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Progressive restrictions on the use of toxic chromate-based corrosion inhibitors present serious technical

challenges. The most critical of these is the lack of non-toxic ‘green’ alternatives that offer comparable

performance, particularly on corrosion-prone aluminium alloys such as the 2000 and 7000 series. In this

study we used computational modelling methods to investigate the properties of a range of small

organic, potentially safer inhibitors and their interactions with technologically relevant alloy surfaces. We

have generated robust and predictive computational models of corrosion inhibition for a structurally

related data set of organic compounds from the literature. Our studies have correlated molecular features

of the inhibitor molecules with inhibition and identified those features that have the greatest impact on

experimentally determined corrosion inhibition. This information can be used to drive guided decision

making for in silico or experimental screening of molecules for their corrosion inhibition efficiency, while

considering more carefully their environmental consequences.

1. Introduction

Traditionally, many metallic structures in corrosive environ-
ments have been protected by the use of chromates, as cor-
rosion inhibitors in paint films, or as conversion coatings on
the surface of metals or alloys.1 Chromates are very effective
inhibitors but recent studies have shown that they can be occu-
pational ‘hot spot’ pollutants posing significant risk to
workers involved in their production, or as by-products from
operations such as paint removal and metal preparation.
Recent epidemiology data from a large study of chrome chemi-
cal production workers found the excess lifetime risk of dying
from lung cancer from occupational exposures to be 255 per
10002 or 255 000 per million, massively larger than the accep-
table risk of 1 death per million. Consequently, chromates are
considered to present an unacceptable health risk3 and are
progressively being limited or withdrawn from service by
national legislation. Considerable effort has been expended in

looking for non toxic alternatives to chromates.4

Increasingly,5–8 experimental approaches are being combined
with molecular modelling in an effort to find new, more
benign inhibitors. Modelling studies have predominantly uti-
lised quantum chemical methods based on density functional
theory (DFT) together with statistical or machine learning
modelling techniques embodied in the quantitative structure–
property relationships (QSPR) method.9 There is a recent
history of successful application of both electronic structure
simulations10,11 and QSPR9,12–17 to the prediction of toxicity in
functional materials and coatings.

DFT methods can derive a range of molecular properties
such as HOMO and LUMO energies, fundamental gap ΔE,
chemical potential µ, electronegativity χ, and chemical hard-
ness η, generally in vacuo. A number of published reports have
claimed to identify trends or statistical correlations between
these types of electronic properties and experimentally measured
corrosion inhibition values. However, a 2008 review by Gece18

concerning the application of DFT methods concluded that, “cal-
culations performed with inaccurate methods or with an insuffi-
cient dataset can easily lead to erroneous results”. Indeed many
of the published studies have been undertaken on very small
data sets and without adequate consideration of the presence of
solvent, ions, or other aspects of the complex chemical environ-
ment in which corrosion and inhibition occur.

One of the most interesting classes of inhibitors is the sub-
stituted heterocyclic class of organic compounds. We under-
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took the research outlined in this paper to determine whether
or not correlations between quantum chemical properties and
corrosion inhibition were valid for this promising class of
‘green’ corrosion inhibitors, or whether they indeed exist.
We also investigated alternative ways of modelling the relation-
ships between the molecular properties of small organic
corrosion inhibitors and performance under ‘real world’
experimental conditions. Relative to other published corrosion
inhibition modelling studies this work makes two significant
contributions to the search for more benign, small molecule
replacements for toxic chromates:

• it uses a well-designed and relatively large (for a corrosion
study) experimental data set. We used the experimental data
published by Harvey et al.19 comprising 28 organic inhibitors,
many based on substituted heterocyclic structures of different
types (‘the Harvey data set’). The inhibition efficiencies within
the Harvey data set varied from −175% (enhanced corrosion)
to 98% (almost complete inhibition of corrosion) and were
measured from mass loss data over 28 day immersion tests in
saline solution at an inhibitor concentration of 1 mM.

• it uses an extensive pool of molecular properties related
to atom types, functional groups, and molecular connectivity
calculated from structural features of the inhibitor molecules.
Molecular level properties are commonly called molecular
descriptors.

We chose these data to minimize false or chance corre-
lations due to limited experimental data and limited range of
inhibition measurements. The sparse feature selection
methods we adopted also minimizes the likelihood of chance
correlations due to choosing subsets of parameters incorrectly
from larger pools of possibilities. An important overall aim of
these experiments was to establish whether predictive models
of corrosion inhibition could be generated that could help
accelerate the search for safe and effective alternatives to
chromates.

2. Materials and methods
2.1 Corrosion data

The data on percent inhibition (or acceleration) of corrosion
were taken from Harvey et al.19 and was based on mass loss over
28 days immersion in saline. The aluminium alloys used in this
study were AA2024-T3 and AA7075-T6. The compositions were
determined by ICP as AA2024-T3 (Cu 5.3%, Mg 1.6%, Mn 0.6%,
Fe 0.2%, Zn <0.1%) and AA7075-T6 (Cu 1.4%, Mg 2.4%, Mn
<0.1%, Fe 0.2%, Zn 5.4%).19 AA2024-T3 was much higher in
copper than 7075, while 7075 was much higher in zinc. Iron
and magnesium levels were comparable in both alloys.

Additional immersion tests on AA1150 series Al (nearly
pure Al) and pure Cu with some of the small molecule inhibi-
tors used in our study found very little interaction with Al
(which has a low affinity for S and N).20 Cu by contrast was
affected by several of the organic compounds tested, forming
coloured solutions and/or precipitates of corrosion products.
Although the behaviour of an intermetallic may be different to

that of bulk Cu, these experiments show that Cu is interacting
strongly with some of the inhibitor molecules.

2.2 Speciation

The identities of the 28 small organic molecules from Harvey
et al.19 are summarized in Table 1, and their chemical struc-
tures shown in Fig. 1. The speciation of the inhibitors was cal-
culated using the SPARC method.21 SPARC uses relatively
simple computational algorithms to estimate pKas of organic
molecules from their structures. Structures are broken at each
essential single bond into functional units that have intrinsic
properties. Acidic and basic reaction centres are identified,
and the impact of attached structural features on pKa is esti-
mated using perturbation theory. Structures of the inhibitors
were input as SMILES strings to the SPARC program, and the
relative populations of ionized and neutral species were calcu-
lated at pH 7. Molecular and DFT-based descriptors were cal-
culated for neutral and ionized states where relevant.

The small organic molecules in the Harvey data set exhibit
significant chemical diversity and a wide range of speciation
behaviour, depending on the number and nature of their ioni-
sable groups. In some cases the identity of the organic species
was clear at the neutral pH. However, some of the heteroaro-
matic compounds, and indeed, some inhibitors that contained
both COOH and SH acidic moieties, exhibited quite complex
speciation. In some instances there were as many as 5–6 co-

Table 1 Identities, corrosion performance (%inhibition), and speciation
at initial pH 7 of the inhibitors

Inhibitor AA2024-T3 AA7075-T6 Speciesa

2-Mercaptobenzimidazole 90 84 N+S−

2-Mercaptobenzothiazole 95 91 S−

2-Mercaptopyrimidine 89 50 S−, N+S−

2,5-Dimercapto-1,3,4-thiadiazole 26 −32 2 × S−

4,5-Diamino-2,6-dimercaptopyrimidine 87 80 N+S−S−

4,5-Diaminopyrimidine 47 84 Neutral
6-Amino-2-mercaptobenzothiazole 89 94 S−

Benzotriazole 98 92 Neutral
2,3-Mercaptosuccinate 82 48 2 × COO−

4-Phenylbenzoate −72 −143 COO−

6-Mercaptonicotinate 94 86 N+S−, COO−

2-Mercaptobenzoate 88 80 COO−

2-Mercaptonicotinate 83 70 N+S−, COO−

3-Mercaptobenzoate 16 −22 S−, COO−

4-Hydroxybenzoate −34 −56 COO−

4-Mercaptobenzoate 97 76 S−, COO−

Acetate −12 15 COO−

Diethyldithiocarbamate 97 96 S−

Isonicotinate −12 −45 COO−

Mercaptoacetate 96 83 COO−

Mercaptopropionate 100 31 COO−

Nicotinate −107 −91 COO−

Picolinate 58 14 COO−

Salicylate −175 −89 COO−

Pyridine −139 −150 Neutral
Pyrimidine −153 −220 Neutral
Benzoate −80 −62 COO−

Thiophenol 93 87 S−

a S−, COO− denotes ionized thiol or carboxylate; N+ means protonated
nitrogen atom; N+S− is a zwitterionic form. Sodium salts of anions were used
where relevant.
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existing species at pH 7. Given that these may have different
affinities for metal surfaces and clearly different molecular
properties as calculated by DFT and other methods, it was
useful to identify the main species that exist at the
experimental pH. The dominant speciation, and the corrosion
performance for the two aerospace alloys for the Harvey data
set are also summarized in Table 1.

The speciation of some of the inhibitors was quite complex.
Harvey et al.19 assumed that some molecules contained a
single acidic moiety when they generated sodium salts by
adding an appropriate number of moles of sodium carbonate.
We have assumed that the effects of incomplete neutralization
and salt formation were minimal.

2.3 DFT calculated molecular properties

The DFT derived molecular descriptors generated were:

Ionization potential ðIPÞ ¼ EN�1 � EN ð1Þ
Electron affinity ðEAÞ ¼ EN � ENþ1 ð2Þ
Absolute hardness ðηÞ ¼ ðIP� EAÞ=2 ð3Þ

Chemical potential ðμÞ ¼ �ðIPþ EAÞ=2 ð4Þ
Mulliken electronegativity ðχÞ ¼ ðIPþ EAÞ=2 ð5Þ

where EN is the ground-state energy of a system containing N
electrons, which in this instance is the corrosion inhibitor
molecule in vacuo. The −1 and +1 notations refer to the ener-
gies of species with one electron removed or one added.

These molecular identifiers were obtained for each of the
28 inhibitors calculated by DFT using the Spanish Initiative for
Electronic Simulations with Thousands of Atoms (SIESTA)22

and Gaussian packages.23 The exchange correlation functional
of Perdew–Burke–Ernzerhof (PBE)24 with a double zeta plus
polarization (DZP) basis set and cut off energy of 500 Ry was
employed for all SIESTA calculations. All norm-conserving

pseudopotentials were used as supplied with the SIESTA code
without further modification. Structures were converged in a
30 × 30 × 30 Å supercell, until the residual forces on atoms was
less than 0.01 eV Å−1 and the total energy difference between
SCF steps was less than 10−4 eV. For comparison, Gaussian09
calculations were performed as all electron calculations utilis-
ing the 6-311++G** basis set; also utilising the PBE exchange
correlation functional.

2.4 Quantitative structure–inhibition relationship studies

The molecules in the Harvey data set were constructed using
Sybyl ×2.0 (Certera Limited). The structures were energy mini-
mized using the Tripos force field. They were used to calculate
a range of molecular descriptors such as the log of the
octanol–water partition coefficient (a measure of molecular
lipid solubility), molecular surface area, volume, molar refrac-
tivity (size and polarizability), polar surface area, numbers of
hydrogen bond donors and acceptors. The structures were also
used to generate a large variety of computed molecular
descriptors using the DRAGON program25 and our in-house
modelling package, BioModeller.26–28 We selected relevant
descriptors from a pool of 173 in-house, and 194 Dragon
descriptors. We also generated functional group descriptors
that describe or quantify chemical moieties or fragments in
molecules. These were: the number of sulfur atoms, number of
ionized sulfur atoms, number of ionized COOH groups,
number of rings, number of heteroaromatic nitrogen groups,
and total molecular charge. Descriptors were calculated for
neutral and ionized states at pH 7 where relevant.

Models relating molecular properties to corrosion inhi-
bition were constructed using the BioModeller software. The
Bayesian modelling methods embodied in the BioModeller
package have been described in detail elsewhere.27,29–35 Both
linear and nonlinear models were generated. Linear models
used sparse linear regression methods. The nonlinear models

Fig. 1 Structures of inhibitors in the data set.
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used a Bayesian regularized neural network26,29,31,32,35,36 that
automatically controls model complexity to optimize the pre-
dictive performance of the models. The neural network train-
ing was stopped when the Bayesian evidence for the models
was maximal. Generally two or three hidden layer nodes were
employed in a three layer feed forward neural network; these
types of models are relatively insensitive to the neural network
architecture. The input and output layers nodes contained linear
transfer functions, and the hidden layer nodes (where the com-
putation is carried out) employed sigmoidal transfer functions.

Although models derived from Bayesian regularized neural
networks do not strictly require a test or validation set, the pre-
dictive power of the models was assessed,37,38 nonetheless, by
partitioning the data set into a training set (80% of the com-
pounds) and test set (20% of the compounds). The perform-
ance of the models was assessed using the standard error of
prediction of the training and test sets. Other statistical
measures of merit were also calculated although these are not
as robust (more influenced by the size of the data set and
number of descriptors) as the standard error.

3. Results and discussion
3.1 Relationship between corrosion inhibitors for the two
aluminium alloys

The inhibition results over 28 days immersion in saline, for
the two alloys AA2024-T3 and AA7075-T6, correlate strongly
with each other (r2 = 0.84, Fig. 2). The corrosion inhibition
exhibited by the 28 compounds was 10% lower on average for
the AA7075-T6 alloy than for the AA2024-T3 alloy.

Inspection of the inhibition results for the two alloys reveals
that sulfur-containing ligands are almost uniformly more
effective inhibitors of corrosion on the AA2024-T3 alloy than
the AA7075-T6 alloy (e.g. 2-mercaptopyrimidine, 3-mercapto-
benzoate, 2-mercaptonicotinate, 2,3-dimercapto-succinate,
mercaptoacetate, mercaptopropionate, 2,5-dimercapto-1,3,4-
thiadiazole). This may be due to the higher Cu content of this

alloy compared to AA7075-T6. Conversely, compounds that do
not contain sulfur are often more corrosive on the AA7075-T6
alloy than on the AA2024-T3 alloy (e.g. pyridine, pyrimidine,
4-phenoxybenzoate, 4-hydroxybenzoate), which may be reflec-
tive of the high Zn content found in AA7075-T6 alloy, com-
pared with the AA2024-T3 alloy (richer in Cu).39

3.2 Relationship between corrosion inhibition and DFT
properties

We calculated DFT-based and other molecular descriptors
described below for two scenarios: assuming the molecules
were neutral; assuming they were speciated at pH 7 according
to Table 1. Initial modelling investigations aimed at determin-
ing the best sets of descriptors for generating robust and pre-
dictive inhibition models indicated, somewhat surprisingly,
that speciation has relatively little effect on model quality. This
is consistent with experimental corrosion testing carried out in
CSIRO laboratories.40

Other work has shown that, whether or not speciation was
included, there was essentially no correlation between ioniza-
tion potential, HOMO or LUMO energies, or any other
quantum chemically-derived descriptors and corrosion
efficiency.41 A significant number of literature reports5,42–50

claim that the frontier orbital energies and molecular pro-
perties derived from such energies are related to the corrosion
inhibition. However, many of these studies used a very small
number of inhibitors, in some cases as few as four, making
the probability of chance correlations high. They also ignore
the effects of solvent, ions and salts, speciation, and the pres-
ence of a metal surfaces, as the calculations would not be tract-
able if these were included. As discussed in section 3.4,
molecular descriptors derived from the in vacuo DFT calcu-
lations on the Harvey data set were identified to be among the
least relevant descriptors for generating predictive models of
corrosion inhibition. The correlations between the DFT and
molecular descriptors, and the corrosion inhibition for the
two alloys are listed in ESI.†

3.3 Machine learning-based quantitative structure–inhibition
modelling

We used the sparse feature selection capabilities of BioModel-
ler to select the most relevant subset of descriptors from a
large pool in a context dependent manner. As the data set was
of moderate size we used all of the data in the feature selection
process. The machine learning methods have been shown to
generate robust models on small to moderate sized data sets
without the need for a test set,29 although we chose to use a
test set in this study.

We generated statistically significant models that could
predict the corrosion inhibition of compounds in an external
test set using DRAGON descriptors and in-house chemically
intuitive descriptors. We found a set of between 7 and 9
descriptors in each descriptor family could generate linear and
nonlinear models that could make good, quantitative predic-
tions of the degree of inhibition of molecules in the data set.
As mentioned above, descriptors based on the speciated form

Fig. 2 Correlation between corrosion inhibition on AA7075-T6 and on
AA2024-T3 for 28 small organic inhibitors.
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of the inhibitors at pH 7 generated models of similar quality
to those assuming neutral inhibitors, so the results for the
neutral form of the molecules are reported here.

3.3.1 Corrosion inhibition models for the AA7075-T6 alloy.
We found that nonlinear models provided modest but signifi-
cant improvements in the quality of corrosion inhibition struc-
ture–property models compared to linear models. The results
of modelling of corrosion inhibition for AA7075-T6 using
DRAGON and in-house descriptor families are summarized in
Tables 2 and 3. The r2 values reflect the fraction of variance in
the training and test set data that is explained by the model,
and the SEE and SEP represent the standard errors of esti-
mation/prediction for inhibitors in the training and test sets.
Ndesc is the number of molecular descriptors (including the
MLR intercept) used in the model, and the Neff is the number
of effective weights used in the neural network models (the
sparse Bayesian regularization algorithm is self-pruning so
that fewer network weights are used in the models than in a
fully connected backpropagation network).

The nonlinear models were sparse, using only 10–11
effective weights in the model and employing 7–8 descriptors,
and gave superior prediction to the linear models. The stan-
dard error of prediction for the test set was 23% for the non-
linear model compared to 31% for the linear model using
atomistic and functional group descriptors.

The Dragon descriptors also generated predictive models of
corrosion inhibition. The linear and nonlinear models could

predict the inhibition of compounds in the training set with a
standard error of 43% and 24% and 36% and 32% for the test
set. The quality of the prediction of the training and test set
for the best models employing Dragon and in-house descrip-
tors is illustrated in Fig. 3 and 4.

The nonlinear models could account for 70–90% of the
variance in the data. The ability of the models to predict the
degree of inhibition of the external test set compounds is
good, as Fig. 3 and 4 also show.

3.3.2 Corrosion inhibition models for the AA2024-T3 alloy.
The AA2024-T3 alloy was more difficult to model and generated
structure–inhibition models of lower statistical significance than
the AA7075-T6 alloy. This was largely due to a uneven distri-
bution of inhibition data across the data set than with the
AA7075-T6 alloy. There were a significantly larger number of
highly effective inhibitors for AA2024-T3 than for AA7075-T6.
Again, we found that nonlinear models provided a modest but
significant improvement in the quality of corrosion inhibition
structure–property models compared to linear models. The
results of modelling of AA2024-T3 inhibition using DRAGON and
in-house descriptor families are summarized in Tables 4 and 5,

Table 2 Structure–inhibition models for AA7075-T6 employing DRAGON
descriptorsa

Model r2train SEE % r2test SEP % Ndesc Neff

MLREM 0.87 39 8 9
MLREM 0.86 43 0.91 36 8 9
20% test
BRANNGP 0.83 24 8 11
2 nodes
BRANNGP 0.77 24 0.88 32 8 11
2 nodes
20% test

aDescriptors used were: nR09, nBnz, C-027, BEHm7, HOMT, C-044,
O-057, S-106.

Fig. 3 Observed versus predicted corrosion inhibition for 7075 alloy for
the nonlinear model using DRAGON descriptors. Top panel: model for
entire data set. Bottom panel: data set split into training (circles) and test
(triangles) sets.

Table 3 Structure–inhibition models for AA7075-T6 employing in-
house intuitive descriptorsa

Model r2train SEE % r2test SEP % Ndesc Neff

MLREM 0.61 64 7 8
MLREM 0.60 71 0.79 31 7 8
15% test
BRANNGP 0.79 31 7 11
2 nodes
BRANNGP 0.74 35 0.99 23 7 10
2 nodes
15% test

aDescriptors used were: SH, S, BCGM2, BCGM4, BCGM5, A11, A31.
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and the quality of prediction of the best models summarized
in Fig. 5 and 6.

As Tables 4 and 5 show, the DRAGON descriptors generated
models with higher statistical significance than did the ato-
mistic and functional group descriptors for the linear models.
The nonlinear models were of similar predictive power.

The nonlinear models were sparse, using only 7–8 molecular
descriptors and 9–11 effective weights in the models, and gave

superior prediction to the linear models (SEP values of 45%
versus 49% (Dragon descriptors) and 46% versus 94% (in-
house intuitive descriptors).

It is clear from Fig. 5 that the DRAGON descriptors gener-
ated models that represented the data more evenly across the
inhibition range. The atomistic and functional group descrip-
tors tended to classify compounds either as inhibitors or

Fig. 4 Observed versus predicted corrosion inhibition for 7075 alloy for
the nonlinear models using the in-house intuitive descriptors. Top
panel: model for entire data set. Bottom panel: data set split into training
(circles) and test (triangles) sets.

Table 4 Structure–inhibition models for AA2024-T3 employing
DRAGON descriptorsa

Model r2train SEP % r2test SEP % Ndesc Neff

MLREM 0.82 45 8 9
MLREM 0.83 46 0.80 49 8 9
20% test
BRANNGP 0.80 30 8 11
2 nodes
BRANNGP 0.81 28 0.74 45 8 11
2 nodes
20% test

aDescriptors used were: nR09, nBnz, C-027, BEHm7, HOMT, C-044,
O-057, S-106.

Fig. 5 The observed versus predicted corrosion inhibition for 2024
alloy for the nonlinear model using DRAGON descriptors. Top panel:
model for entire data set. Bottom panel: data set split into training
(circles) and test (triangles) sets.

Table 5 Structure–inhibition models for AA2024-T3 employing in-house
intuitive descriptorsa

Model r2train SEE % r2test SEP % Ndesc Neff

MLREM 0.62 64 7 8
MLREM 0.67 65 0.42 94 7 8
20% test
BRANN 0.75 36 7 9
2 nodes
BRANN 0.76 36 0.69 46 7 9
2 nodes
20% test

aDescriptors used were: SH, S, BCGM2, BCGM4, BCGM5, A11, A31.
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non-inhibitors/accelerants as shown by the clustering in the
right hand side of Fig. 6. As discussed previously, this is
exacerbated by the rather uneven distribution of inhibition
values across the range compared to those for AA7075-T6.

3.4 Interpretation of the models

The small organic molecules that accelerate corrosion rather
than inhibit it tend to be fairly strong organic acids (low pKa

values for either the COOH or SH moieties, see Table 1). This
may provide a partial explanation for the deleterious effects of
some of these molecules, particularly for the zinc-rich AA7075-T6
alloy. These types of molecules may also destabilize the oxide
layer on the surface of the metal, or generate metal carboxy-
lates, thus accelerating corrosion. The corrosive effect of
organic compounds is quite complex, and has been reviewed
by Heitz.51 He illustrates the potential for protic organic com-
pounds in particular to accelerate rather than inhibit
corrosion.

The quantitative structure–inhibition relationships models
show that a relatively small number of molecular properties
affected the inhibition. Some of these descriptors are arcane
and hard to interpret. It appears that sulfur atoms can in some
cases ameliorate corrosive potential. It is clear by inspection

that in many cases the presence of a sulfur atom, particularly as
an ionized –SH moiety combined with proximity to a heteroatom
in a ring, generates compounds with very good corrosion inhi-
bition performance. The relevant descriptors for models using
DRAGON descriptors were: the number of rings containing
9 heavy atoms (e.g. benzimidazole) (nR09); the number of
benzene-like rings (nBnz); the number of R–CH–X moieties
(C-027, X is a non-C or H atom)); Burden BCUT descriptor-mole-
cular eigenvalue based on atomic mass (BEHm7); aromaticity
index based on length of conjugated pathway (HOMT); the
number of R–CX–X moieties (C-044); the number of phenol/enol/
carboxyl OH moieties (O-057); the number of R-SH moieties
(S-106). The relevant chemically intuitive in house descriptors
were: the number of thiol moieties (SH); the number of sulfur
atoms in the molecule (S); the number of hydrogen atoms with
intermediate partial charge (BCGM2); the number of carbon
atoms of lower partial charge (BCGM4); the number of carbon
atoms of intermediate partial charge (BCGM5); the number of
tertiary nitrogen atoms (A11); the number of secondary sulfur
atoms (A31).

It is clear that some of the descriptors selected from each
family encode similar properties, especially those relating to
the sulfur moieties in the inhibitors (S-106, SH, S). The other
descriptors are difficult to interpret in terms of corrosion
mechanisms. They relate mainly to the aromaticity of the
inhibitors (nBnz, HOMT), and heteroaromatic properties of
the inhibitors (A11, indirectly nR09). These descriptors encode
properties related to sulfur and nitrogen binding to metals
and the length of conjugated chains in aromatic or more
extended molecules, possibly suggesting π–π interactions that
would be involved if self-assembly at metal surfaces was impor-
tant. Thus it is possible that some of the aromatic inhibitors
may be forming ordered layers on the surface, or in the case of
compounds that resemble thiophenolates, there may be for-
mation of polymeric complexes on the surface as has been
reported in the literature.52,53 It is also likely that some inhibi-
tors such as aliphatic thio-containing compounds may be
working via another mechanism again. Clearly the mechanism
of interactions of small organic molecules with metal surface is
complex and largely unknown. These factors, plus the modest
size and chemical diversity of the data set, suggests caution in
not over-interpreting the models. Currently, the complexity of
corrosion and corrosion inhibition for real systems containing
commercial alloys, water, salts etc. is sufficiently complex that
only machine learning methods like neural networks are feasi-
ble for the modelling of corrosion inhibition. However, this
capability is at the expense of much lower mechanistic insight
compared to computationally intensive physics-based methods
like DFT and molecular dynamics.

