT MS analysis was 3 min per
polarity per sample. All FT MS spectra were acquired in profile
mode using a target mass resolution of 100 000, isolation
waveforms enabled, automatic gain control at 1e6, max injec-
tion time at 250 ms and acquisition of 2 mscans. Lipid species
were identified, quantified and visualized using ALEX soft-
ware,27 SAS software (SAS Institute Inc.) and Tableau Desktop
software (Tableau Software), respectively. Lipid species were
annotated according to their sum composition.29 Lipid species
abundance was monitored by intensity profiling using the
proxy intensity% (I%) calculated as the intensity of a given
lipid species divided by the sum of intensities of all monitored
lipid species in a given ion mode (i.e. positive or negative). A
quality control procedure having two filters was implemented:
(i) strains with less than 70% of the average number of detected
lipid species in at least one ion mode were rejected, (ii) strains

with less than 15% of the average total lipid intensity in at least
one ion mode were rejected.

Classification of mutant strains into growth phase categories

The lipidomes of mutant strains surviving the quality control
procedure were classified according to the growth phase. To this
end, the BY4742 reference strain was cultured in liquid medium as
described below in the section ‘Second round screening: liquid
culturing’. Samples were collected for BY4742 cells in the exponential
phase (0.8–3.2 OD600 units per ml) and the stationary phase
(4–4.5 OD600 units per ml) determined using a growth curve.
These samples were subjected to two-step lipid extraction as
described below, and lipidomic analysis using intensity profiling
I% as described in the previous section. To classify mutant strains
according to the growth phase we performed average linkage
agglomerative hierarchical clustering on I% values of lipid species
and lipid classes that were the most different between the growth
phases (i.e. sum of I% of lipid species belonging to TAG, PC, DAG,
PI, PS, PE and PA lipid classes, and the sum of I% of PC, PI, PS, PE,
PA and DAG species with carbon index up to 32, and equal or greater
than 34). Analysis was performed using Cluster 3.0 software.33

Results were visualized as a clustering heatmap using I%
standardized as Z-scores (Fig. 2A).

Identification of mutant strains with perturbed lipid
phenotypes

Deletion mutants with perturbed lipid phenotypes were identi-
fied using robust principal component analysis. This analysis
was performed separately for mutant strains classified as either
in the exponential or the stationary phase. I% values were used
for the analysis. Missing values were substituted with zero.
Calculations were performed using R software using the Pca-
Hubert function from the rrcov package for robust multivariate
analysis.34,35 Variables were scaled to have unit variance using
median absolute deviation function. The number of principal
components was selected based on scree-plots and was set to 4
for strains in the stationary phase and to 3 for strains in the
exponential phase. PcaHubert function calculated orthogonal
distance scores for each strains and the orthogonal distance
cut-off value which was used to define the hit strains with
perturbed lipid phenotypes. These strains were subjected to
second round screening.

Second round screening: liquid culturing

Liquid culture experiments of candidate mutant strains with
perturbed lipid phenotypes and reference strains were performed
at 30 1C with synthetic complete medium containing 2% glucose
and supplemented with 100 mM inositol and 100 mM choline. The
yeast strains were precultured for 24 hours, diluted to 0.2 OD600

units per ml and cultured for another 24 hours until collection of
samples in the stationary phase (4.0–4.5 OD600 units per ml). Cells
were washed with 155 mM ammonium acetate and stored at
�80 1C until lipid extraction.
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Lipid extraction at 4 8C of samples obtained by liquid culturing

Samples from liquid cultures were subjected to two-step lipid
extraction as previously described.4 Briefly, yeast cells were
resuspended in 1 ml of 155 mM ammonium acetate and
disrupted using glass bead lysis. Aliquots of cell lysates were
diluted to 0.4 OD600 units in 200 ml and mixed with 17 ml of
internal lipid standard mixture containing cholesterol-D7, CE
19:0, TAG 17:1/17:1/17:1, DAG 19:0/19:0, LPA O-16:0, PA 17:0/
14:1, LPS 17:1, PS 17:0/20:4, LPE O-16:0, PE O-20:0/O-20:0, LPC
O-17:0, PC 18:3/18:3, LPI 17:1, PI 17:0/14:1, PG 17:0/14:1, CL
14:0/14:0/14:0/14:0, Cer 18:1;2/17:0;0, IPC 18:0;2/26:0;0, MIPC
18:0;2/26:0;0 and M(IP)2C 18:0;2/26:0;0. Samples were extracted
with 990 ml of chloroform/methanol (15 : 1 V/V) for 2 hours. The
lower organic 15 : 1-phase was collected and subjected to vacuum
evaporation. The remaining aqueous phase was re-extracted with
990 ml of chloroform/methanol (2 : 1 V/V) for 1 h. The lower organic
2 : 1-phase was collected and subjected to vacuum evaporation.

