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In life sciences, and particularly biomedical research, linking aberrant pathways exhibiting phenotype-specific
alterations to the underlying physical condition or disease is an ongoing challenge. Computationally,
a key approach for pathway identification is data enrichment, combined with generation of biological
networks. This allows identification of intrinsic patterns in the data and their linkage to a specific context
such as cellular compartments, diseases or functions. Identification of aberrant pathways by traditional
approaches is often limited to biological networks based on either gene expression, protein expression
or post-translational modifications. To overcome single omics analysis, we developed a set of
computational methods that allow a combined analysis of data collections from multiple omics fields
utilizing hybrid interactome networks. We apply these methods to data obtained from a triple-negative
breast cancer cell line model, combining data sets of gene and protein expression as well as protein
phosphorylation. We focus on alterations associated with the phenotypical differences arising from
epithelial-mesenchymal transition in two breast cancer cell lines exhibiting epithelial-like and mesenchymal-
like morphology, respectively. Here we identified altered protein signaling activity in a complex biologically

Received 13th June 2014, relevant network, related to focal adhesion and migration of breast cancer cells. We found dysregulated
Accepted 5th August 2014 functional network modules revealing altered phosphorylation-dependent activity in concordance with
DOI: 10.1039/c4ib00137k the phenotypic traits and migrating potential of the tested model. In addition, we identified Ser267 on

zyxin, a protein coupled to actin filament polymerization, as a potential in vivo phosphorylation target of
www.rsc.org/ibiology cyclin-dependent kinase 1.

Insight, innovation, integration

This paper demonstrates a method to integrate heterogeneous datasets obtained from different biological levels reaching from genomics, over proteomics,
down to the level of site-specific post translational modifications. By combining information from a human PPI-network and kinase-substrate relations, we
were able to create one integrated interaction network embracing multiple omics. Data was obtained from a triple-negative breast cancer cell line model to
identify functional network modules that reveal differential protein signaling activity related to EMT (epithelial-mesenchymal-transition). We show that
analyzing multiple omics data in combination can provide significant biological insights into alterations of disease-related pathways.
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1 Introduction

Omics research (genomics, proteomics, metobolomics, epigeno-
mics, etc.) has primarily been driven by technical and technol-
ogical bioanalytical advances over the last decade. These advances
include high-throughput methods to conduct large-scale studies
(next generation sequencing, shotgun proteomics, gene expres-
sion microarrays, etc.) and high resolution mass spectrometry-
based methods that provide essential information about an
organism’s regulatory machinery in its efforts to maintain
homeostasis in health and disease. This massive amount of
diverse information has facilitated the rise of high-quality and
publicly available biological databases, such as The Cancer
Genome Atlas (TCGA) that integrate these various aspects to
provide a disease-centric view. A fundamental computational
approach to combine these various sources with interaction
data is differential network mapping." The goal is to identify
condition-distinctive, functional network modules (small impaired
sub-networks) in an organism’s global interaction network.>”
Interaction networks as provided by the BioGRID database® and
the Human Protein Reference Database (HPRD)® are compendia of
pairwise protein interaction studies'®'" and protein complexes'>**
in various organisms. Methods for differential network mapping
have traditionally focused on projecting aberrant patterns from
gene expression microarray data onto a protein-protein interaction
(PPI) network." It is widely used to overcome single gene function
analysis and to identify sets of genes and their concerted disease-
associated responses.'® Network modules achieve better perfor-
mance because a differentially expressed sub-network is considered
to be a more robust form to characterizing diseases than individual
molecules."” Additionally, uni-directional analysis based on expres-
sion data alone can suffer from low coverage and high false-positive
rates or high false-negative rates."” To alleviate these issues in
traditional biomarker research, vastly more integrative approaches
are needed to close the gap between computational models and
their underlying biological machinery. However, since popular
approaches analyze only single omics datasets,’>*”'® they fail
to integrate multiple layers of information provided by different
omics technology, e.g. post-translational modifications (PTMs)
and protein expression. Achievements in drug design based on
single gene targets such as trastuzumab'® which is based on the
HER2 gene, also referred to as ErbB-2 or HER2/neu, while
successful in principle, have shown overall limited response
in patients and emphasize the need for a clearer classification
of cancers into biologically meaningful types and subtypes
based on molecular categorization.'® This can only be obtained
with more complete computational models that link molecular
alterations to physiology. Therefore, it is necessary to pinpoint
sub-networks of differentially regulated molecular targets in
the context of altered pathways due to disease-associated
perturbations that allow more accurate interpretations of their
interplay. The cell model behind our present study consists
of two isogenic cell lines derived as single cell clones from a
triple-negative ductal breast carcinoma cell line, HMT3909-513.>°
One of these cell lines (A4) has an epithelial-like morphology,
hereafter referred to as HMT-E and the other cell line (G4)
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exhibits a mesenchymal-like morphology and is hence referred
to as HMT-M. Through semi-quantitative mass spectrometry,
we compared the proteome as well as the phosphoproteome of
HMT-E and HMT-M to elucidate pathways that are differentially
regulated between the two cell types of the same genetic
background, but differ in epithelial-mesenchymal morphology.
Epithelial-to-mesenchymal transition (EMT) is a process in
which epithelial cancer cells lose their cell polarity and cell-cell
adhesion, and gain mesenchymal features such as migratory and
invasive properties. The gene regulatory programs controlling EMT
are responsible for the regulation of cell adhesion and signaling
pathways associated with migration and invasion.*' In triple-
negative breast cancer (TNBC), EMT has been of great interest
due to the correlation of EMT with enrichment of the cancer
stem-like cell (CSC) subpopulation of the tumors as well as its
involvement in several steps of the metastatic process.'” Our
cell model provides an optimal setting to study differences in
signaling network associated with the epithelial- and mesenchymal-
like phenotypes. We developed computational network analysis
methods that support the analysis of combined multiple omics
studies and applied these methods to gene and protein expres-
sion as well as protein phosphorylation data from the cell line
model described above. We present TNBC-associated networks
and relate them with underlying regulatory events focusing on
protein phosphorylation in combination with gene and protein
expression.

