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Cyanobacteria contain a bidirectional [NiFe] hydrogenase which transiently produces hydrogen upon
exposure of anoxic cells to light, potentially acting as a “valve” releasing excess electrons from the
electron transport chain. However, its interaction with the photosynthetic electron transport chain
remains unclear. By GFP-tagging the HoxF diaphorase subunit we show that the hydrogenase is
thylakoid associated, comprising a population dispersed uniformly through the thylakoids and a
subpopulation localized to discrete puncta in the distal thylakoid. Thylakoid localisation of both the
HoxH and HoxY hydrogenase subunits is confirmed by immunogold electron microscopy. The
diaphorase HoxE subunit is essential for recruitment to the dispersed thylakoid population, potentially
anchoring the hydrogenase to the membrane, but aggregation to puncta occurs through a distinct

HoxE-independent mechanism. Membrane association does not require NDH-1. Localization is dynamic
Received 7th August 2014

Accepted 4th September 2014 on a scale of minutes, with anoxia and high light inducing a significant redistribution between these

populations in favour of puncta. Since HoxE is essential for access to its electron donor, electron supply
to the hydrogenase depends on a physiologically controlled localization, potentially offering a new
avenue to enhance photosynthetic hydrogen production by exploiting localization/aggregation signals.
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Broader context

Hydrogen has real potential as a clean renewable fuel, producing water on combustion. Solar powered bio-hydrogen has several advantages; it is relatively
harmless to the organisms producing it and is easily separated from the growth media. Photoautotrophic microbes like cyanobacteria can utilize cheap and
plentiful sources of carbon and electrons for growth and hydrogen production making them self-sustaining production vehicles. However, diverting a high
proportion of reducing power to hydrogen production poses significant challenges, exacerbated considerably by uncertainties in how the hydrogenase interacts
with the electron transport chain. We investigated hydrogenase location and behaviour in the model unicellular cyanobacterium Synechocystis sp. PCC 6803,
location having a direct bearing on access to electron donors. We demonstrate that the hydrogenase has two distinct physiologically-controlled localization
mechanisms that partition it within the thylakoids, either dispersed uniformly through the thylakoids or aggregated into discrete puncta. Crucially, electron
supply and hydrogen production depend on localization. Determination of the molecular basis for control of hydrogenase location could thus pave the way to
engineering improved cyanobacterial cells for solar-powered bio-hydrogen production.
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Cyanobacteria are photoautotrophic microorganisms that can
utilize cheap and plentiful sources of carbon, electrons, and
energy for growth. They possess hydrogenases capable of
combining electrons originally derived from water with protons
to produce H, under specific conditions." Therefore diverting
reducing power to H, production from the photosystems could
potentially be an energetically efficient method of solar-pow-
ered biofuel production.” However, in addition to the engi-
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neering challenges that this would pose, there are significant
biological challenges. Photosynthetic H, production in cyano-
bacteria has only been observed in transient bursts when dark-
adapted, anoxic cells are first exposed to light;>* H, production
then ceases in parallel with the increase in O, concentration

Energy Environ. Sci., 2014, 7, 3791-3800 | 3791


http://crossmark.crossref.org/dialog/?doi=10.1039/c4ee02502d&domain=pdf&date_stamp=2014-10-15
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4ee02502d
https://pubs.rsc.org/en/journals/journal/EE
https://pubs.rsc.org/en/journals/journal/EE?issueid=EE007011

Open Access Article. Published on 04 September 2014. Downloaded on 10/29/2025 3:05:38 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Energy & Environmental Science

due to the water-splitting activity of Photosystem II,** all cya-
nobacterial hydrogenases being to some degree oxygen-sensi-
tive.® Achieving sustained photosynthetic H, production will
require both the diversion of a higher proportion of photosyn-
thetic electrons to the hydrogenase and a solution to the
problem of hydrogenase inhibition by oxidizing conditions.”
Both of these issues pertain to access to electron donors and
acceptor efficacy since, although the cyanobacterium Synecho-
cystis sp. PCC 6803 (hereafter Synechocystis) hydrogenase is
0,-sensitive,® inactivation can be reversed within minutes if the
environment becomes anoxic*® and significant activity can be
maintained in the presence of oxygen if the environment is
sufficiently reducing.®