Mass spectrometric lipid analysis and data processing for
samples obtained by liquid culturing

The 15 : 1- and 2 : 1-phase lipid extracts were dissolved in 100 ml
of chloroform/methanol (1 : 2, v/v) and analysed by direct infusion
on a LTQ Orbitrap XL instrument equipped with the robotic
TriVersa NanoMate ion source as previously described.4,29 Sterols
were analyzed after chemical sulfation of the 15 : 1 phase extract.24

The molar amount of lipid species were determined using the
spiked-in internal standards and converted to mol% as previously
described.4,29 For each strain, two technical replicates of a single
lipid extract were analysed.

SoamD calculation

A SoamD (sum of absolute mol% difference) score was calculated
for each deletion mutant subjected to second round screening.
SoamD was calculated as:

SoamDi ¼
XN

j¼1
abs mol%i; j �mol%BY4742; j

� �
;

where N is the number of lipids, mol%i, j is the mol% value of
lipid j in deletion mutant i and mol%BY4742, j is the mol% value of
lipid j in the reference strain BY4742. The score is only applicable
to experiments performed with spike-in of internal standards.

Results and discussion
A high-throughput platform for lipid phenotyping

To establish a resource for identifying proteins with potential
function in lipid homeostasis we developed a high-throughput
lipidomics platform for quantitative high-content screening of
yeast mutant libraries. First, we compiled a deletion library in
96-well format covering 178 strains divided into three groups:
(group A) 168 deletion mutants of genes encoding transcriptional
regulators; (group B) 8 deletion mutants of genes encoding
proteins with unknown function and predicted to be involved
in lipid homeostasis; and (group C) control strains including
the BY4742 reference and the elo2D mutant with defective fatty

acid elongase activity36 (Table S1, ESI†). The group A strains
were shortlisted based on GO annotations related to transcriptional
activity. The group B strains were selected from an interaction
network enriched with proteins involved in lipid metabolism and
function (Fig. S1, ESI†). This network was compiled using the
GeneMANIA function prediction algorithm31 that queried available
protein–protein interaction data in the BioGRID database32 using a
query list of lipid-related genes (Table S2, ESI†). Selected candidate
proteins were all annotated as ‘biological process unknown’ in
SGD30 (Table S3, ESI†).

A key feature of high-throughput lipidomic screening is
the ability to identify mutants with pronounced differences in
lipid composition compared to reference strains or the average
of the library. Differences in lipid composition are most accu-
rately determined by absolute quantification of lipid species
where the intensities of detected endogenous lipid species are
normalized to the intensities and amounts of appropriate
internal standards.4,23,29,37,38 The concentration of lipid species
can be expressed as the molar abundance of lipid species relative
to all monitored lipid species (i.e. mol%). Notably, absolute
quantification on a lipidome-wide level requires spiking samples
with B25 synthetic internal lipid standards, some of which
are expensive or require cumbersome approaches to purify.
Moreover, the workflow requires a dedicated two-step lipid
extraction procedure that is difficult to execute in 96-well plate
format. Thus, executing a lipidomic screening across hundreds
of yeast strains utilizing absolute quantification on a lipidome-wide
level is a challenging undertaking. To combat these technical
and economical drawbacks we designed the screening platform
to include two rounds of screening. A first round screening was
designed for rapid lipid profiling across all shortlisted strains in
the deletion library while the second round of screening was
designed for comprehensive lipidome quantification in deletion
mutants with perturbed lipid phenotypes identified in the first
round screening.

For the first round screening, we devised and validated a
lipidomic proxy supported by the comprehensive lipidome cover-
age obtained by high-resolution Orbitrap mass analysis. Lipidomic
profiling in positive ion mode allows sensitive analysis of PC, LPC,
PE, LPE, DAG, TAG, SE and Cer species. In addition, negative ion
mode analysis allows monitoring of PI, LPI, PA, LPA, PS, LPS and
IPC species. As such, the acquisition of spectral data for the same
sample in both positive and negative ion mode allows monitoring
of lipid species abundance by intensity profiling using the proxy
‘‘Intensity%’’ (I%) calculated as the intensity of a given lipid species
divided by the sum of all monitored lipid intensities monitored
within a given ion mode (i.e. positive or negative).

