Issue 6, 2014

Optimisation of laser parameters for the analysis of sulphur isotopes in sulphide minerals by laser ablation ICP-MS

Abstract

The effects of laser type (Nd:YAG and excimer lasers) and their analytical parameters on 34S/32S isotopic fractionation during LA-ICP-MS analysis were investigated. Laser fluence has a larger fractionation effect when ablating pyrite with the New Wave Nd:YAG 193 nm laser, compared to the Resonetics 193 nm excimer laser which did not produce significant fractionation over the same range of fluence (1.3–3.7 J cm−2). Matrix effects occurred between pyrite and bornite on both laser systems, especially at low fluence. However, matrix effects can be reduced with increasing fluence lessening the need for matrix matched reference materials. The effects of interface tubing configuration were also investigated and the addition of a ‘squid’ mixing device, a coil of small diameter Tygon tubing and a small volume glass bulb, was found to improve signal precision and reproducibility and decrease the washout time of the S signal between analyses. The degassing of air from the inner surfaces of the interface tubing can produce significant isotopic drift (8‰ h−1), hence flushing the tubing prior to analyses is crucial for reproducible analyses. The isotopic composition and homogeneity of a range of sulphide minerals were characterised for use as potential reference materials. We present preliminary data for a large, isotopically homogeneous pyrite crystal (PPP-1) which could be considered as a new isotopic reference material (δ34SV-CDT = 5.3 ± 0.2‰).

Graphical abstract: Optimisation of laser parameters for the analysis of sulphur isotopes in sulphide minerals by laser ablation ICP-MS

Supplementary files

Article information

Article type
Paper
Submitted
09 Jan 2014
Accepted
31 Mar 2014
First published
31 Mar 2014

J. Anal. At. Spectrom., 2014,29, 1042-1051

Optimisation of laser parameters for the analysis of sulphur isotopes in sulphide minerals by laser ablation ICP-MS

S. E. Gilbert, L. V. Danyushevsky, T. Rodemann, N. Shimizu, A. Gurenko, S. Meffre, H. Thomas, R. R. Large and D. Death, J. Anal. At. Spectrom., 2014, 29, 1042 DOI: 10.1039/C4JA00011K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements