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Serpentine channels: micro-rheometers for fluid
relaxation times

Josephine Zilz,a Christof Schäfer,b Christian Wagner,b Robert J. Poole,c

Manuel A. Alvesd and Anke Lindner*a

We propose a novel device capable of measuring relaxation times of viscoelastic fluids as small as 1 ms.

In contrast to most rheometers, which by their very nature are concerned with producing viscometric or

nearly-viscometric flows, here we make use of an elastic instability that occurs in the flow of viscoelastic

fluids with curved streamlines. To calibrate the rheometer we combine simple scaling arguments with

relaxation times obtained from first normal-stress difference data measured in a classical shear rheome-

ter. As an additional check we also compare these relaxation times to those obtained from Zimm theory

and good agreement is observed. Once calibrated, we show how the serpentine rheometer can be used

to access smaller polymer concentrations and lower solvent viscosities where classical measurements

become difficult or impossible to use due to inertial and/or resolution limitations. In the absence of cali-

bration, the serpentine channel can still be a very useful comparative or index device.
1. Introduction

Polymer solutions of long and flexible polymers are known to
exhibit striking non-Newtonian properties even at very small
concentrations.1 For example, in turbulent pipe or channel
flow the friction factor (or drag) may be significantly reduced
by adding a polymer at concentrations as low as a few ppm2

(parts per million in weight). Such fluids are also used in
enhanced oil recovery applications.3 Measuring their rheo-
logical features is a challenging task and classical rheometry
is often at its limits when determining for example the relaxa-
tion times of such dilute polymer solutions.4

Here we develop a microfluidic rheometer with a complex
flow geometry to overcome these difficulties. Although a
number of microfluidic rheometers have been proposed,
most of these devices are restricted to measurements of shear
viscosity,5–11 although devices which attempt to estimate
extensional viscosity12–16 and dynamic properties17 have also
been proposed. In contrast to these previous microfluidic
devices, in the current study we make use of an elastic insta-
bility,18–26 which occurs in flows of viscoelastic fluids with
curved streamlines even in the absence of inertia.20,21 The
threshold of instability depends on the curvature of the flow
and the fluid elasticity,27 described by the Weissenberg num-
ber. Typically, viscoelastic effects will be observed when the
product of a fluid relaxation time (λ) and a characteristic
shear rate reaches order one. Thus for fluids with λ on the
order of milliseconds, shear rates on the order of 103 s−1 are
required to access such viscoelastic effects. The use of a
microfluidic device enables high shear rates to be obtained
and thus strong viscoelastic effects (corresponding to large
Weissenberg numbers) to be observed while keeping inertial
effects, and hence the Reynolds number, small.

We have recently investigated the flow in a serpentine
micro-channel to elucidate the scaling of the instability
threshold with the flow curvature using a dilute polymer solu-
tion.28 We have shown that the instability is very sensitive to
even small normal-stress differences and can thus be used to
detect their occurrence. We can now combine our precise
knowledge regarding the dependence of the instability onset
on the flow curvature with a precise knowledge of the rheo-
logical properties of a calibrating fluid to quantitatively mea-
sure relaxation times. To do so, we initially calibrate the
serpentine rheometer using classical shear rheometry in the
range of parameters accessible by this technology. The serpen-
tine rheometer can then be used with fluids of smaller
concentrations or lower solvent viscosities, where classical
rheometry techniques become difficult either due to inertial
instabilities or instrument resolution issues. Even when a pre-
cise calibration is not possible, the serpentine channel can be
used as a comparative rheometer to compare the rheological
Chip, 2014, 14, 351–358 | 351
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properties of two given fluids. Finally we propose methods to
fully integrate the serpentine channel into a microfluidic
lab-on-a-chip device capable of measuring both shear viscosity
and fluid relaxation time.