We set out to investigate hydrogenase location and activity in
the model unicellular cyanobacterium Synechocystis; location
potentially controlling access of the hydrogenase to the photo-
synthetic electron transport chain. The bidirectional [NiFe]
hydrogenase of Synechocystis is a heteropentameric enzyme in
which hydrogenase activity is located to the HoxYH subunits,
while the HoxEFU subunits constitute a diaphorase for electron
transfer to and from the hydrogenase subunits.*® In vitro studies
demonstrated that it is truly bidirectional with a slight bias
towards H, production rather than consumption.® The physio-
logical role of the hydrogenase is thus bipartite, acting both as a
“valve” for the release of excess electrons under anoxic conditions
when O, is not available as an electron acceptor® and generating
electrons through consumption of H,. Under anoxic conditions,
H, production serves to dissipate excess electrons derived from
either fermentative metabolism in the dark' via NifJ/PFOR (pyr-
uvate:flavodoxin/ferredoxin oxidoreductase) and ferrodoxin (Fd),"
or the photosynthetic electron transport chain in the light,>**°
with electrons passing from Photosystem I (PSI) to the hydroge-
nase via Fd."* This revises previous suggestions that electrons
were passed from Fd to NADPH via Ferredoxin/NADP' reductase
(FNR), which was then oxidized by the hydrogenase.>*** The sub-
cellular localization of the hydrogenase remains contentious.
Biochemical analysis indicates a weak association with the
thylakoid membranes.®* The hydrogenase lacks a membrane
spanning region, leading to the suggestion that it interacts with
an integral thylakoid membrane complex.”»* This interaction
may be via the HoxE subunit, which has been postulated to play a
role in transferring electrons between the electron transport chain
and the hydrogenase.*” It has been suggested that the membrane
interaction partner is respiratory complex I (NDH-1) based on
sequence homology between the HoxEFU subunits and “missing”
subunits of cyanobacterial complex I'*'® However, direct
evidence for such an interaction is lacking, and there is an alter-
native explanation for the homology based on the evolutionary
origins of complex I."” Recently it has been shown that NDH-1 acts
as a ferredoxin:PQ oxidoreductase;'® however it is possible that
NDH-1 might have multiple input modules one of which could be
Fd via NdhS and one the hydrogenase.

Results and discussion

To determine the localization of the bidirectional hydrogenase
in Synechocystis cells in vivo, we created a gene fusion coding for
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HoxF with Green Fluorescent Protein (GFP) at the C-terminus.
This gene fusion was expressed from the native chromosomal
hoxF locus of Synechocystis (ESI Fig. 11). PCR and Western blots
confirmed that the transformant was fully segregated and all
HoxF in the mutant was linked to GFP (ESI Fig. 2 and 37). The
majority of HoxF-GFP (70%) was incorporated into fully-
assembled hydrogenase complexes, as shown by 2-dimensional
PAGE analysis with immunoblotting (ESI Fig. 41). Given that all
Hox subunits (with the exception of HoxE) were detectable only
in the soluble fraction (ESI Fig. 5T) we used this fraction for the
analysis of complex assembly. H, production in hoxF-gfp was
comparable to wild-type (WT), both with and without an artifi-
cial exogenous electron donor, indicating that hydrogenase
activity and physiological electron supply were not perturbed by
the GFP tag (ESI Table 17).

Confocal fluorescence microscopy was used to determine the
localization of HoxF-GFP relative to the intracytoplasmic
thylakoid membranes as identified from chlorophyll fluores-
cence.”® We acquired multiple images per condition and
quantified fluorescence within each cell (ESI Fig. 61 and
Methods); by restricting to approximately spherical cells (thus
excluding cells in the process of division) we estimated the
radial fluorescence profile for each cell. This allowed us to
distinguish thylakoid association, cytosol localization and cell
membrane/periplasm association. Averaging over cells was
performed by a radial rescaling of all cells to the 1/2 maximum
radius of the chlorophyll intensity. Further, we identified
puncta (protein aggregates) on the basis of local differential
fluorescence (see Experimental).

Under standard low-light (LL, 8 pE m~> s~ ') aerobic growth
conditions, the hydrogenase was localized to the thylakoid
membrane (Fig. 1, ESI Fig. 7At). The radial profile was similar to
that of chlorophyll fluorescence; essentially the hydrogenase is
distributed within the thylakoid membrane system (Fig. 1A-D
and Q). Given that ~70% of HoxF is assembled into complexes
with HoxH and HoxY (ESI Fig. 4t), we would expect these
subunits to show a similar distribution to HoxF. Immunogold
electron microscopy confirms that the vast majority (~80%) of
HoxH and HoxY are thylakoid membrane-associated in LL wild-
type cells (Fig. 2, ESI Fig. 81), supporting the claim that the
hydrogenase complex is likely intact in vivo.****

Incubation of cells under a number of other conditions
induced a significant redistribution, with distinct puncta of
HoxF-GFP fluorescence forming and locating predominantly at
the distal edge of the thylakoid system (Fig. 1). Conditions that
induce this redistribution include incubation in high-light (HL,
600 pE m 2 s~ ') for 10 min. (Fig. 1E-H, ESI Fig. 7B}), prolonged
incubation (5 days) in the dark (DA) (Fig. 1I-L, ESI Fig. 7C and
Dt), and within 10 min of anoxia induced by the addition of
glucose/glucose oxidase/catalase** (Fig. 1M—P, ESI Fig. 7Et).
Puncta counts were highest for the latter two conditions (Fig. 1R
and S); of course counts only reflect those visible under our
imaging conditions and so our counts are discounted by the
visible cellular volume (around 40%). We estimate that indi-
vidual puncta contain about 5% of the total cell hydrogenase,
while on average a total of about 7% of the cellular hydrogenase
is in puncta after DA and 10% under anoxia.

This journal is © The Royal Society of Chemistry 2014
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Fig.1 HoxF-GFP distribution and patterning in Synechocystis cells grown in low light, high light, under dark adaptation and anoxia (no oxygen).
(A—=P) Confocal fluorescence micrographs showing chlorophyll fluorescence (first column); GFP fluorescence (second column); chlorophyll/
GFP (magenta/green) overlay (third column); puncta of GFP fluorescence (fourth column). Scale-bars 5 microns. (A—D) Cells under low light (LL).
(E—H) Cells after 10 min. high-light exposure (HL). (I-L) Cells after dark adaptation (DA) for at least 5 days. (M—P) Cells in anoxic conditions. (Q)
Radial distributions of fluorescence for free GFP (green); periplasmic FutA-GFP (blue); chlorophyll (red) and HoxF-GFP after DA (black, mean of 6
replicate experiments individually shown, dashed). Standardised distance refers to rescaling the 1/2 maximum radiuses for chlorophyll to a radial
distance of 1. (R) Average counts of puncta/per cell in DA, LL, HL and anoxia with SEM from replicate experiments (6, 7, 6, 2 replicates
respectively). * indicates significantly less than DA at p < 0.05 (1-tailed MW test). (S) Histograms of puncta counts per cell in a representative
experiment from the same batch culture (210 DA, 354 LL, 169 HL, 241 DA cells). Data in (Q-R) from 635-2232 cells by condition. See ESI Fig. 5t for

full images.

Significant photosynthetic H, production has been observed
in Synechocystis under two related conditions, specifically upon
illumination following prolonged DA* and under anoxia
induced by glucose/glucose oxidase/catalase,® our conditions
in Fig. 1I-L and M-P respectively. Therefore puncta formation
of HoxF-GFP is highest under conditions when the hydrogenase
is physiologically active for H, production. We considered the
possibility that these puncta are localized centers for either
biogenesis or catalytic turnover of the hydrogenase complexes.
However, it is unlikely that degradation of the hydrogenase
would be induced by anoxia, the condition under which activity
of the enzyme is best maintained.* Degradation of the hydrog-
enase also does not seem to be rapid, since there is no

This journal is © The Royal Society of Chemistry 2014

discernible loss of HOXF-GFP fluorescence over 90 min
following addition of lincomycin (which blocks new protein
synthesis),?, (ESI Fig. 9t). The rapid effect of anoxia (Fig. 1)
suggests that oxygen concentration is one of the controlling
factors, potentially through a direct oxygen sensor analogous to
those characterized in other bacteria such as E. coli,* or more
indirectly via an effect on the redox state of components of the
photosynthetic or respiratory electron transport chains. Redis-
tribution of respiratory complexes in cyanobacterial thylakoid
membranes is triggered by changes in the redox state of plas-
toquinone.** By contrast, the redistribution of the hydrogenase
is not influenced by DCMU (3-(3,4-dichlorophenyl)-1,1-dime-
thylurea) or DBMIB (dibromothymoquinone), (ESI Fig. 107),

Energy Environ. Sci., 2014, 7, 3791-3800 | 3793


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4ee02502d

Open Access Article. Published on 04 September 2014. Downloaded on 10/29/2025 3:05:38 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Energy & Environmental Science

1.0

I Em Periplasm
I == Thylakoid

€

0]

g 0.8 - mmm Cytoplasm
3

£

S 06 -

©

o

S

S 0.4 4

£

c

Rl

B 024

o

L

0.0 ——i-T T
WT aHoxH  AhoxE aHoxH ~ WT aHoxY  AhoxE aHoxY

Strain and antibody

Fig.2 Immunogold electron microscopic localisation of HoxH and
HoxY. The histogram shows the fraction of total counts in each cell
compartment (periplasm, thylakoid region and cytoplasm) for
Synechocystis wild-type (WT) and AhoxE for each primary antibody
(cells grown in low light; + Standard Error). The number of cells
counted was 249 for WT, aHoxH; 203 for WT, aHoxY; 81 for AhoxE,
aHoxH; 87 for AhoxE, aHoxY. Counts have been corrected by
subtracting the non-specific background labelling seen in each cell
compartment in the AhoxYH mutant.*? See ESI Fig. 8t for images
and raw data. Student's t-tests indicate that the increased
proportion of label in the cytoplasm in AhoxE is significant (p =
0.008 for aHoxH; p = 0.00009 for aHoxY).

which block reduction and oxidation of the PQ pool, respec-
tively, indicating that control of hydrogenase localization is
probably via a direct redox-sensing mechanism rather than in
response to the redox state of electron carriers.

To further explore factors involved in localizing the hydrog-
enase, we examined the distribution of HoxF-GFP fluorescence
in four mutant backgrounds: the AhoxE and AhoxYH" mutants
lacking specific hydrogenase subunits, the hoxE deletion
mutant complemented by hoxE overexpression' (denoted
oxhoxE hereafter), and the M55 mutant lacking respiratory
Complex I.** In each case, the hoxF-gfp construct was introduced
into the appropriate mutant background under the native
promoter. PCR and Western blots confirmed that all detectable
HoxF in the cells is linked to GFP (ESI Fig. 2 and 11%).

Loss of the HoxE subunit does not impair incorporation of
HoxF into HoxFUYH and HoxFU subcomplexes,’” nor does it
impair hydrogenase activity in the presence of exogenous arti-
ficial electron donors.”»** Nevertheless, there are striking
changes in the distribution of HoxF-GFP fluorescence in the
AhoxE background (Fig. 3).

In aerobic LL conditions, HoxF-GFP appears dispersed in the
cytoplasm, with a radial profile similar to that of free GFP
(Fig. 3A-D and U, ESI Fig. 12A¥) and very few puncta. This is in
sharp contrast to the thylakoid localization of HoxF-GFP in the
WT background (Fig. 1). Therefore the HoxE subunit is required
for thylakoid membrane-association of the hydrogenase under
these conditions. Localisation of HoxH and HoxY by immuno-
gold electron microscopy shows that these subunits also show
strong redistribution from the thylakoids to the cytoplasm in
the AhoxE mutant (Fig. 2), confirming that the redistribution of
HoxF-GFP fluorescence in AhoxE reflects relocalisation of the
entire hydrogenase complex.
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Despite the loss of thylakoid membrane association in
AhoxE, redistribution of the hydrogenase into puncta under HL,
prolonged DA and anoxia still occurs in the AkoxE background
(Fig. 3, ESI Fig. 12B-Ef), as observed in the WT background
(Fig. 1). However, there are differences in redistribution
dynamics and the strength of puncta formation; under DA,
puncta formation is slower in AZoxE than in the WT back-
ground (ESI Fig. 12C-D} showing that puncta formation
occurred between days 3 and 5, whilst puncta formed by day 3 in
HoxF-GFP ESI Fig. 7Ct), while puncta counts are around 20%
higher in HL and anaerobic conditions than in DA, (Fig. 3V).
Puncta confinement to the distal thylakoid is also weaker than
in the HoxF-GFP strain, (Fig. 3W and X). These differences
suggest that although recruitment of the hydrogenase to puncta
can occur from the cytosol, recruitment from the thylakoid
membrane fraction is faster and gives rise to a tighter
localisation.

To confirm that the changes in hydrogenase distribution in
AhoxE are indeed due to loss of the HoXE subunit, we examined
the distribution of the hydrogenase in the oxhoxE background,
in which overexpressed hoxE complements the null mutation.*?
Overexpression of hoxE restored the predominant thylakoid
localization of HoxF-GFP fluorescence (Fig. 3Q-T for LL, ESI
Fig. 13A-D¥), and the localisation of HoxF-GFP puncta to the
distal thylakoid (Fig. 3W and X). Puncta were formed under LL,
HL, prolonged DA and anoxia (Fig. 3V). The only clear difference
from the WT background was the greater number of puncta
detected in LL adapted cells and fewer in HL in the oxhoxE
background (compare Fig. 1R and 3V), presumably a result of
higher hox operon and HoxE expression.” This suggests that
over-expression of HoxE has shifted the phenotype under light
exposure, higher light levels being required to reduce puncta
counts; in effect high HoxE inhibits the effect of low light
signals in relocalizing the hydrogenase to the thylakoid
membranes.

Eckert et al.**> demonstrated that levels of HoxE, HoxF, and
HoxU are decreased by up to 25-70% of WT in HoxYH sub-
complex mutants. In the AkoxYH background, HoxF-GFP fluo-
rescence per cell is extremely low, being decreased by a factor of
about 5 in LL (Fig. 4M-P and S, ESI Fig. 14Af) and similarly in
other conditions (ESI Fig. 14B and Ct). AhoxYH lost the HoxF-
GFP thylakoid association characteristic of the WT, with only
occasional puncta (ESI Fig. 141). Expression was too low for
accurate quantification or condition dependencies. This
mutant does not form a functional hydrogenase, but the
diaphorase subunits can form a HoxEFU sub-complex.”
However, the low HoxF fluorescence in the AhoxYH background
suggests that any subcomplexes formed are unstable, fail to
localize to the thylakoid, and are rapidly turned over in vivo.

In the complex I-deficient M55 background about 50% of
cells showed no HoxF-GFP fluorescence (Fig. 4), suggesting a
stochastic disruption of #ox gene expression and/or Hox protein
stability. However the cells with no HoxF-GFP are still alive: this
is evident from their strong chlorophyll signal (Fig. 4). This is
consistent with Gutthann et al*® who noted there was poor
hydrogenase activity in the M55 mutant compared to the WT.
However, in those cells in which HoxF-GFP was evident, levels

This journal is © The Royal Society of Chemistry 2014
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Fig. 3 HoxF-GFP distribution and patterning in AhoxE mutants grown in low light, high light, under dark adaptation and anoxia (no oxygen).
(A—D) AhoxE mutant under low-light (LL). (E-H) AhoxE mutant after 10 min high light (HL) exposure. (I-L) AhoxE mutant after 5 days dark
adaptation (DA). (M—P) AhoxE mutant in anoxic conditions. (Q—T) oxhoxE mutant in low light (LL). Columns in (A-T) as Fig. 1. Scale-bars 5
microns. (U) Radial distributions of fluorescence under DA conditions for chlorophyll (dashed red); free GFP (dashed green); HoxF-GFP (black,
hidden by cyan); HoxF-GFP in AhoxE (blue); HoxF-GFP in oxhoxE (cyan). Standardised distance refers to rescaling the 1/2 maximum radius for
chlorophyll to a radial distance of 1. (V) Average counts of HoxF-GFP puncta/cell (mean, SEM) over 2,4,3,1,3,4,2,1 replicate experiments under DA
conditions for AhoxE background (hoxEko) and oxhoxE background (Eox). * indicates significantly less than DA HoxF-gfp cells (repeated from
Fig. 1R, in red) at p < 0.05, while ** indicates significance at p < 0.005 (1-tailed MW test). (W) Relative density of HoxF-GFP puncta with respect to
radial distance under HL for HoxF-gfp (black, 2206 puncta); AhoxE background (blue, 635 puncta); oxhoxE background (cyan, 203 spots). Radial
distribution of chlorophyll fluorescence is shown for reference (dashed red line). Standardised distance refers to rescaling the 1/2 maximum
radius for chlorophyll to a radial distance of 1. Data were pooled from replicate experiments. (X) Standard deviation of puncta radial distribution
under HL for HoxF-gfp (F), AhoxE (Eko), oxhoxE (oxE++), average over shown (red) replicates (p < 1078 for hoxF-gfp vs. AhoxE; p = 0.009 for
hoxF-gfp vs. oxhoxE, F test). Data in U, V from 72-841 cells by condition. See ESI Fig. 9 and 107 for full images and other conditions.

(Fig. 4S) and localization were generally similar to those seen Our results show that there are at least two localization
in the WT background, both with regard to thylakoid signals for the hydrogenase in Synechocystis - a HoxE-depen-
membrane association and formation of puncta (Fig. 4A-L and  dent interaction which anchors the majority of the hydrogenase
Q-R), although redistribution to puncta appeared disrupted to the thylakoid membrane, and a second aggregation signal
under light to some degree. (triggered under specific conditions such as anoxia) that

This journal is © The Royal Society of Chemistry 2014 Energy Environ. Sci., 2014, 7, 3791-3800 | 3795
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Fig. 4 HoxF-GFP distribution and patterning in M55 (Complex |-deficient) and AhoxHY mutants grown in low light, high light, under dark
adaptation and anoxia (no oxygen). (A—D) M55 under low light (LL). (E—H) M55 after 10 min high light exposure (HL). (I-L) M55 after 5 days dark
adaptation (DA). (M—P) AhoxYH under low light (LL). Columns in (A—P) as Fig. 1. Scale-bars 5 microns. (Q) Radial distribution of fluorescence: free
GFP (green); chlorophyll (red) HoxF-GFP (black); HoxF-GFP in M55 background (expressing cells, blue). Standardised distance refers to rescaling
the 1/2 maximum radius for chlorophyll to a radial distance of 1. (R) Mean counts of HoxF-GFP puncta/cell in M55 background under DA, HL, LL
and anoxia with SEM over replicate experiments (6, 2, 2, and 2 respectively). DA HoxF-gfp cells repeated from Fig. 1R, (S) Mean HoxF-GFP
fluorescence per cell under LL for HoxF-GFP (black), M55 background (blue) and AhoxYH background (green). Fluorescence is corrected for cell
autofluorescence by subtracting cell fluorescence after photobleaching. Data in Q-R from 291-492 cells by condition.

partially localizes the hydrogenase to discrete puncta (Fig. 1).
These puncta are strongly targeted to the distal thylakoids
(Fig. 1H, L and P, 3W). Our data suggests that both populations
are functional given that the thylakoid dispersed population is
in the majority, whilst puncta formation requires a specialized
aggregation mechanism. The fact that puncta formation is
highest under conditions when hydrogen is produced (DA,
anoxia) implies that the puncta are related to hydrogen
production. The formation of puncta is independent of the
HoxE subunit (Fig. 3), but this subunit influences the distri-
bution of puncta within the thylakoid membrane, since tar-
geting to the distal edge of the thylakoid system is weaker in
AhoxE (Fig. 3), and over-expression appeared to inhibit light
dependent localization signals, (Fig. 1R and 3V). The

3796 | Energy Environ. Sci., 2014, 7, 3791-3800

aggregation mechanism is unclear. Since the HoxE subunit,
that anchors the hydrogenase to the thylakoid membrane, is not
essential for puncta formation it seems unlikely that membrane
curvature is the driving force, a mechanism suggested for row
formation of the F;F,-ATP synthase in mitochondrial cristae.”®
In addition, we showed that loss of NDH-1 has no effect on the
thylakoid localization of Hox. The putative docking of hydrog-
enase with NDH1 would require the NdhHIJK subunits linked
to NdhB.”” These subunits are absent in the M55 mutant and
their loss has no effect on the thylakoid localization of Hox
under normal LL conditions (Fig. 3). Therefore NDH-1 cannot
be the main thylakoid interaction partner of HoxE.