These models are able to make predictions of the likely cor-
rosion inhibition of new small molecules not yet tested or syn-
thesized. However, care must be taken to ensure these
predictions are close to the domain of applicability of the
models (the ranges of the molecular descriptors used to gen-
erate the models) or the accuracy of prediction will degrade
significantly.

Fig. 6 The observed versus predicted corrosion inhibition for 2024
alloy for the nonlinear models using the in-house intuitive descriptors.
Top panel: model for entire data set. Bottom panel: data set split into
training (circles) and test (triangles) sets.
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Although the data set we have analysed is relatively small
for a QSPR modelling study it is, to the authors’ knowledge,
the largest yet analysed to determine correlation between
molecular characteristics and experimentally measured cor-
rosion inhibition. As such it is of significant interest that cor-
relations with DFT derived properties were not useful, and that
the modelling method found other types of molecular descrip-
tors that could model the corrosion efficiency well.

It should be noted that the DFT derived molecular pro-
perties (eqn (1)–(5)) were all derived from three DFT calcu-
lations: namely EN, EN−1, EN+1. This dependence reduces the
richness of the molecular identifiers. The inability of DFT to
correlate with corrosion inhibition may be rooted in the dispa-
rate length scales between molecular simulation and the
macroscopic measurements of corrosion inhibition, and the
suitability of the data for comparison. There are also several
computational issues that should be considered before
drawing conclusions on the suitability of DFT to provide data
for corrosion inhibition QSPR models. Firstly, the DFT calcu-
lations are very time- and resource consuming so cannot
account for the effect that solvent, ions, and the metal surface
have on the corrosion inhibitor molecule and vice versa. The
adsorption of a corrosion inhibitor molecules which often fea-
tures N, O, S containing functional groups or heterocyclic
functionality, onto a metal/metal oxide surface will likely be
accompanied by a redistribution of charge and states, which
may be the result of back-bonding from the surface to the cor-
rosion inhibitor, or the formation of a covalent or ionic bond
with the surface. Such surface states may shift or fill mid-gap
energy levels, affecting the chemical/electrical characteristics
of the surface. In addition, the adsorption of a given corrosion
inhibitor molecule may not be a simple associative adsorption
with the surface; bond breaking/deprotonation may also occur.
Thus, calculation of deprotonation energies of the corrosion
inhibitor may be warranted, as this will quantify the likelihood
of such an event occurring at room temperature. The inclusion
of molecular properties such as charge transfer to and from
the surface, the direction of such a transfer, post-adsorption
changes in work function, and other inhibitor–surface inter-
actions may allow correlations between DFT calculated pro-
perties and experimentally determined corrosion inhibition to
be identified in the future.

Correlations between molecular properties and attributes
and measured inhibition must span length scales from the
atomic (10−10 m) to the macroscopic (10−1 m), the size of the
test plate used to measure inhibition. Furthermore, the
measured property % inhibition as determined by mass loss is
a complex average parameter that is influenced by a wide
range of parameters that include, surface preparation, oxygen
levels, initiation of anode and cathode activity on a surface
and the role of microstructure and intermetallics, transition to
metastable pitting and then stable pitting, pit chemistry and
the development of pit caps and oxide layers with the inhi-
bition having a potential effect on all these properties. Future
work could look at refining the experimental measure to redu-
cing the complexity of the processes to contribute to the

measure. For example electrochemical measures such an
anodic or cathodic current or electrochemical impedance
measurements and equivalent circuits could be used, at least
as potentially valuable descriptors to relate observed inhibition
to the structures of the inhibitors. However, this will involve a
relatively large amount of experimental effort for a library of
inhibitors.

4. Conclusions

We have shown that, when applied to a larger data set of small
organic corrosion inhibitors, the reported correlation between
frontier orbital parameters and inhibitor efficiency disappears.
We have also shown that it is possible to generate reasonably
robust, predictive, and quantitative models of corrosion inhi-
bition using other types of molecular descriptors encoding
molecular properties. These models provide a more promising
method of predicting the likely effectiveness of new corrosion
inhibitors within the domain of the models. Furthermore, they
provide a rational basis for design of new inhibitors that may
eventually replace toxic chromate corrosion inhibitors and
have much less impact on human health and the
environment.
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