2. Scaling of the onset of elastic
instability in a serpentine channel

Pakdel and McKinley21,27 proposed a simple dimensionless
criterion that must be exceeded for the onset of purely-elastic
instability, combining the curvature of the flow and the tensile
stress (τ11) acting along the streamlines, in the following form:




11 2

�
u M
R









  crit ð1Þ

with , u and  representing the local streamline radius of
curvature, velocity magnitude and shear rate, respectively. τ11
represents the local streamwise normal-stress and η the local
shear stress, with η being the shear viscosity. The ratio τ11/η
thus represents a local Weissenberg number (Wi), comparing
normal stresses to shear stresses and λu/ compares a typical
distance over which a polymer relaxes to the radius of curva-
ture (or can be viewed as a local Deborah number).

We have recently elucidated the geometrical scaling for
the onset of elastic-flow instability in a serpentine channel by
adapting the Pakdel–McKinley criterion to the specific flow
geometry.28 The serpentine channel is composed of a series
of circular half-loops of alternating curvature of constant
width (W), height (H) and inner radius (R), as shown sche-
matically in Fig. 1a. For reasons of simplicity in our analysis,
for the shear-dominated flow in the serpentine channel we
used the upper-convected Maxwell (UCM) model, neglecting
the solvent viscosity (ηs) contribution. The total viscosity (η)
is thus simply equal to the polymer viscosity (ηp) (i.e. η = ηp)
and the normal-stress is approximated as τ11 = 2ηpλ

2. In this
case the ratio τ11/η becomes equal to 2λ, corresponding to
Fig. 1 a) Schematic of the microfluidic serpentine channel. b)
Snapshots from the experiments showing the instability onset.
Solutions of PEO are injected into a microchannel via two inlets; only
one stream contains fluorescent dye and is visible on the snapshots.
Left hand side: stable flow below instability onset, right hand side:
unstable flow above instability onset.

352 | Lab Chip, 2014, 14, 351–358
twice the Weissenberg number. A simple analysis based on
the Pakdel–McKinley criterion (eqn (1)) showed that the
critical Weissenberg number at instability onset (Wic) can be
written as a square root dependence on the normalized
radius (R/W) with a small off-set at small radii. For a channel
with square cross section, our numerical results28 (see Fig. 2)
are best described in the following form:

Wic   C R
W

1 ð2Þ

Note that the numerical value for the offset at small radii
found from the numerical results differs slightly from the
theoretical prediction given in ref. 28 as the flow asymmetry
occurring at strong curvature is not captured by our theo-
retical model, as has already been pointed out in ref. 28. The
predicted scaling is in excellent agreement with experimental
observations, as shown in Fig. 2. Here we want to go further
and not only obtain the scaling of the instability onset with
the flow geometry, but reach a quantitative prediction of the
instability threshold. To do so, one first has to take the solvent
viscosity contribution into account, which cannot be neglected
for the dilute polymer solutions we use. When using an appro-
priate model, for example the Oldroyd-B model,1 to describe
the polymer rheology so that the total viscosity (η) is com-
prised of both a polymer contribution (ηp) and a solvent con-
tribution (ηs), i.e. η = ηp + ηs, the scaling for the instability
onset has to be corrected21,29 using τ11/η = 2(ηp/η)λ. By doing
so and then rewriting a modified form of eqn (2) to obtain the
critical shear rate, one obtains:

c
p

�





 
C R

W
1 ð3Þ

where C /      p can be identified as the slope from a plot

of the critical shear rate (c) vs. 1 R W . At this juncture it
Fig. 2 Geometric scaling of the instability onset. The green triangles
are numerical results and the red circles are results from experiments.
The dotted line is a fit to eqn (2). Data from Zilz et al.28 using a
solution of 125 ppm of PEO 2Mio.

This journal is © The Royal Society of Chemistry 2014
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is also useful to define a parameter a = λ/C. To be able to
make a quantitative prediction of the relaxation time (λ) from
measurements of the critical shear rate (c) one thus needs a
calibration experiment to determine C and the ratio of the
polymer to the solvent viscosity. We note also that the serpen-
tine rheometer strictly only allows for a quantitative measure-
ment of the polymer relaxation time, as long as the rheology
of the solution is such that the ratio between the normal
stresses and the shear stresses is proportional to Wi.