To benchmark the proxy for lipidomic screening, we compared
the abundance of lipid species monitored by I% and mol%
(Fig. 1A). To this end, we performed a comprehensive lipidomic
analysis of nine yeast strains using the workflow for absolute
quantification of lipid species as applied for the second round
screening and in general for comparative lipidomic analysis.4,29

The abundances of endogenous lipid species from the same strain
were expressed as both mol% (using internal standard informa-
tion) and I% as outlined above. Our analysis demonstrated a linear
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correlation between the absolute abundance of lipid species
and the lipid levels monitored by I%. Importantly, we observed
that lipid species with high absolute mol% values displayed
high I% values, and vice versa, lipid species with low mol% values
displayed low I% values. Based on this result, we concluded that
I% is a valid proxy for assessing the abundance of lipid species
and mapping differences in lipid composition by high-throughput
lipidomic screening. We note that identified mutants with
perturbed lipid composition based on I% should be further
investigated using the second round screening approach as
this uses the more accurate absolute quantification on a
lipidome-wide level. In addition, the second round screening
should be performed since the first round lipidomic screening
approach does not support quantification of free sterols as
these analytes require additional chemical derivatization for
quantification.4,29

Lipid profiling and data filtering for first round screening

All 178 strains in the shortlisted deletion library were subjected
to the first round screening. Strains were cultured on synthetic
complete solid medium in 96-well format for 24 hours in
accordance with metabolomic studies.39,40 Cells were harvested,
subjected to cell lysis and single-step lipid extraction in 96-well

format followed by shotgun lipidomic analysis using a robotic
nanoelectrospray device and a high-resolution Orbitrap
mass spectrometer.4,28,41 The first round screening afforded
comprehensive lipidomic analysis of 96 samples in approx. 12 hours.
Detected lipid species were identified using ALEX software.27

Next, we performed a quality control procedure to ensure the
reliability of lipidome data across the 178 input strains. First,
we introduced a filter to reject all strains featuring (i) less than
70% of the average number of detected lipid species and (ii) less
than 15% of the average total lipid intensity (Fig. 1B). Using this
approach, we passed 128 strains having on average 120 detected
lipid species. We note that rejected strains were due to technical
issues (e.g. poor ion spray) and poor growth.

To assess the precision of the lipidome data we evaluated
the reproducibility of I% using biological replicates of the
control strains BY4742 (n = 8) and elo2D (n = 7) distributed
over three 96-well plates, and grown and analyzed together with
shortlisted deletion mutants. The coefficient of variation (CV)
for each lipid species detected in these control strains was
determined (Fig. 1C and D). The average inter-plate CV of I%
for lipid species was 30%. In comparison, the average intra-plate
CV of I% was 24%. In addition, we observed a linear correlation
between I% in biological replicates of the control strains (Pearson
correlation R-square Z 0.973, p-value o 0.0001). We note that the
CV values were determined for biological replicates of control
strains grown for a fixed time rather than until the strains reached
a definite cell amount. Hence, one can expect variation in the
growth of individual strains which contributes to the relatively
high CV values. We note that the applied culturing strategy is
commonly used for large-scale metabolomics screening.39,40

Importantly, for the identification of mutant strains with altered
lipid phenotypes we employed a multivariate method (described
below) that differentiates mutant strains based on the composite
of all lipid species I% values rather than the difference between
I% values of single lipid species. Furthermore, the multivariate
method differentiates lipid profiles across all surveyed strains
instead of referencing only the control BY4742 strain. Using
this approach minimizes the seemingly adverse impact of the
relatively high CV values. Importantly, this approach successfully
identified all replicates of the control mutant strain elo2D (i.e. no
false negative identifications of elo2D) as having a perturbed
lipid profile (Fig. 3A). We note that the lipid phenotype of elo2D
is only modestly different from BY4742 as compared to elo3D.4

Moreover, the approach did not identify any of the replicates of
the control BY4742 strain to display altered lipidome composition
(i.e. no false positive identifications of BY4742). Based on these
results we conclude that the first round lipidomic screening
approach is a valid tool for surveying the lipid profile across
hundreds of yeast strains.