2 Methods

2.1 Data collection

The present study is based on a mass spectrometry-based com-
parison on the isogenic human breast cancer cell lines A4 and G4,
with A4 representing an epithelial-like and G4 a mesenchymal-like
phenotype. A total of three omics datasets were created and
analyzed in this study: gene expression, protein expression and
protein phosphorylation. While gene expression was measured
array-based without subfractions, phosphorylation and protein
expression were measured in the membrane fraction (M) and the
soluble fraction (S) consisting of non-membranous proteins
separately resulting in five different datasets. Each of the non-
phospho-fractions were analyzed twice, leaving a non-phospho-
M1, -M2, -S1 and -S2. Overall, this lead to a total of seven
datasets for bioinformatics analysis: S1, S2, M1, M2, pS, pM
and gene expression (Fig. 1 and ESIL, Fig. S4-S6).

2.1.1 Cell lines. The cell lines A4 and G4, are single cell
clones of the TNBC cell line HMT3909S13, which originates
from a human primary infiltrating ductal breast carcinoma.
Cells were cultured in PureCol-coated (Nutacon) cell culture
flasks (Cellstar) in serum-free medium MEBM (Lonza) with
growth factors and supplements: SingleQuots Kit 0.1% recom-
binant human epidermal growth factor (thEGF), 0.1% insulin,
0.1% Gentamicin Sulfate Amphotericin-B (GA-1000) and 0.1%
hydrocortisone (Clonetics, Lonza) and 10 ng mL ™" basic fibro-
blast growth factor (FGF), 20 ng mL " epidermal growth factor
(EGF) (Peprotech), 2% B27 (Gibco) and 4 g mL ™" heparin (Sigma).
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Fig. 1 Organigram of the protein expression and protein phosphorylation
measurements. A4 and G4 are the originating cell lines. Compartmental
fractionation resulted in membrane (M) and soluble (S) fractions. Phospho-
peptide purification followed by liquid chromatography tandem mass
spectrometry (LC-MS/MS) finally yield three datasets per compartmental
fraction: one phosphopeptide dataset (pM/pS) and two technical replicates
per protein expression dataset (M1, M2, S1, S2). Gene expression is not
displayed in this figure.
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Cells were maintained at 37 °C, 5% CO, and harvested with
Accutase (Millipore).

2.1.2 Sample preparation and mass spectrometry

2.1.2.1 Samples and analysis pairs. Four samples were analysed
in replicates: A4 and G4 cell line samples were divided into
two fractions containing membrane proteins (M) and soluble
proteins (S), respectively. These fractions were chemically
labeled and corresponding fractions from each cell line were
combined. Next, phosphopeptides were purified on titanium
dioxide (TiO,), leaving two fractions from each mixed sample,
one containing the phosphorylated peptides (pM, pS) and one
non-phosphorylated peptides (M, S). Each of these fractions
consisted of three biological cell samples, one A4- and two
G4-samples, the latter in a biological duplicate for use as an
internal control. Overall, both protein expression level and
presence of phosphorylations were investigated by liquid
chromatography tandem mass spectrometry (LCMSMS).

2.1.2.2 Subcellular fractionation, in solution digestion of proteins
and labeling of peptides. Cells were lysed in ice-cold Na,COs-
buffer, pH 11 (100 mM Na,CO;, 100 M Na-pervanadate, phos-
phatase inhibitor cocktail 1 + 2 (Sigma)) by sonication followed
by incubation at 4 °C for 1 h. Lysates were subjected to
ultracentrifugation (Sorvall RC M150S) for 1 hour at 100 000g
to separate the samples into membrane and soluble proteins.
For digestion of the membrane proteins the membrane pellet
was redissolved in 6 M urea/2 M thiourea, 10 mM DTT con-
taining 1 g lysyl endopeptidease (Wako) per 50 g protein and
incubated for 3 hours at room temperature. Subsequently,
20 mM iodoacetamide was added and the solution was
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incubated for 20 min at room temperature in the dark. After
incubation, the solution was diluted 10 times with 20 mM
triethylammonium bicarbonate (TEAB), pH 7.8, containing
20 g trypsin (Promega) and left at room temperature overnight.
Soluble proteins were concentrated on a 10 kDa spin filter
(Millipore) to 50 L. A total of 400 L TEAB, pH 7.8, 10 mM DTT
was added and the solution was concentrated again to 50 L.
After centrifugation, 20 mM iodoacetamide was added and the
sample was incubated at room temperature in the dark. After
incubation, 50 L TEAB, pH 7.8 was added together with 20 g
trypsin (Promega) and the solution was left at room tempera-
ture overnight. After digestion of the membrane samples, lipids
were precipitated by addition of 2% formic acid (FA) followed
by centrifugation 14 000g for 10 min. The peptide concentration
of each sample was determined using amino acid composition
analysis. Peptides from the four conditions were chemically
labeled with iTRAQ® Reagents 4-plex (ABSCIEX, MA) according
to the manufacture’s protocol. Soluble and membrane samples
were labeled with reagent 114-117 (115: A4, 116-117: G4, 114:
not used in this study) and then mixed ina 1:1:1:1 ratio. The
combined samples were lyophilized to 100 L.