3. Experimental
3.1. The polymer solutions

A solution of the flexible polymer polyethylene oxide (PEO),
supplied by Sigma Aldrich, with a nominal molecular weight
(Mw) of 2 × 106 g mol−1 and two different batches of PEO with
nominal molecular weights of 4 × 106 g mol−1, at concentra-
tions ranging from 125 ppm to 500 ppm (w/w), were used in
water–glycerol mixtures. In the following, the different poly-
mers will be referred to as 2Mio, 4Mio-1 and 4Mio-2, respec-
tively. The overlap concentration for 2Mio is c* ≃ 860 ppm30

and for the 4Mio solutions, estimated using the equations
provided by Rodd et al.,30 is c* ≃ 550 ppm and therefore the
solutions are dilute in all cases (c/c* < 1). The solvent viscosity
(ηs) varied from ηs = 1 mPa s for pure water to 10.7 mPa s, at
20 °C, for varying concentrations of glycerol. All the polymer
solutions and concentrations used are summarized in Table 1.

3.2. The serpentine channel

The serpentine channels used in this work consist of a series
of 8 half-loops of width (W) = 100 μm, height (H) = 80 μm
and varying inner radius (R). The number of loops and the
geometry of the inlets of the serpentine channels used in this
study are represented in Fig. 1a and have been described in
detail in Zilz et al.28 Experiments performed with varying
numbers of loops (N) confirmed that the results presented
here are independent of the exact number of loops, provided
that 2 < N < 15. The channels are made from PDMS, but due
to the small viscosity of the polymer solutions used, the
applied pressure remained sufficiently small to avoid defor-
mation of the channels. The solutions are supplied to the
micro-channel via two inlets, one stream of which is
Table 1 Polymer solutions used in the serpentine channel and fit
parameters of λ = Aηs

0.9

Polymer solutions used in the serpentine channel

Mw Concentration ηp/ηs

2Mio 125–500 ppm 7%–39%
4Mio-1 400 ppm 34%
4Mio-2 400 ppm 34%

Fit parameters of λ = Aηs
0.9 from classical rheometry

Mw Concentration A ms/(mPa s)0.9

2Mio 400 ppm 0.25 ± 0.02
4Mio-1 400 ppm 0.59 ± 0.02
4Mio-2 400 ppm 0.95 ± 0.04

This journal is © The Royal Society of Chemistry 2014
fluorescently dyed. The light grey area visible in the snap-
shots of Fig. 1b shows the location of the fluorescently
labeled fluid. Its width variation along the streamwise direc-
tion shows the slight asymmetry of the flow field along the
flow path due to local flow acceleration in the curved geo-
metry. Note that the channel width is constant over the whole
length of the channel. Fig. 1b shows a stable flow situation
in the left panel and an unstable flow situation in the right
panel. In this way the stability of the flow can easily be visually
assessed and will always be monitored at the last loop. The
time-dependent flow is easily identifiable in the real-time flow
visualization. The flow rate (Q) was varied from 1 to 50 μl min−1,
and was imposed via a syringe pump (PHD 2000, Harvard
apparatus). The Reynolds number (Re) is defined as Re =
ρUW/η, with ρ representing the density of the fluid and U =
Q/WH representing the average velocity in the channel. The
maximum Re, corresponding to the highest flow rate and
lowest viscosity solution, never exceeded 5. The flow is visu-
alized using an inverted microscope (Axio Observer, Zeiss)
coupled to a CCD camera (PixeLink). Starting with the lowest
flow rate, Q is then gradually increased. After each change in
Q a sufficiently long time is allowed to achieve steady-state
flow conditions (on the order of 10 minutes per step). The
onset of fluctuations in the flow defines the onset of the
time-dependent elastic instability, and the critical flow rate
(Qc) is determined. From the critical flow rate, we obtain the
critical average shear rate (c), defined as c = Qc/(W

2H).
As an example, Fig. 3 illustrates the results obtained for

PEO 2Mio at a concentration of 400 ppm. Similar experi-
ments (not shown) have been performed at different concen-
trations and for different molecular weights, as given in
Table 1. In parallel to each experiment, the solvent viscosity
and the ratio between the polymer and solvent viscosity (ηp/ηs)
was determined using an Ubbelohde capillary viscometer. In
Fig. 3 Critical shear rate (c) as a function of the normalized radius
(1 + R/W) for solutions of PEO 2Mio at a concentration of 400 ppm for
different solvent viscosities (ηs). The dotted lines represent fits to the
data using eqn (3). Each experiment was repeated at least two times
using fresh polymer solutions and the average value is shown together
with the error bars.

Lab Chip, 2014, 14, 351–358 | 353
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Fig. 4 a) First normal-stress difference (N1) as a function of the shear
rate from classical rheometry for PEO 2Mio at 400 ppm. A quadratic fit
to the normal-stress data is also indicated. Inset: shear viscosity (η) as a
function of shear rate. Note that for the representation of the data, an
average over several runs (at least 3) has been plotted. b) λ vs. ηs from
classical shear rheometry at a polymer concentration of 400 ppm. The
fits correspond to λ = Aη0.9s .
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this way it was possible to correct for small changes in tem-
perature that occurred in the laboratory (typically between
20 °C and 23 °C).

3.3. The classical rotational rheometer

A commercial rotational shear rheometer (MARS II, Thermo
Scientific) in combination with a cone-and-plate geometry
(diameter (D) = 60 mm, cone angles (α) = 2° and 1°) in shear
rate controlled mode was used to measure the viscosity (η)
and the first normal-stress difference (N1 = τ11–τ22) simulta-
neously, following the methodology laid out by Zell et al.31 In
models of dilute polymer solutions, τ22 is negligible32 in the
steady simple shear flow experiments and thus N1 is identical
to the streamwise normal-stress (τ11). The shear rate was
increased in a step-wise protocol from 1 s−1 up to a maximum
of 3000 s−1, with 15 s of equilibration time at each shear rate.
The temperature was kept constant at T = 20 ± 0.5 °C by
using a Haake Phoenix II refrigerated circulator. The normal-
stress data of the polymer solutions were corrected by taking
into account inertial contributions that can be easily obtained
from N1 measurements of the Newtonian solvents. The con-
stant solvent viscosities (ηs() ≡ ηs) were also measured. The
Ψ1 data of the polymer solutions were obtained from qua-
dratic fits to the corrected data for N1 according to N1() =
Ψ1

2 within adequate ranges of shear rate. An example of the
normal-stress data (N1) together with the results for the shear
viscosity (η) is shown in Fig. 4a for PEO 2Mio at a concentra-
tion of 400 ppm. A quadratic fit to the normal-stress data is
also indicated. Note that for the representation of the data, an
average over several runs (at least 3) has been plotted. The
relaxation time (λ) of the polymer was determined by taking


     

 



 1 1

2 2p s( ) [ ( ) ( )]� � � ð4Þ
When calculating the relaxation time we refer to the poly-
mer viscosity at a fixed shear rate of  = 100 s−1 and neglect
the slight shear-thinning behavior of the polymer solutions.
The associated uncertainties, δη, δηs and δΨ1 (from the statis-
tics of multiple independent measurements), can be
interpreted in terms of an estimate of the uncertainty of λ,

i.e.      2 2

1

2

1
2 2 22 2�        p p s with mean

values denoted by an overbar. The variations of λ =  ± δλ

with solvent viscosity are shown in Fig. 4b and can be
described as λ = Aηs

0.9, which has been found as the best fit
for all three curves presented in Fig. 4b. The fit parameters
(A) are shown in Table 1.

For a polymer chain in a good solvent, according to
Zimm’s theory,32 the longest relaxation time of a dilute solu-
tion can be estimated using


 

Zimm
w s

A B


F M
N k T
[ ] ð5Þ

where NA is the Avogadro constant, kB is the Boltzmann con-
stant (and the product NAkB is equal to the universal gas
354 | Lab Chip, 2014, 14, 351–358
constant, R), T is the absolute temperature and [η] is the
intrinsic viscosity. Tirtaatmadja et al.33 have shown experi-
mentally that this can be expressed as [η] = 0.072Mw