Classification of deletion strains into growth phases

Yeast strains employ different lipid metabolic programs during
exponential growth and the stationary phase, which can result
in false-positive identification of lipid phenotypes.29 Notably,
the yeast lipidome features high levels of glycerophospholipids
during exponential growth which become offset by predominately

Fig. 1 Validation of the shotgun lipidomic screening platform. (A) Corre-
lation between I% and mol%. A lipidomics experiment of 9 yeast strains
(used for the second round screening, see Fig. 4) was executed using
appropriate internal standards to allow absolute quantification of lipid
species (expressed as mol%). The same dataset was used for intensity
profiling (expressed as I%). Lines correspond to linear correlation between
mol% and I% values for endogenous lipid species of the same class. The
average R2 value is 0.94. (B) Quality control plot with criteria for rejecting
poor quality samples. Strains with less than 70% of the average number
of detected lipid species and/or less than 15% of the average total
intensity were excluded from subsequent analysis. Only negative mode
data are shown. Positive mode data were filtered in the same way (data
not shown). (C) Average intra-plate coefficient of variation. (D) Average
inter-plate coefficient of variation. Inter-plate coefficient of variation
reflects technical, within plate, plate-to-plate and biological variation of
replicated measurements.
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TAG species and an increase in the chain length of fatty acid
moieties in the stationary phase. In order to support accurate
identification of mutants harbouring defects in lipid metabo-
lism and not differences related to the growth phase, we
executed the first round screening using 24 hours of culturing
in order to allow ample time for all shortlisted deletion strains
to enter the stationary phase. Moreover, we executed a parallel
lipidomic analysis of exponential and stationary BY4742 cells
cultured in liquid medium. Combining these two datasets and
average linkage agglomerative hierarchical clustering allowed
us to group lipid profiles of mutants from the deletion library
into two clusters corresponding to cells in the exponential
phase or the stationary phase based on lipid class composition
and the species profile (Fig. 2A). As expected, majority of the
deletion mutants (n = 116) displayed lipid profiles corresponding
to the stationary phase having high levels of TAG species and
glycerophospholipid species with longer chain fatty acid moieties
as compared to exponential phase cells (Fig. 2B). In comparison,
only a few strains (n = 12) displayed a lipidome composition
similar to cells in the exponential phase. Having delineated the

growth-dependent effects, we subsequently surveyed each group
of strains separately for altered lipid metabolic phenotypes using
multivariate analysis as outlined below.

Identification of deletion strains with perturbed lipid
phenotype

It has been demonstrated by recent genomics screening that
identification of mutant strains with altered phenotypic traits
can be efficiently achieved by referencing the whole collection
of analyzed strains rather than comparison to a control strain.11–13

The advantage of such an approach is the possibility of using a
higher number of strains for better estimation of technical and
biological variation. Consequently, mutants with pronounced
phenotypic traits can be identified more accurately. Here we
applied a similar strategy for identification of deletion mutants
with perturbed lipid phenotypes that is based on ‘‘robust principal
component analysis’’.42 Conventional principal component
analysis can be an effective tool to identify key lipid features
in multivariate lipidomic datasets.28 However, its efficacy can
easily be hampered by outlying samples and lipid species.

Fig. 2 Classification of strains into groups based on the growth phase. (A) Hierarchical clustering heatmap of deletion mutants classified as the stationary
or exponential phase based on lipid features of stationary and exponential phases in BY4742. (B) Comparison of lipid features characteristic of exponential
(blue) and stationary (orange) phases. Average I% values for classified strains are shown on the right. Average I% values for BY4742 in exponential (n = 3)
and stationary phases (n = 4) are shown in the left. The average I% values for BY4742 in exponential and stationary phases were obtained from a culture in
synthetic complete liquid medium.
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In contrast, the robust variant overcomes the limitation of
sensitivity toward outliers by replacing the covariance matrix
used for conventional principal component analysis with a
robust covariance estimation.43 Consequently, the robust prin-
cipal component analysis is better suited for identifying pro-
nounced phenotypic alterations in deletion mutants rather
than differences caused by technical and biological variation
The robust principal component analysis reduces data dimen-
sionality by computing principal components that explain a
maximum amount of observed lipid phenotypic differences

across all surveyed strains, and produces a diagnostic plot that
classifies strains according to the magnitude and the similarities
of lipid phenotypes (Fig. 3A). Strains that display a common
pattern of changes but exhibit higher differences yield a higher
score distance on the x-axis of the diagnostic plot. Strains that
display uncommon differences that cannot be explained by the
principal components receive high orthogonal distance scores
displayed on the y-axis of the plot. Effectively, this approach
allowed us to identify 11 mutant strains having higher orthogonal
distances as compared to majority of the surveyed strains, and