2.1.3 Phosphopeptide enrichment. The procedure included
two rounds of TiO, phosphopeptides purification separated
by SIMAC (sequential elution from IMAC) followed by Micro
HPLC HILIC.

2.1.3.1 Phosphopeptide enrichment using TiO,. The purification
of phosphorylated peptides was performed using TiO, under
strong acidic conditions to eliminate non-specific binding.”?
Large scale enrichment of phosphopeptides was performed using
the TiSH protocol as previously described.*

2.1.3.2 Hydrophilic interaction liquid chromatography (HILIC) -
HPLC. The phosphopeptide and non-modified peptide mixtures
were resuspended in 90% ACN, 0.1% TFA and injected onto an
in-house packed TSKgel Amide-80 HILIC (Tosoh, 5 m) 320 m X
170 mm HPLC column using an Agilent 1200 HPLC system. The
phosphopeptides were eluted using a gradient from 90% ACN,
0.1% TFA to 60% ACN, 0.1% TFA over 35 min at a flow rate of
6 L min ', Fractions were automatically collected at 1 min
intervals after UV detection at 210 nm and combined into 10 to
12 fractions according to UV detection. All fractions were dried
by vacuum centrifugation.

2.1.3.3 HPLC-MS/MS analyses. Samples were separated using
nano HPLC as described above. Phosphopeptide and non-
modified peptide fractions were analyzed in duplicates by
nano-LC MSMS analysis using a Dionex UltiMate 3000 nano
HPLC coupled to a Thermo Scientific Orbitrap Q-Exactive mass
spectrometer (Thermo Scientific, Bremen, Germany). The
samples were redissolved in 10 L 0.1% TFA and loaded onto a
custom made fused capillary pre-column (2 ¢cm length, 360 m
OD, 75 m ID) with a flow of 5 L per minutes for 7 minutes.
Trapped peptides were eluted onto a custom made fused
capillary column (20 cm length, 360 m outer diameter, 75 m
inner diameter) packed with ReproSil Pur C18 3 m resin
(Dr Maish, Ammerbuch-Entringen, Germany) with a flow of
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300 nl per minute using a linear gradient from 95% solution A
(0.1% formic acid) to 35% B (100% acetonitrile in 0.1% formic
acid) over 80 min or 120 min followed by 10 min at 90% B and
14 min at 98% A. Mass spectra were acquired in positive ion
mode applying automatic data-dependent switch between one
Orbitrap survey MS scan in the mass range of 350 to 1200 m/z
followed by HCD fragmentation and Orbitrap detection of the
twelve most intense ions from the MS scan. Target value in the
Orbitrap for MS scan was 1 000 000 ions at a resolution of 70 000
at m/z 200 and target value for MSMS scans was 500000 at a
resolution of 17 500 at m/z 200. Fragmentation in the HCD cell was
performed at normalized collision energy of 30 eV for the iTRAQ®-
labeled peptides. The isolation window was 1.5 Da and the ion
selection threshold was set to 77 000 counts. Selected sequenced
ions were dynamically excluded for 60 seconds. Maximum injec-
tion times were set to 100 ms for MS scans and 65 ms (120 min
gradient) or 200 ms (80 min gradient) for MSMS scans.

2.1.3.4 Database searches: protein identification. The generated
peak lists (mgf files) were processed using the Proteome Discover
1.4.0.288 software integrated with the MASCOT (version 2.4) and
the SEQUEST database search program. The search parameters
were set to: precursor mass tolerance 5 ppm, fragment mass
tolerance 0.1 Da, trypsin digestion with two missed cleavage
allowed, fixed lysine and N-terminal iTRAQCR\’AL-plex, and carb-
amidomethyl (C). For variable modifications methionine oxida-
tion and deamidation (N) was chosen as well as tyrosine, serine,
and threoninie phosphorylations. Tandem mass spectra were
searched against the Swissprot restricted to Homo sapiens
(downloaded October 25th 2012, 84721 entries). The searches
were performed with the minimum requirement of two unique
peptides for protein identification and one unique peptide for
phosphopeptide identification filtered to 5% peptide FDR with a
decoy approach using percolator.

2.1.4 Gene expression analysis

2.1.4.1 Cell harvest. Upon havest, cells were rinsed with
phosphate buffered saline (PBS) pH 7.4 (Gibco, Invitrogen) and
detached from the culture flask by incubation with Accutase
(Millipore) 10 min. according to the manufacture guideline.

2.1.4.2 Gene expression analysis. mRNA was purified by
TRIzol followed by ethanol precipitation. Each cell line in five
biological replicates was analyzed on GeneChip Human Gene
1.0 ST Arrays (Affymetrix, Santa Clara, CA, USA). Microarray
data were normalized and processed using the Partek Genomics
Suite (false discovery rate [FDR] 0.01) (Gene Expression Omnibus
[GEO] accession number GSE32455).