0.65 for
the PEO solutions studied here (giving [η] in the usual units
of ml g−1). The prefactor (F) is given by Rodd et al.34 to be
0.463. Rodd et al.30 measured the intrinsic viscosity of differ-
ent polymer–water–glycerol mixtures and have shown that it
decreases due to a decrease in solvent quality. As a conse-
quence, the dependence of λ on ηs becomes less than linear.
In Fig. 5a we show how these estimates of the Zimm relaxa-
tion time compare to those determined from the first
normal-stress difference measured in the cone-and-plate rota-
tional rheometer, illustrating that the agreement is very good.
Given the polydispersity inherent in such commercial poly-
mers, and batch-to-batch variations which the data in Fig. 4b
highlight, the almost quantitative agreement between the two
estimates of λ is striking (especially given the various con-
stants used in the determination of λZimm from eqn (5)). Such
agreement provides confidence in the robustness of our esti-
mates of the relaxation time and hence in the calibration of
the serpentine rheometer.
This journal is © The Royal Society of Chemistry 2014
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Fig. 5 a) Relaxation time from classical shear rheometry (eqn (4)) compared to the Zimm relaxation times30,34 (eqn (5)). b) Relaxation time from
classical shear rheometry (eqn (4)) versus solvent viscosity (ηs) for PEO 2Mio at a concentration of 400 ppm (left axis). a = λ/C (eqn (3)) from the
serpentine rheometer versus solvent viscosity (ηs) for PEO 2Mio at concentrations of 125 ppm and 400 ppm (right axis). The error for the data from
the serpentine rheometer corresponds to the error of the fit to c (eqn (3)), and for the data from the classical rheometer the errors are estimated
by an error propagation according to the uncertainties of Ψ1 and ηp.
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4. Calibration of the serpentine
rheometer

To calibrate the serpentine rheometer the value of C (eqn (3))
has to be determined. To do so we compare results for a = λ/C
from the serpentine channel to relaxation times from classical
rheometry. To obtain better accuracy, we not only compare
these values for a single polymer solution, but also use solu-
tions of PEO 2Mio with different solvent viscosities and dif-
ferent concentrations.

Firstly we determine the values of a = λ/C from the slope
obtained from the fits of the critical shear rate versus the
radius of curvature (Fig. 3) and the ratio of the polymer to
the solvent viscosity for PEO 2Mio for two different concen-
trations, 125 ppm and 400 ppm. These results are then com-
pared to the results for λ from the classical shear rheometer
(see Fig. 4b) for PEO 2Mio at a concentration of 400 ppm.
Note that it was not possible to obtain reliable measurements
for the smaller concentration of 125 ppm on the classical
rheometer. Fig. 5b shows λ together with a as a function of
the solvent viscosity (ηs).

A number of things should be remarked from Fig. 5b.
First, all three data sets show a comparable dependence of λ
on the solvent viscosity, which we will continue to describe
as λ ∼ ηs

0.9. Second, the results obtained from the serpentine
rheometer for the two different concentrations are in good
agreement. This shows that our correction for the solvent
viscosity is adequate and is a first validation that the pro-
posed rheometer works very well. We adjusted a = λ/C =
Bηs

0.9 and obtained B = 4.99 ± 0.23 ms/(mPa s)0.9 as the best
fit for both curves together. Finally by comparing A = 0.25 ±
0.02 ms/(mPa s)0.9 (see Table 1) from the classical rheometry
to the value of B from the serpentine rheometer we obtain
C = 0.05.
This journal is © The Royal Society of Chemistry 2014
5. Using the serpentine channel

We now discuss possible applications of the serpentine
rheometer.

5.1. A quantitative rheometer

5.1.1. Extension to lower concentrations. First we measure
the relaxation times for different concentrations (c) of a given
polymer. As we are working in the dilute regime (c < c*), for
a given molecular weight we expect to obtain identical
relaxation times. The results for PEO 2Mio at concentrations
of c = 125 ppm, 250 ppm and 500 ppm for a solvent viscosity
of ηs = 4.9 mPa s are presented in Fig. 6a. These results were
obtained from an independent series of measurements and
each experiment has been repeated three times using fresh
polymer solutions. The results are compared to the value for
the relaxation time at c = 400 ppm from the calibration curve
(highlighted by a circle in Fig. 6a). Note that we did not
include the value for c = 125 ppm from the calibration curve
as we did not perform experiments with the corresponding
solvent viscosity for this concentration.