Fig. 3 Identification of lipid phenotypes by robust principal component analysis. (A) Diagnostic plot. The score distance corresponds to the similarity of
deletion mutants based on the principal component model. High score distance values correspond to scores that are different from majority of strains
but demonstrate a typical pattern of changes. The orthogonal distance is a measure of how distinct a lipid phenotype is compared to the majority of
strains. High orthogonal distance values indicate that a particular lipid composition cannot be explained by the model. Strains with major differences in
lipid composition were identified as having orthogonal distance values above the cut-off (corresponds approximately to 97.5% quintile of the Gaussian
distribution). (B) Spectral verification of the mga2D lipid phenotype. Positive ion mode FT MS spectrum of mga2D and BY4742.
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thus, potentially harbouring altered lipid phenotypes (Fig. 3A).
The identified strains were all part of the stationary phase
group (Fig. 2A) and represent B9% of all shortlisted strains in
the deletion library. From the 11 identified candidates, 9 strains
were deletion mutants of transcriptional regulators (cha4D,
kar4D, met31D, mga2D, rrn10D, rsf2D, sir1D, sut2D, ume6D) and
2 were deletion mutants of genes encoding proteins predicted to
play a role in lipid homeostasis (yjr015wD, ybr141cD). In addition,
the robust principal component analysis identified all replicates
of the control mutant elo2D. We note that replicates of BY4742
have relatively high score distances. This attribute can potentially
be linked to the fact that the BY4742 strain is devoid of the
kanamycin resistance cassette present in deletion strains and
potentially able to affect cellular fitness44 or that BY4742 has not
been subject to the same genetic selection as the mutant strains.
Importantly, the orthogonal distance score for BY4742 replicates
was not high and thereby illustrating no major lipidomic
differences compared to majority of the deletion mutants.

A prominent hit of the first round screening was the
transcriptional regulator MGA2 (Fig. 3A). Mga2p is an endo-
plasmic reticulum membrane protein involved in the regulation
of OLE1 transcription.10 Ole1p is the only fatty acid desaturase in
S. cerevisiae and is therefore essential for the synthesis of
monounsaturated fatty acids.45 Deletion of the MGA2 gene
reduces the expression of Ole1p which results in lower levels
of the monounsaturated fatty acids C16:1 and C18:1.46 Conse-
quently, the mga2D strain synthesizes elevated amounts of
lipids having fewer double bonds as compared to the control
strain BY4742 (Fig. 3B). Notably, the first round screening
showed that mga2D synthesizes primarily TAG species with a
total of two double bonds and elevated levels of PC species
having a single double bond (e.g. PC 32:1). Based on the ability to
identify known constituents of the lipid metabolic network
(i.e. mga2D and elo2D), we conclude that the first round lipi-
domic screening is a valid tool for identification of mutant strains
with perturbed lipid phenotypic traits. We noted that deletion
mutants for transcription factors involved in lipid metabolism
Ino2p and Ino4p did not cause pronounced changes in lipid
composition because the growth medium was supplemented with
inositol and choline, which alleviate the phenotype of these
deletions. The strain devoid of the transcriptional regulator Opi1p
was excluded during the quality control procedure.

Second round screening of deletion strains with lipid
phenotypes

In order to further substantiate the lipid phenotypes of identi-
fied strains we executed a second round of lipidomic screening
using the accurate and comprehensive workflow for absolute
quantification of lipid species.4,29 To this end, we performed an
extensive lipidome analysis of 7 deletion mutants, control strains
elo2D and gup1D, and the reference strain BY4742 (Table S4,
ESI†). The strains were cultured in synthetic complete liquid
medium for 24 hours to allow cells to enter the stationary phase.
Quantitative lipidomic analysis was performed using spike-in of
internal standards and included the quantification of ergosterol
and inositol-containing sphingolipids which were not monitored

in the first round screening. To rank the lipid metabolic
phenotypes we made use of a scoring algorithm that calculates
the sum of absolute mol% difference relative to BY4742 (SoamD).
This score was applied to rank the mutant strains according to the
magnitude of the differences in lipid species and lipid class
composition as compared to the reference strain BY4742 (Fig. 4).
Using this approach we observed that the mutant elo2D harboured
the most pronounced differences in global lipid composition
followed by ybr141cD, kar4D and yjr015wD. The lipid phenotypes
of ybr141cD, kar4D and yjr015wD will be discussed below.