2.2 Data pre-processing

2.2.1 Data set. In the case-control setting we determined
the fold changes in phosphorylation and protein expression
between the two cell lines A4 and G4 using a typical two-fold
change threshold. Thus, a protein was considered to exhibit
altered expression if the difference in expression level between
A4 and G4 was at least <2-fold. Next, we discretized both
technical replicates to a m x n binary matrix with m being
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Table 1 Resolving contradictions between replicates

Expression of protein Expression of protein

Pn in replicate R1 Pn in replicate R2 Result
Up Up Up
Up 0 Up
Up Down 0

0 Up Up

0 0 0

0 Down Down
Down Up 0
Down 0 Down
Down Down Down

the number of measured proteins (rows) and n being the
number of technical replicates (columns). In this matrix a profile
(row) consisting of a set of binary values is assigned to each
protein with 1 indicating whether the protein was differentially
expressed or phosphorylated in this replicate and a 0 otherwise.
Finally, both replicates were merged into a single column. We
used a contradiction solver for all possible combinations that
allowed us to merge the two replicates into a m x 1 matrix. Table 1
shows the solving scheme. This pipeline of pre-processing steps is
applied iteratively to both the protein expression and phosphoryl-
ation data creating one matrix per fraction (M, S, pM, pS). These
matrices are called “indicator matrices”.®**

2.2.2 Hybrid network construction. The binary matrices
could then be projected onto the underlying global interaction
network in a network enrichment scheme. Since a regular PPI-
network does not include phosphorylation events we augmented
the human PPI-network from the latest version of the HPRD® to
resemble common protein-protein interactions with several public
resources of the human phosphoproteome/phosphorylation
network to create a heterogeneous phosphorylation/protein—
protein interaction network. These resources consist of experi-
mentally validated and predicted phosphorylation events and
phosphorylation site information and include PhosphoNetworks>
which is based on the CEASAR (Connecting Enzymes And Sub-
strates at Amino acid Resolution) method,*® PhosphoSitePlus,>”
PhosphoELM?*® and the phosphorylation information from
the post-translational modifications (PTMs) from HPRD.*°
Duplicated interactions (edges) from overlapping parts were
retained so that consensus information remains available.
Fig. 5a illustrates the annotation of edges reported by multiple
databases. The resulting network is the union of all above-
mentioned sources. Table 2 shows the edge-contributions of
each of these databases.

2.3 Differential network mapping and sub-network extraction

We determined for each node in the network whether it was
aberrant or not based on its differential indication and after-
wards we extracted the altered pathways. The KeyPathwayMiner
scheme requires the estimation of two configurable parameters:
k denotes the number of non-differential proteins (nodes) in a
sub-network solution and [ denotes the number of cases (bio-
logical replicates) in which a protein was allowed to be non-
differential before overall being tagged as a non-differential node
in the network (Fig. 2a). Whenever the profile over all replicates

Integr. Biol, 2014, 6, 1058-1068 | 1061
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Table2 Complementary information presenting the edge contribution of
each source database to both the extracted parent network and the full
underlying hybrid network which represents the union of all sources. "EC"
stands for edge contribution. The extracted parent network consists of
2636 edges/1002 nodes and the full network consists of 44 320 edges/
9957 nodes in total

Source database EC in parent network EC in full network

name total/(unique) total/(unique)
HPRD 1984/(1688) 36811/(34636)
HPRD_PTM 247/(0) 1808/(11)
PhosphoNetworks 250/(171) 4361/(3636)
PhosphoSitePlus 669/(422) 4050/(2474)
PhosphoELM 104/(6) 1700/(1032)

Replicates
(a)

Protein phosphorylation

ln=2

Gene expression

o] -

Sub-network solution

=
|

e (d)

Fig. 2 Schematic representation of the general workflow. All nodes in the
network show either aberrant or normal characteristic in the data sets
using individual parameterization. In case of multiple data sets the user can
specify logical operators and their order of appliance. A network enrich-
ment algorithm computes condition-specific key pathways in the under-
lying biological network.

fulfilled the [ parameter, the node was tagged as differential.
This procedure was repeatedly applied to each data set with
individual parameterization determined specifically for each
data set while & was a global parameter only effecting the
number of exception nodes in a solution. Before finally tagging
a node the results were combined using logical operators (AND,
OR, XOR) (Fig. 2b). The operator type as well as the order in
which they are applied during the data set-linkage are user-
defined. After nodes had been tagged according to the data
that is projected onto the network (Fig. 2¢) sub-networks that
fulfilled all parameter settings were identified and extracted
(Fig. 2d).