The majority of HoxF-GFP (~70%) is incorporated into
fully-assembled HoXEFUYH/HoxFUYH complexes with a

This journal is © The Royal Society of Chemistry 2014
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small amount (~23%) forming sub complexes (HoxEFU and
HoxFU) similar to Eckert et al.'> However, it is not absolutely
clear whether these sub-complexes exist in vivo as they have
only been observed in vitro following isolation of the
complex. In fact, pentameric HoXEFUYH hydrogenases tend
to dissociate following cell breakage into the diaphorase
(Hox-EFU) and hydrogenase (HoxYH) subunits.?®** Gute-
kunst et al.'* have demonstrated that the pentameric complex
is extremely fragile and easily breaks upon cell rupture in
Synechocystis. Therefore it may be impossible to isolate the
enzyme in its native form. The correlation we observed
between spatial location of HoxF-GFP fluorescence and HoxH
and HoxY as judged by immunogold electron microscopy
(Fig. 2), particularly under AhoxE (Fig. 2 and 3) strongly
suggests that the hydrogenase complex is intact in vivo, and
that HoxF-GFP fluorescence is a good indicator of hydroge-
nase location.

Physiologically regulated hydrogenase relocalization adds
a new dimension to hydrogenase functionality-redistribution
between the thylakoid dispersed and puncta populations
could potentially optimise access to electron donors in a
condition dependent manner. The strong HoxE-dependent
thylakoid association suggests that access to a membrane
localized electron donor is crucial, either during fermenta-
tion or whilst coupling to the photosystem electron pathway.
Of fundamental relevance is the presence of soluble pools of
reductant, specifically NADPH (from the photosystems) and
NADH (from fermentation), suggesting that in vivo the
hydrogenase is inefficient at coupling to these pools. Utili-
zation of membrane localized donors is thus indicated; this
is consistent with the in vitro results of Gutekunst et al. who
demonstrate that flavodoxin and ferredoxin (Fd) are the main
electron donors to the hydrogenase.* Our data suggests that
the reduced form of these donors is localized near the
thylakoids under hydrogen producing conditions. Thylakoid
membrane localization would obviously place the hydroge-
nase in closer proximity to the supply of reductant generated
from the photosynthetic electron transport chain, specifically
reduced Fd thereby providing a rapid oxidation of this local
pool and hence a release of excess electrons. Evidence that
specific localization is important also comes from the
increased formation of puncta under conditions when
physiological H, photoproduction can be observed (DA and
anoxia). The localization of these puncta to a specific site in
the distal thylakoid is particularly interesting, distant from
the carboxysomes in the central cytosol** but appearing to
retain attachment to the thylakoids. The puncta could thus
represent two functional populations: (1) a hydrogenase
population localized to patches close to photosynthetic
electron transport, thereby enhancing the efficacy of electron
dispersal through some form of substrate channeling, or (2) a
population optimized for hydrogen uptake following high
light exposure as the puncta are further away from the source
of reduced Fd compared to the thylakoid-associated pop-
ulation, thereby favoring the back-reaction. Either of these
could explain the evolution of mechanisms to dynamically
separate the hydrogenase into two populations.
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Conclusions

Our results indicate that mechanisms for rapid physiological
control of hydrogenase location in response to oxygen level and
electron transport activity (e.g. HL) are present and demonstrate
that the sub-cellular localization of the hydrogenase is impor-
tant for physiological electron supply. Taken together, this rai-
ses the possibility that termination of H, production in vivo is
not solely due to inactivation by oxygen: it could also be a
consequence of physiological regulation of hydrogenase loca-
tion and electron supply in response to redox levels. This would
make physiological sense, as the hydrogenase is presumably
only required as an emergency electron sink in the absence of
oxygen when terminal oxidases cannot function.’ Circum-
venting this emergency role and instituting continuous
production is the major issue in photosynthetic hydrogen
production. Determination of the molecular basis for control of
hydrogenase location could thus pave the way to engineering
improved cyanobacterial cells for solar-powered bio-hydrogen
production.

Experimental
Bacterial strains and media

Wild-type Synechocystis sp. PCC 6803 (glucose tolerant
strain), M55, AhoxYH, AhoxE and the AhoxE over expressed
strain (oxhoxE)'>>* were grown photoautrophically in BG-11
medium?** at 30 °C. For our standard low-light (LL) conditions
cells were grown under 8 pmol m~? s~ " white light in tissue
culture flasks (Nunc UK), with continuous shaking. For dark
adapted conditions (DA) cells were grown at 30 °C in tissue
culture flasks wrapped in foil for 5 days, before being spotted
in low light onto BG-11 plates. High light (HL) cells were
spotted onto BG-11 plates and illuminated for 10 min under
600 umol m 2 s~ ! white light. For anoxic conditions, catalase
(500 U), glucose (5 mM), and glucose oxidase (30 U) were
added to LL cells to make the medium totally anaerobic
before being spotted onto BG-11 agar plates. E.coli strains
used in this study were DH5a and BW25113 (E. coli stock
centre). LL cultures were incubated for 1 h with 20 uM DCMU
and 5 pM DBMIB. Lincomycin was added at 100 pg ml~* to
DA cells prior to HL exposure.

Transformation of Synechocystis sp. PCC 6803

Synechocystis sp. PCC 6803 cells were transformed according
to.** Briefly a culture in exponential growth was harvested and
washed with fresh BG-11 and re-suspended to give a final
concentration of 1 x 10° cells per ml. Approximately 10 pl of
plasmid DNA was then added to 150 pl of cells and incubated at
50 umol m™~> s~ white light at 30 °C for 1-5 hours before being
spread onto BG-11 plates. The plates were then incubated under
50 umol m™? s~* white light at 30 °C until confluent green
growth was observed (approximately 16 hours). Increasing
amounts of apramycin were then added; cells were further
grown on selective plates containing a final concentration of
50 ug ml~" apramycin.
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Generation of a GFP tagged HoxF protein in Synechocystis sp.
PCC 6803

The HoxF-GFP strain was generated as detailed in the REDI-
RECT manual®® with minor modifications. The protocol, plas-
mids and strains were provided by PBL Biomedical
Laboratories. The forward hoxF (5'acgactcaagtccacataggs’) and
the reverse hoxF (5'caccagggtggaagctaaac3’) primers were used
to amplify a 3 kb region, which included the soxF gene flanked
by 1 kb either side, to assist with homologous recombination.
The 3 kb PCR products were then cloned into the pGEM T-easy
vector (Promega) as detailed in the Promega manual. HoxF-GFP
fusions were generated by amplifying the apramycin GFP
cassette from the plasmid pIJ786 using two long PCR primers

hoxFRF-5'agttgattttttgatttgttgttattgagcettaaaccceetgeegggeeeg
gagctgee3’

hoxFRR-5'gtgtttcagaaaagttaactgagtggataaattaccgaaattcegggg
atecgtegace3’

Each individual primer has at the 5 end 39nt matching
Synechocystis sequence either side of but not including the stop
codon and a 3’ sequence (19nt or 20nt) matching the right or left
end of the cassette. A full in frame GFP fusion was generated via
homologous recombination leading to the incorporation of the
GFP and a 21nt linker region (ctgccgggeccggagetgeeg) at the
C-terminus of the HoxF protein. Successful transformants
were screened via PCR wusing the primers (hoxFFS-
5'tatgaagaattactcaaagtc 3’ and hoxFRS 5' acaatacctgttccagagggg
3’) and sequenced using T7 and S6 primers (Promega).

Protein analysis and immunoblotting

The soluble fraction from each strain was isolated by glass bead
breakage and differential centrifugation. For ESI Fig. 51 both
soluble and cell pellet fractions were prepared according to
Eckert et al.™ For each strain, a 50 ml liquid culture was grown
to stationary phase and the cells were harvested, re-suspended
and washed twice in ACA buffer (750 mM e-amino caproic acid,
50 mM BisTris/HCL pH = 7.0, 0.5 mM EDTA). The final volume
of cell suspension was ~500 ul and ~200 pl of glass beads (212
to 300 um in diameter, Sigma-Aldrich, UK) were added. Cells
were broken with a custom made vortexer at 4 °C with a 5 min
on/5 min off cycle. After cell breakage the sample was centri-
fuged for 10 min at maximum speed in a microfuge and then
again in an ultracentrifuge at 100 000 x g for 30 min at 4 °C. The
resulting supernatant, i.e. the soluble fraction, was normalized
according to its ODgs, (typically, the ODgso of a 1 : 10 dilution
was measured and a dilution factor calculated on the basis to
obtain an ODg5, of 0.02 for the 1 : 10 dilution). To solubilise any
remaining thylakoid membrane fragments, n-dodecyl-p-malto-
side (n-DM) was added to a final concentration of 0.5% (w/v)
from a 10% (w/v) stock and as a last step the same volume of
Coomassie loading solution (750 mM g-amino caproic acid, 5%
(w/v) Coomassie-G) was added. 22 ul of sample were loaded per
lane on a 8 to 12 % (w/v) linear polyacrylamide (PAA) gradient
Blue-native (BN) PAGE first dimension gel and the electropho-
retic run was performed according to.** 2D SDS PAGE gels were
run using 17.5% (w/v) PAA and 6 M urea containing gels as
described in Boehm et al.?* Gels were either Coomassie-stained,
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silver-stained®® or electro-blotted onto nitrocellulose membrane
using the iBlot system (Invitrogen, UK) according to the man-
ufacturer's instructions. Immunoblotting analyses were per-
formed using specific primary antibodies and a horseradish
peroxidase-conjugated secondary antibody (GE Healthcare, UK).
Signals were visualised using a chemiluminescent kit (Super-
Signal West Pico, Pierce, USA). Primary antibodies used in this
study were: (i) antiHoxE (directed against E. coli over expressed
HoxE), (ii) antiHoxF (directed against E. coli over expressed
HoxF), (iii) antiHoxH (directed against E. coli over expressed
HoxH), (iv) antiHoxU (directed against E. coli over expressed
HoxU), (v) antiHoxY (directed against E. coli over expressed
HoxY) and (vi) antiGfp (Gentaur Molecular Products, Belgium).
Blots were analysed using Image ] software to semi quantify
individual bands.