Notwithstanding the rather large uncertainty for the
smallest concentration, these results are very promising; a
value of λ ≈ 1.2 ms is found independent of the polymer
concentration. Note that it was not possible to measure the
relaxation time of the low concentration, c = 125 ppm, using
the rotational rheometer, indicating the superior sensitivity
of the serpentine channel, which is able to measure very
small relaxation times down to very small concentrations.
This is in agreement with the findings from the calibration
curve that as long as the correction for the ratio between the
solvent and the polymer viscosity is made correctly, identical
results are obtained for different concentrations in the dilute
regime. We remark that additional miniaturization of the
Lab Chip, 2014, 14, 351–358 | 355
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Fig. 6 a) Relaxation time (λ) obtained from the serpentine rheometer for PEO 2Mio in a solvent with viscosity ηs = 4.9 mPa s at varying
concentrations, ranging from 125 ppm to 500 ppm. The data points represent the average over three sets of experiments and the corresponding
error bars. The relaxation time at 400 ppm corresponds to the value from the calibration curve. b) Relaxation times from the serpentine rheometer
versus relaxation times from classical shear rheometry. The results from the serpentine rheometer correspond to a concentration of 125 ppm for
the three different polymers and a solvent viscosity of ηs = 5.2 mPa s. The error bars are estimated from the error of the fit to c. The results from
the classical rheometer for 400 ppm solutions are calculated from the fits of the relaxation time with the solvent viscosity, see Table 1. In this
case, the error is estimated from the error of the fit on A.
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serpentine channel enhances the elastic effects, thus increas-
ing further the sensitivity of this rheometric device. A recent
review16 discusses the challenges of measuring viscoelastic
properties of dilute polymer solutions, highlighting the rele-
vance of using microfluidic devices, as in our work, to probe
the elastic properties of such polymer solutions.

5.1.2. Changing the molecular weight. Secondly we
measured the relaxation time for solutions of PEO of
different molecular weight: 2Mio and two different batches of
4Mio, denoted 4Mio-1 and 4Mio-2. Fresh solutions for all
three polymers were prepared at 125 ppm and a solvent vis-
cosity of ηs = 5.2 mPa s. The relaxation times obtained were
compared to the relaxation times from classical shear
rheometry measured at 400 ppm. As we are in the dilute
regime, no dependence of λ with the polymer concentration
is expected, and we have explicitly shown that this is true for
the solution of PEO 2Mio in Fig. 6a. The values used from
the classical rotational rheometry are calculated using the fit
parameters from Table 1 to obtain the relaxation times at the
solvent viscosity of ηs = 5.2 mPa s.

The results from the serpentine channel are plotted in
Fig. 6b against the results from the classical rheometry and
satisfactory agreement between these two independent tech-
niques is obtained. Note that the fact that the error bars are
smaller than the differences between these two measure-
ments in some cases is very likely due to the fact that inde-
pendently prepared polymer solutions have been used in
each measurement on the two different devices.

In addition, as was actually already apparent from the
classical shear rheology data in Fig. 4b, we note that the data
for the two batches of 4Mio PEO highlight large batch-to-
batch variations that can occur between nominally-identical
356 | Lab Chip, 2014, 14, 351–358
samples. There is a factor of two difference in relaxation
time between both samples. Such differences are likely a
consequence of differing degrees of polydispersity in the
two batches.
5.2. Integration into a microfluidic lab-on-a-chip device

As the foregoing makes clear, to determine a quantitative
value of the relaxation time using the serpentine rheometer,
an independent measurement of the polymer contribution to
the total viscosity (and indeed a measurement of the solvent
viscosity if it is unknown) is required such that the value of

  p can be determined to use in eqn (3). In the current

study, these values were obtained from separate measure-
ments using an Ubbelohde capillary viscometer. Ideally one
would like to be able to determine both the viscosity ratio
and the critical shear rate from a single microfluidic lab-on-
a-chip device. To do so one could either use pressure drop
measurements in a straight section upstream of the serpen-
tine channel, as in Pipe et al.12 for example, or, alternatively,
use the Y-junction approach of Guillot et al.6 or Nghe et al.9