2.3.1 Parameter adjustment. We used a linear regression
model to identify the optimal value for k (Fig. 3). All sub-
network solutions were computed for various values of k. The
biggest positive residuals represented the parameter values that
maximized the size of the sub-network the most in increments
of five while optimizing the trade-off between specificity
and sensitivity at the same time. The regression suggested a
gradient of 3.86 indicating that on the interval k = 0 to k = 100
the sub-network size increased by an average of 3.86 nodes for
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Fig. 3 Regression model for k parameter adjustment. Between k = 24 and
k = 46 the network size increases linearly with k. Data points are identified
by computing real solution networks for each variation of k.

each non-differential node added to the network. A value of
k = 46 had the highest positive residual and maximized the size
of the resulting sub-network (red regression line). However,
while incrementing k by one between k = 24 and k = 46 the sub-
network size increased linearly (blue line). Each non-differential
node added to the sub-network solution allowed to connect three
differential nodes. While the sensitivity, i.e. many differential
nodes in the network, increased, the specificity, i.e. few non-
differential nodes in the network, decreased. Based on these
findings k was set to 32 as a trade-off between sensitivity and
specificity. It is important to note that this method of optimizing
k can be described as adaptation and optimization to network
topology for this particular set of indicator matrices and under-
lying network. Modifications to the matrices, e.g. due to changes
in thresholds, may result in different optimal values of k. For
case-exceptions previous publications of the “KeyPathwayMiner”
suggested to set [ to a value corresponding to a percentage of
available cases. Our data consisted of two biological replicates
that were finally merged, thereby allowing us to set [ to 0 at all
times resulting in improved comparability of the sub-network
solutions.

2.3.1.1 Linking omics data sets via logical operators. The
different omics data sets can be linked using common logical
operators “AND”, “OR” and “XOR”. The order and combination
of these operators severely impacts the way nodes are tagged
throughout the enrichment step where data is projected onto the
network. Accordingly, sub-network solutions vary immensely and
their interpretation needs to be adapted. The investigated bio-
logical question determines the feasibility of combinations
of logical links. We computed sub-networks for many different
linkages, however, biological analysis is based on a sub-network
generated by linking data sets with “OR” operators.

This journal is © The Royal Society of Chemistry 2014
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3 Results and discussion

We computed five indicator matrices for differentiation between
cellular compartments and differential regulation (phosphoryl-
ation in soluble fraction, phosphorylation in membrane fraction,
protein expression in soluble fraction, protein expression in
membrane fraction, gene expression). Next we combined them
with logical “OR” operators. We used a linear regression scheme to
adjust the k parameter in a way that optimized the sub-network. We
compiled a hybrid protein interaction-network that comprises the
PPI network from HPRD® complemented with phosphorylation
events from PhosphoNetworks,> PhosphoSitePlus,>” PhosphoELM>®
and PTMs from HPRD.*

3.1 Phenotype-associated sub-network

The differential network enrichment identified a TNBC-associated
parent sub-network for further dissection into small EMT-associated
sub-sub-networks (cytoscape session file, ESIT). It shows a core
interactome of proteins that are differential between A4 and G4.
A GO-term enrichment was used for functional annotation of
all proteins in the network and we compared this set of proteins
contained in this differential network to known breast cancer-
related genes obtained from the Ingenuity Pathway Analysis
(IPA) database.

Testing the entire hybrid network we found that 1090 of
9957 proteins (10.9%) are breast cancer-related as classified by
IPA. The coarse approach linking the different omics data sets
by logical “OR” operators produced a parent network with
187 breast cancer-related proteins from a total of 1002 proteins
(18.7%) displaying a higher breast cancer-related specificity.
Small sub-networks were extracted from this parent network
(Fig. 4-6 as well as ESL,t Fig. S1-S3 and complementary Tables S1,
S3-S5). Even though the parent network allowed for 32 nodes
(k = 32) which were not measured as differential in any of the
omics datasets, these small networks were also contained in
parent networks we computed for lower values of k up to k = 0
with a single exception of ESR1 in the Src-centric network (Fig. 4).
Hence, the discussed small networks are core-structures in the
parent network and robust against sub-optimal values of k. To
pinpoint signaling of special interest in the conducted network we
established a set of criteria to dissect extracted sub-networks
focusing on hub-nodes. The protein candidates must

o exhibit differentially expressed phosphorylation or protein/
gene expression

e be a kinase

e have a high number of phosphorylation edges in the network

e show enriched interactions with breast cancer related
genes (as defined by IPA)

The top 16 hub-nodes were CDK2, CDK1, PRKCA, PRKACA,
YWHAG, SRC, AKT1, CSNK2A1, TP53, MAPK1, MAPK3, EGFR,
CHEK1, ESR1, PRKCD, SMAD2 (ESI,+ Tables S1 and S2). Applying
the above-mentioned criteria we refined this list to CDK1, AKT1,
SRC, CSNK2A1, TP53, MAPK1, MAPK3, EGFR and PRKCD. To
further narrow the targets for closer investigation we determined
the proteins that were involved in cellular movement, as this is a
function closely related to EMT and focal adhesion. We adapted
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Min =1.0 Node degree Max = 104.0

Fig. 4 Src-centric network. Solid edges represent PPIs. Adjacent nodes
show BRCA-related interactors as classified by IPA. Arrows represent
phosphorylation and point from kinase to substrate. Double edges repre-
sent multiple edges reported by HPRD and at least one phospho-database.
Node coloring represents a continuous mapping by node degree in
the parent network where blue indicates a low and red indicates a high
node degree.

the inclusion criteria function provided by IPA, dividing cellular
movement into three main categories: invasion, migration and a
general category of cell movement. Applying these criteria, SRC
together with EGFR stood out as high degree nodes with an
overall total of most interacting proteins involved in cellular
movement both in numbers and relative to the size of the hubs
(Table 3). As a result we picked SRC for further investigation
having a higher degree (75) and a higher total amount of
interacting proteins that are involved in cellular movement
(44 out of 75) as determined by IPA.