YJR015W has a plausible role in GPI-anchor synthesis

Yjr015wp is a protein of unknown function that localizes to the
ER.47 It is predicted to have 6 transmembrane domains and
function as a membrane transporter.48 The interaction landscape
of YJR015W shows a direct interaction with key enzymes in fatty
acid elongation and sphingolipid metabolism IFA38 and SUR4,
and two enzymes involved in glycosylphosphatidylinositol (GPI)
anchor synthesis GPI16 and GUP1 (Fig. 5A). All four interactors
are transmembrane proteins that localize to the ER.16,49 Ifa38p
and Sur4p are components of the elongase complex that
synthesizes C26:0 fatty acid for Cer synthesis and remodeling
of GPI-anchors via the O-acyl-transferase Gup1p. Gpi16p is a
subunit of the transamidase complex that adds GPI-anchors to
newly synthesized proteins. Notably, GPI-anchored proteins in
S. cerevisiae comprise either a glycerophospholipid PI species or
a sphingolipid IPC species. In addition, YJR015W also interacts
with enzymes responsible for N-linked glycosylation and
machinery involved in ER to Golgi vesicle transport (Fig. 5A). Taken
together, these interactions support the notion that Yjr015wp
is potentially involved in GPI-anchor synthesis. Based on this
prediction we included gup1D as a control strain in the compara-
tive lipidomic analysis.

The lipid phenotype of yjr015wD revealed a distinct set of
perturbed sphingolipid features (Fig. 5B and C). The yjr015wD
lipidome showed increased levels of 46:0;4 sphingolipid species
being offset by a reduction in 44:0;5 sphingolipid species.
The 46:0;4 species correspond to a sphingolipid composed of

Fig. 4 Scoring of lipid phenotypes. Score values represent the sum of
absolute differences (SoamD) in mol% lipid class (A) or species (B) as
compared to BY4742. Data represent mean of two values from two
separate injections of one biological replicate.

Method Molecular BioSystems

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
M

ar
ch

 2
01

4.
 D

ow
nl

oa
de

d 
on

 7
/2

6/
20

25
 1

0:
27

:2
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c3mb70599d


1372 | Mol. BioSyst., 2014, 10, 1364--1376 This journal is©The Royal Society of Chemistry 2014

a C20 phytosphingosine and an amide-linked hydroxylated
C26:0 fatty acid moiety.4,50 In comparison, the 44:0;5 species
correspond to sphingolipid having a C18 phytosphingosine and
a C26:0 fatty acid moiety with two hydroxyl groups. The hydro-
xylase that inserts the second hydroxyl group into the C26 fatty
acid moiety as well as its position in the fatty acid chain and the
molecular function of the produced sphingolipid molecule are
unknown.51,52 It is unlikely that the sphingolipid phenotype of

yjr015wD is attributed to a reduced activity of the fatty acid
elongation complex because inactivation of the interactor Sur4p
would shorten the fatty acid chain length of sphingolipids.4,36

Instead, the perturbation of sphingolipid hydroxylation profile
could be due to reduced activity of the unknown hydroxylase
or selective utilization of IPC 44:0;5 species for remodeling of
GPI-anchors. Interestingly, inactivation of GPI-anchor remodeling
in the gup1D mutants coincides with a reduction in IPC 44:0;5
(termed IPC-D in thin-layer chromatographic analysis) and
increased incorporation of a base resistant anchor lipid with
chromatographic properties similar to IPC 44:0;5.53 In addition,
it has been observed that GPI-anchor proteins in gup1D cells
comprised lower levels of IPC 44:0;4. Taken together, these data
support the observed reduction in all sphingolipid 44:0;5 species
and elevated levels of 46:0;4 species in the yjr015wD lipidome
(Fig. 5B). Our analysis showed that the yjr015wD lipidome partially
phenocopied the gup1D lipidome with respect to the top 10
decreasing lipid species (Fig. 5B and D). In both mutant strains,
the 44:0;5 sphingolipid species were among the most reduced
lipid species. In contrast, the observed top 10 increased lipid
species were only partially conserved in the two mutant strains.
As for the lipid class phenotype we also observed a strong
similarity between the yjr015wD and gup1D lipidome. Based on
the distinct lipid phenotype of yjr015wD, its similarity to the
gup1D lipidome and the interaction landscape of YJR015W we
propose that Yjr015wp might play a functional role in modula-
tion of GPI-anchor synthesis. We note that in order to reveal the
exact role of YJR015W an additional study of the yjr015wD
strain and the Yjr015w protein is required.