As the easiest method to observe the purely-elastic instability
in the serpentine channel is via an optical visualization tech-
nique, integration into a system based on the latter approach
is probably to be preferred, thereby avoiding the requirement
of incorporating pressure sensors into the device. To avoid
issues of possible polymer degradation due to the instability,
in the pressure-drop case the viscometer section of the device
should be incorporated upstream of the serpentine channel
and, in the Y-junction case, where a reference fluid is required,
in a separate parallel micro-channel on the same chip.
This journal is © The Royal Society of Chemistry 2014
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5.3. Using the serpentine rheometer as a comparator or index
device with an application to polymer degradation

If one is not concerned with the absolute value of a fluid's
relaxation time per se, but rather with indexing different
fluids according to their degree of elasticity, then the serpen-
tine channel represents an extremely efficient device. In this
scenario it is simply sufficient to test the different fluids in a
single channel of known curvature and determine the critical
shear rate in each case. Following eqn (3), this directly leads
to c,1/c,2 = λ2/λ1. Of course, strictly speaking, this equality
only holds for fluids where the ratio η/ηp remains constant.
In the absence of quantitative information regarding the con-
tribution to polymer viscosity, a pragmatic approach, if the
critical overlap concentration is known, is to use the scaling32

c*[η] ~ 1, which gives ηp ~ ηs c/c*, or η/ηp = 1 + c*/c.
Alternatively the critical shear rate can be used for multi-

ple repeat experiments of the same fluid to test for degrada-
tion. Often one needs to check if polymer degradation has
occurred due to either photo-induced, mechanical, thermal,
chemical or biological causes.9,35,36 Simple shear viscosity
measurements are often fairly insensitive to such effects as
degraded polymers often still contribute to the overall vis-
cosity of the solution, which tends to be dominated by the
solvent viscosity in any case for dilute polymer solutions
(and is therefore a small effect). In contrast, the polymer
relaxation time is a much more sensitive harbinger of degra-
dation. In Fig. 7 we show the effect of photo-induced degra-
dation on a virgin polymer solution, i.e. unsheared, stored
at room temperature in a clear bottle exposed to sunlight
over a period of several days. Each day a new measurement
was made and, after seven days, a precursive slight increase
in the critical shear rate was observed, which was followed
by destruction of the sample via the formation of biofilms.
Finally, our experience with the serpentine rheometer sug-
gests its sensitivity makes it an ideal instrument for
Fig. 7 Critical shear rate measured over time using the serpentine
rheometer with two different radii for a PEO sample exposed to
sunlight. The error bars correspond to the uncertainty in measuring
the critical flow rate.

This journal is © The Royal Society of Chemistry 2014
monitoring possible degradation effects, regardless of the
precise degrading mechanism.

6. Conclusions

By understanding the scaling behaviour of the onset of a
purely-elastic flow instability in a microfluidic serpentine
channel, we have proposed a microfluidic rheometric device
that is capable of measuring fluid relaxation times down to
1 ms. In contrast to most other rheometers, which aim to
produce viscometric flows to enable the extraction of rheolog-
ical properties, the device makes use of an inherent instabil-
ity within the flow to estimate the fluid relaxation time.
Although using interfacial instabilities has previously been
tentatively proposed22,26 as a means of estimating material
properties, as has the onset of viscoelastic vortices,37 the cur-
rent method, which only requires a single fluid, is the first to
show that relaxation times can be successfully measured
using such an approach. Also, very recently, Koser et al.38

have proposed using creep-recovery tests in a microfluidic
device to estimate polymer relaxation times. However, their
device requires the use of a high-speed camera and is
restricted to relaxation times at least an order of magnitude
greater than those measured here. The serpentine rheometer
can either (a) be used as a comparator or indexing device, in
which case fluids can be ranked according to their elasticity,
or changes can be monitored, such as those due to degrada-
tion or (b) be used as a true rheometer once calibration tests
using classical cone-and-plate rheometry, for example, have
been performed. In this latter case, the microfluidic serpen-
tine device can access lower molecular weight materials, sol-
vent viscosities or concentrations than is possible using state-
of-the-art commercial rheometers.
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