Therefore, we more closely examined the signaling surround-
ing this node by extracting a SRC-centric sub-sub-network to
highlight phospho-interactome information around the role of
the proto-oncogene tyrosine-protein kinase Src (c-Src) in cellular
movement (Fig. 4 and ESI,T Fig. S1 and Tables S1 and S3). Part of
this c-Src-centric network is the intracellular scaffold protein
paxillin which is a central player in focal adhesion and cyto-
skeletal rearrangement.

During EMT, the adhesive epithelial phenotype governed by
a keratin-rich network connected to adherence junctions shift
towards a predominantly focal adhesion network dominated by
vimentin.*® Indeed, this difference in protein expression is also
present when comparing HMT-E, high in keratins, to HMT-M
with a higher level of vimentin.?® Focal adhesion is the adhe-
sion of cells to the extracellular matrix (ECM) mediated by focal
adhesion complexes present at the tip of extending protrusions,
such as filopodia and lamellipodia. At the site of focal adhe-
sion, bundles of actin filaments are anchored to integrins and
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Fig. 5 (a) Sub-sub-network as extracted from the TNBC-associated parent
network representing signaling through paxillin and Src. Arrowed edges
represent phosphorylation, double edges represent a normal protein—protein
interaction as well as phosphorylation and normal edges represent protein—
protein interactions only. Edge labels indicate the database that reported each
particular PPI or kinase—substrate relation. Zyxin (ZYX) is displayed to illustrate
the close connection to the Zyxin-centric network (Fig. 6). (b) Schematic
representation of signaling in the HMT-M cell line compared to HMT-E
around paxillin (PXN) and the hub-node c-Src (SRC). Orange stars indicate
activating phosphorylation sites present in data, yellow fill: activation occur in
HMT-M, no fill: less active in HMT-M; arrows in front of phosphosites indicate
up or down regulated, respectively, in HMT-M compared to HMT-E. Grey star
border: site is not present in data. Interactions are indicated as follows, arrow:
activation; stump arrow: inhibition; double strand: complexes with. Nodes
connected with blue interaction are both found in data; gray indications are
predictions, not directly found in data.

proteins are gathered that either link the actin cytoskeleton to
these membrane receptors or function as signaling molecules in
downstream integrin-mediated pathways.*' Hence, focal adhesion
dynamics plays a central part in cytoskeletal rearrangement and
cellular motility, including cancer cell migration and invasion.
Paxillin associates with a variety of proteins to modulate
cytoskeletal reorganization during the dynamic process of cell
adhesion and migration.*” Within the present sub-network we
find a subset of regulated proteins associated with the paxillin
scaffold complex and implicated in the dynamic process of
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Table 3 Statistics for top candidates for closer examination whose inter-
actors are enriched in phosphorylation signaling and breast cancer related
proteins as classified by IPA. The total depicts how many interaction
partners were categorized as being involved in cell movement, invasion
and migration respectively while the percentage puts this total relative to
the total number of observed interactors

Cell

Gene UniProtKkB Node movement Invasion Migration
Rank name accession degree total/(%) total/(%) total/(%)
1 CDK1 P06493 95 24/(25) 20/(21)  22/(23)
2 SRC P12931 75 44/(59) 28/(37)  41/(55)
3 AKT1 P31749 70 23/(33) 18/(26)  21/(30)
4 CSNK2A1 P68400 68 22/(32) 17/(25)  22/(32)
5 TP53 P04637 65 25/(38) 15/(23)  22/(34)
6 MAPK1  P28482 62 27/(44) 23/(37)  23/(37)
7 MAPK3  P27361 59 25/(42) 18/(31)  23/(39)
8 EGFR P00533 58 37/(64) 30/(52)  34/(59)

focal adhesion (Fig. 5a). These proteins are connected through
protein—protein interactions and phosphorylation events and
play important roles in the complex regulation of cell motility.

Due to the complexity and level of detail of the generated
network, using the proteome, as well as the phosphoproteome
and integrating PPI-databases with phosphorylation site-specific
databases, we identified key regulatory phosphorylation sites
involved in focal adhesion and migration as well as the
up-stream kinases for several of these sites.

As part of this paxillin network (Fig. 5 and ESL} Fig. S2 and
Tables S1 and S4) we identified alpha-parvin (PARVA), which
has been shown to bind directly to paxillin and F-actin and to
co-localize with paxillin at the leading edge of migrating cells.*?
PARVA has several serine phosphorylation (pSer) sites in the
N-terminal that contributes to regulation of cell spreading and
migration. N-terminal pSer of PARVA have been reported to be
necessary for efficient Src-matrix metalloprotease (MMP)-driven
degradation of extracellular matrix (ECM) and to be elevated
in triple-negative invasive breast cancer cells (MDA-MB-231)
compared to normal cells (MCF10A).>* In addition, it has been
reported that cells shifts towards a more mesenchymal-like
morphology upon phosphorylation of PARVA N-terminal serines.>>
In accordance with these findings, we found PARVA was exten-
sively phosphorylated on two N-terminal serine residues (Ser14
and Ser19) in HMT-M compared to HMT-E.