Ybr141cp – a putative methyltransferase involved in sterol lipid
metabolism

YBR141C encodes a putative methyltransferase that localizes to
the nucleolus.47 A recent bioinformatic study of yeast methyl-
transferases predicted Ybr141cp to contain a Rossmann-like
catalytic domain similar to the sterol methyltransferase Erg6p
that converts zymosterol to fecosterol in the ergosterol biosynthetic
pathway.54 The catalytic Rossmann-like domain spans methyl-
transferases with diverse substrate specificities including sterols,
proteins, RNA and other small molecules. As such, Ybr141cp was
predicted to use rRNA or tRNA as the substrate,54 albeit this has not
been experimentally verified. In addition, a number of proteins
devoid of methyltransferase activity and featuring the Rossmann-like
domain have been identified. These proteins include the transcrip-
tion factor Kar4p and the mitochondrial RNA polymerase specificity
factor Mtf1p.54,55 The interaction network of YBR141C shows a link
to lipid metabolism via a physical interaction with Vps74p (Fig. S1,
ESI†), a phosphoinositide-binding protein involved in localizing
glycosyltransferases in the Golgi.56

The lipid phenotype of ybr141cD showed a pronounced
increase of ergosterol esters offset by a reduction of ergosterol
(Fig. 6A and B). In addition, the ybr141cD lipidome showed a
concomitant increase in TAG levels and a reduction in all
membrane glycerophospholipids. The reason for this distinct
lipid phenotype is at the present time unclear given the limited
information about YBR141C function. Interestingly, a similar

Fig. 5 Interaction network and lipid phenotype of yjr015wD. (A) Physical and
genetic interactions with YJR015W from BioGIRD. Groups of genes with
significantly enriched GO terms related to biological processes are high-
lighted (grey nodes). White nodes are genes with no significant enrichment in
biological process GO terms. (B) Top 10 increased and decreased lipid species
of yjr015wD compared to BY4742. (C) Top 10 increased and decreased lipid
classes of yjr015wD compared to BY4742. (D) Top 10 increased and
decreased lipid species of gup1D compared to BY4742. (E) Top 10 increased
and decreased lipid classes of gup1D compared to BY4742. Labels corre-
spond to the percentage difference calculated as (mol% mutant – mol%
BY4742)/(mol% BY4742). Data display the average of two independent
analyses of a lipid extract of one biological replicate. Grey bars represent
the difference between the replicate data.
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perturbation of sterol esters and free sterol levels was observed
when inactivating ERG6.57 Moreover, chemical genomic data
show that YBR141C has a co-fitness interaction with the major
sterol acyl-transferase ARE2.58 Although the information about
YBR141C function is limited, our results provide a framework
for testing the functional role of Ybr141cp in sterol metabolism.

Kar4p – a transcription factor linked to nuclear membrane
dynamics

KAR4 encodes a transcription factor required for nuclear fusion
during yeast mating and possibly other functions during vegetative
growth.59–62 Kar4p exists as two isoforms; a constitutive 38.5 kD
protein (Kar4p-long) that predominates during vegetative growth
and a 35.5 kD protein (Kar4p-short) that is induced during mating.61

During the mating process, Kar4p-short acts together with the
transcription factor Ste12p to induce the expression of KAR3 and
CIK1 that encode a motor protein complex required for congression
of nuclei prior to nuclear membrane fusion.60,62 During vegetative
growth, Kar4p-long expression is up-regulated in the G1 phase of the
cell cycle and implicated in constitutive expression of more than
50 genes.60,62 The kar4D deletion mutant displays a slow growth
phenotype attributed to a short G1 pause during vegetative growth,
and a pronounced defect in nuclear congression during mating that
phenocopies the absence of KAR3 and CIK1.59

Given the functional role of Kar4p in nuclear fusion, it is
plausible that Kar4p is also involved in regulating nuclear
membrane dynamics during the cell cycle. Notably, perturbing
lipid metabolism has previously been shown to compromise
nuclear membrane growth and function.63 Deletion of the PA
phosphatase Pah1p and components of its regulatory complex
Nem1p-Spo7p reduces PA to DAG conversion and causes
nuclear membrane expansion.64,65 In addition, overexpression

of the nuclear/ER-localized DAG kinase Dgk1p phenocopies the
Pah1p deficiency66 indicating that regulation of the composi-
tion of DAG, PA and other glycerophospholipids is important
for nuclear membrane dynamics. Conversely, deletion of inte-
gral nuclear membrane-ER proteins Brr6 and Apq12 precipitate
defects in nuclear pore complex assembly, sterol metabolism
and lipid droplet morphology.67

The lipid phenotype of kar4D showed a pronounced increase
in DAG and SE species being offset by a reduction in primarily PE
species and ergosterol (Fig. 7). Interestingly, this lipid phenotype
is reminiscent of the lipid compositions associated with nuclear
membrane defects observed in the previous studies. The elevated
DAG levels and reduction in PE levels are similar to the effects of
overexpressing Pah1p,68 whereas the increased levels of SE and
reduced levels of ergosterol resemble effects of defective nuclear
membrane growth in the pah1D deletion mutant.69 This apparent
combination of perturbed lipid features indicates that inactiva-
tion of Kar4p potentially fails to prompt inhibition of Pah1p
activity, which in turn channels PA into DAG production instead
of synthesis of PE and other glycerophospholipids for membrane
expansion. The accumulation of SE could be a secondary effect of
kar4D cells trying to synchronize the rate of ergosterol biosynth-
esis and secretory vesicle flow under the reduced vegetative
growth rate. We here note that the exact function of Kar4p action
during vegetative growth requires further characterization of the
kar4D strain and Kar4 protein.

Conclusion

Existing high throughput screening methodologies for identifi-
cation of proteins with a function in lipid metabolism provide

Fig. 6 Lipid phenotype of ybr141cD. (A) Lipid species mol% differences compared to BY4742. (B) Lipid class mol% differences compared to BY4742.
Labels correspond to percentage difference calculated as (mol% mutant – mol% BY4742)/(mol% BY4742). Data display the average of two independent
analyses of a lipid extract of one biological replicate. Grey bars represent the difference between the replicate data.
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only limited phenotypic information. Epistatic miniarray
profiling and protein–protein interaction assays are based on
monitoring growth fitness (i.e. colony size) which allows map-
ping functionally related genes and proteins, respectively.11–13

Alternatively, microscopy-based screening can be used for
identifying mutant strains with perturbed lipid droplet
dynamics based on altered lipid droplet size and morphology.70,71

In contrast, detailed assessment of cellular lipid composition
demands dedicated methods such as mass spectrometry-based
lipidomics. Several groups have recently reported workflows for
lipidomics analysis in yeast, but their application has so far been
limited to characterisation of only a few mutant strains or a
reference strain grown under different conditions.4,29,72,73

In the current study, we designed a platform for high-content
lipidomic screening of yeast mutant libraries. We combined
culturing and lipid extraction in 96-well format, automated direct
infusion nanoelectrospray ionization, high-resolution Orbitrap
mass spectrometry and a novel data processing framework to
support lipid phenotyping across hundreds of S. cerevisiae
mutants. The screening platform was designed to include two
rounds of screening. A first round screening was executed for
rapid lipid profiling across all shortlisted strains in the deletion
library while a second round of screening was conducted for more
comprehensive lipidome quantification of deletion mutants with
perturbed lipid phenotypes identified in the first round screening.
To our knowledge, this is the first assessment of lipidomic
phenotypes across hundreds of mutants in a single screen.
Notably, our platform extends the palette of analytical techniques
available for functional genomics studies aimed at uncovering
proteins with previously unknown function in lipid metabolism
and regulators of global lipid homeostasis. The technology affords

a multidimensional survey of physiological lipid parameters that
helps explore uncharacterized proteins and propose valuable
hypothesis for mechanistic biochemical follow-up experiments.
Our case study of a library covering deletion mutants of genes
with predicted function in lipid metabolism and transcriptional
regulators revealed three poorly characterized genes that pre-
cipitate distinct lipid metabolic phenotypes upon deletion. In
conclusion, the high-throughput lipidomic screening platform
described herein is a valid and complementary tool for high-
content analysis of yeast mutant libraries.
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