A key player in regulation of cell migration is the tyrosine-
protein phosphatase non-receptor type 11 (PTPN11) also called
SHP2. SHP2 is a cytoplasmic TPTase with a narrow substrate
specificity,®® responsible for tyrosine dephosphorylation of
several proteins involved in migratory processes, amongst these
the focal adhesion kinase (FAK) and paxillin.?” FAK is a major
player in cytoskeletal rearrangement and found to complex
with paxillin.>* Despite being present in the sub-network, FAK
activity cannot be unambiguously determined from the present
data. However, there is clear indications that paxillin phosphoryl-
ation is under the control of SHP2 in our cell lines, as the presence
of active SHP2, bearing a phosphorylation at Tyr584°® in HMT-M,
correlates with low levels of paxillin phosphorylation on
Tyr118, a site regulating signaling downstream of paxillin.***°
Dephosphorylation of paxillin Tyr118 is important for another

This journal is © The Royal Society of Chemistry 2014
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key regulatory protein found in complex with paxillin, namely
c-Src. c-Sre activity is in part governed by its binding to paxillin,
as paxillin phosphorylated on Tyr118 also recruits the inhibitor
of c-Src tyrosine kinase activity, tyrosine-protein kinase CSK
(CSK). Binding of CSK to paxillin brings this kinase in close
proximity to its substrate c-Src, thereby enabling phosphorylation
of the c-Src inhibitory phosphotyrosine, Tyr530. Phosphorylation
of Tyr530 hinders c-Src autophosphorylation on its activating
site (Tyr419), thus abolishing signaling downstream of c-Src.*'
CSK was not present in the parent network, but high levels of
c-Src autophosphorylation at Tyr419 in HMT-M, combined with
the lower levels of paxillin Tyr118 phosphorylation in this cell
line, suggest that the c-Src activity is high in HMT-M vs. HMT-E
cells. c-Src is a member of the Src kinase family of tyrosine
protein kinases, regulating intracellular signaling pathways
through activated transmembrane growth factor and cytokine
receptors. Consequently, Src family kinases modulated signaling
cascades a wide range of which are implicated in oncogenic
processes, such as cell survival, differentiation, adhesion, migra-
tion and invasion.** In breast cancer, increased activation of Src
tyrosine kinase activity is associated with the metastatic process.*?
¢-Src activity is known to cause phosphorylation of various proteins
involved in cytoskeletal rearrangement and focal adhesion, such as
FAK," caveolin-1 (CAV1),” Cortactin (CTTN),"® beta-catenin,"”
mucin-1 (MUC1)*® and Annexin A2 (ANXA2),* thereby playing a
central role in modulation of the adhesive phenotype of epithelial
cells. All of the above-mentioned proteins are present in our sub-
network and several c-Src-mediated phosphorylations were identi-
fied in our data. As further support of the notion of increased c-Src
activity in HMT-M vs. HMT-E, we found higher phosphorylation of
Tyr1229 on MUCI cytoplasmic tail and Tyr24 of ANXA2 in HMT-M
compared to HMT-E. ANXA2 is a calcium-regulated membrane-
binding protein that binds to F-actin, one of the three major
components of the cytoskeleton.”® ANXA2 forms tetramer struc-
tures upon interaction with protein S100-A10, subsequently inter-
acting with and regulating the bundle formation of F-actin. Upon
c-Src-mediated phosphorylation of Tyr24, ANXA2 completely
loses its ability to bind F-actin,' suggesting that c-Src-mediated
phosphorylation of ANXA2 contributes to regulation of the
cytoskeletal dynamics favoring cell motility and EMT. MUC1
is a transmembrane member of the mucin family, consisting of
a highly glycosylated extracellular and membrane spanning
subunit (MUC1-alpha) and a small non-covalent attached cyto-
plasmic tail (MUC1-beta). MUC1 is involved in adhesive as well
as de-adhesive processes®>** and is associated with the meta-
static progression of breast cancer.’® Interaction of MUC1-beta
with c-Src leads to c-Src-mediated cytoskeletal rearrangements
and pro-migratory signaling through Ras-related C3 botulinum
toxin substrate 1 (RAC1) and cell division control protein 42
homolog (CDC42), promoting an invasive phenotype in cancer
cells.”® MUC1-beta interacts with a variety of proteins involved
in cell adhesion.”® Two major binding partners are beta-catenin
and Glycogen synthase kinase-3 beta (GSK3B). c-Src is respon-
sible for phosphorylation of Tyr1229 on MUC1-beta at the
SPYEKV motive located between the sites for GSK3B and beta-
catenin binding, respectively.*® c-Src phosphorylation inhibits
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the interaction between MUC1 and GSK3B, enhancing the
interaction between MUC1 and beta-catenin. Interaction of
MUC1 with beta-catenin has been reported to compete with
E-cadherin-beta-catenin complex formation found at adherent
junctions®” indicating a role for MUC1 in controlling cell
adhesion and when bound to beta-catenin to favor cell migra-
tion. Furthermore, co-localization of MUC1 and beta-catenin
has been associated with sites of focal adhesion lamellipodia of
invading cells in studies of breast cancer cell lines.>®

3.2 Zyxin as a potential target for CDK1

In close proximity to the paxillin and Src-governed signaling and
represented by phosphorylation events in the sub-network we
find zyxin (Fig. 6, ESL} Fig. S3 and Table S5). Like paxillin, zyxin
functions as an adaptor protein at site of focal adhesion. Zyxin is
a low abundant phosphoprotein that plays a role in the spatial
control of actin filament assembly.*® In contrast to paxillin, zyxin
is not a part of the early focal complexes in ongoing lamellipodio
formation but is instead recruited to the site of these complexes
only when focal adhesion is established®® - a process mediated
by internal contractile forces.®® At the site of focal adhesion,
zyxin takes part in the dynamic reorganization of focal adhe-
sion through mediation of actin-polymerization.®* In cancer,
expression of zyxin has been linked to cell spreading and
proliferation and has been found to correlate inversely with
differentiation state.”® In the present cell line model zyxin

Min=1.0 Max = 104.0

Node degree

Fig. 6 Zyxin-centric sub-sub-network. Adjacent nodes show breast cancer-
related interactors as classified by IPA. Solid edges represent PPIs. Arrows
represent phosphorylation and point from kinase to substrate. Double edges
represent multiple edges reported by HPRD and at least one phospho-
database. Despite not being direct neighbors, SRC and PXN are displayed
to illustrate the close connection to c-Src and the paxillin network
shown in Fig. 5.
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exhibits altered phosphorylation on Ser267, a site reported by
PhosphoNetworks®® to be a target site for cyclin-dependent
kinase 1 (CDK1). The Ser267 phosphorylation shows higher expres-
sion in the HMT-E compared to the HMT-M cells. Consistently, in
our data, CDK1 shows higher expression of pTyrl5 in HMT-M,
indicating that the kinase is less active in these cells, as pTyr15 is a
central inhibitory site for CDK1 kinase activity. Hence, the expres-
sion of phosphorylated zyxin Ser267 in the cell line exhibiting
higher CDK1 activity and the lack of other potential kinases for this
particular site in our data further support the notion of Ser267
being a phosphorylation target site for CDK1.

4 Summary and conclusion

Our described analysis scheme departs from the tradition to
analyze a single aspect of alteration, e.g. gene expression only,
by establishing differential network mapping, analyzing multi-
ple, concerted perturbation responses (gene expression, protein
expression, protein phosphorylation including residue site
information) at the same time. We introduced a method that
allows combined analysis of various types of omics studies
using logical operators and data set-specific parameterization.
Based on extracted differential networks we compared signaling
in cells from the same genetic background exhibiting epithelial-
like and mesenchymal-like phenotypes, respectively. Combined
with the merged multi-layer network resembling PPIs and
phosphorylation, we showed that our method is fully capable
of analyzing multiple data sets in combination and of identifying
aberrant machinery in a general interaction network. Focusing
on the differences in epithelial and mesenchymal states of triple-
negative breast cancer cells, we elucidated an interconnected
signaling pattern related to focal adhesion and migration. This
revealed signaling through key proteins involved in migration
and invasion of breast cancer cells which was clearly activated
in the mesenchymal-like phenotype when compared to its
epithelial-like counterpart.

The underlying global interaction network is the basis for
differential network mapping and key to the success of this
method. Careful and comprehensive adaptation of this network
prior to the network mapping step is a necessity as it would
otherwise be a limitation factor especially when combining
multiple data sets. In addition to commonly known limitations
such as noise (impaired true positive rate) and incompleteness,
interaction scoring methods to generate high confidence PPI-
networks (de-noising) may produce diverse results. Furthermore,
differences in network types (e.g. directed/undirected networks
vs. metabolic pathway maps) can limit their integration. We
compiled a hybrid PPI-network consisting of protein interactions
and protein phosphorylation events including residue site infor-
mation. Additionally, we coupled compartment information,
protein expression, protein phosphorylation and gene expression
based on mRNA quantitation. ESI,{ Tables S2-S5 highlight the
importance of this integrative approach in detection-based
methods with overall low coverage. While some proteins were
not detected or not differential as determined by gene and
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protein expression they were extracted as a differentially
phosphorylated node and included in the TNBC-associated
parent network. As a result, a vastly more sensitive model was
created that also resulted in a lower false negative rate.

Moreover, the above described findings in the generated
sub-network point in the direction of a more migrating pheno-
type of the HMT-M compared to the HMT-E cell line as previously
shown in vitro for this cell line model.”® The KeyPathwayMiner-
based multi-omics approach was capable of mining and visualiz-
ing these insights into the regulation of focal adhesion and
migration-related mechanisms occurring within our isogenetic
breast cancer cell line model. This has enabled us to create a
comprehensive view of the level of activity of the signaling
cascades in question. In addition to confirming the presence of
signaling to the mesenchymal phenotype of cancer cells, the
network also strongly suggested that zyxin is a downstream
target of CDK1. The implication of this finding for the role of
zyxin in our cell line model is yet to be elucidated. Based on
our results we suggest further studies to be conducted on bio-
chemical level of the potential interaction of CDK1 and zyxin
along with in vitro and in vivo studies on their influence on
cellular morphology and motility.

Overall, complex interconnected signaling surrounding paxillin
and c-Src was elucidated by the computational network model.
Thereby, we could confirm that the model provides sufficient level
of detail to discover biologically relevant alterations. Furthermore,
the identification of zyx Ser267 as a target for CDK1-mediated
phosphorylation strongly suggests that the integration and
analysis of multiple integrated data sources can be a powerful
tool for closing the gap between computational models and
biological processes.
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