Confocal microscopy

Cells were immobilized by absorption onto blocks of BG-11 agar
in a custom built sample holder using a LeicaTCS-SP5 with a
60x oil immersion objective (NA 1.4) with excitation at 488 nm
from an argon laser. GFP fluorescence was recorded at 502-512
nm and chlorophyll fluorescence was recorded at 670-720 nm.
The confocal pinhole was set to give a z-resolution of about
0.8 um. Images were recorded over 5 minute periods for each
sample.

Hydrogenase assay

As described in (ref. 12).

Regional fluorescence quantification

Chlorophyll fluorescence was used to demarcate cell boundaries.
Specifically, object extraction was performed using a threshold
that maximized the number of objects identified as cells (based
on limits for cell area, cell eccentricity and a second (higher)
threshold to define the inner cytosol region). Cells that were in
the process of division were thus excluded from the analysis
(eccentricity threshold) as were dead/dying cells that had low
chlorophyll fluorescence. The bleached image was used to cali-
brate the auto fluorescence, i.e. levels of GFP protein were defined
as relative to the bleached image. Radial fluorescence were
determined on a per cell basis by using the chlorophyll fluores-
cence to define the cell geometry, i.e. radial coordinates were
used to allow cell fluorescence to be averaged over rotation angle
in each cell. Averaging over cells was performed by rescaling
radially relative to the 1/2 maximum radius of the chlorophyll
intensity, the standardised distance. Spots were determined by
using a local fluorescence filter. Spot counts post-bleach and in
wild-type were used to calibrate detection thresholds. Detection
thresholds for cells and spots varied only slightly between
experiments. All software was written in MatLab.

Puncta quantification and statistical tests

Puncta were determined by using a local ratio of the fluores-
cence image filtered with Gaussian filters (standard deviations
of 3.5 and 6.5 pixels) and a ratio threshold of 1.65. Puncta
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counts post-bleach and in wild-type were used to calibrate
detection thresholds to minimise false positives. Detection
thresholds for cells and puncta varied only slightly between
experiments. Puncta counts per cell (defined above) were
determined for each image data set (100 s of cells, see figure
legends). Statistical significance for puncta counts was deter-
mined by Mann-Whitney tests. All software was written in
MatLab.

Immunogold electron microscopy

Cell suspensions were fixed for 15 min at room temperature
with 3% (w/v) paraformaldehyde in 100 mM phosphate buffer
PH 7.3. To remove the fixative, cells were washed three times
with 100 mM phosphate buffer. After embedding in 1% (w/v)
low-gelling temperature agarose, samples were cut into 1-2 mm
cubic blocks, dehydrated through a graded ethanol series
(15 min 30%, 15 min 50%, 15 min 70%, 15 min 90% and 3 x 20
min 100%) and embedded in LR White resin.*® Thin sections
were cut with a glass knife at a Reichert Ultracut E microtome,
collected on nickel grids coated with pioloform, etched for 5
min with H,0, (5% w/v) and washed in phosphate-buffered
saline (PBS) before blocking with Bovine Serum Albumen (BSA;
10% w/v in PBS) for 1 h at room temperature. Sections were then
incubated for 1 h at room temperature with rabbit primary
antibodies against HoxH or HoxY," diluted to 1:250 and
1 : 100 respectively in blocking buffer. After washing in PBS (6 x
2 min.) samples were incubated for 1 h with goat anti-rabbit IgG
conjugated with 10 nm colloidal gold particles (Sigma-Aldrich)
at 1:50 dilution in blocking buffer, and then washed with
blocking buffer (3 x 2 min.), PBS (3 x 2 min.) and ultrapure
water (3 x 1 min.).*” Sections were post-stained with saturated
aqueous uranyl acetate and air-dried before examination in a
JEOL JEM-1230 transmission electron microscope at an accel-
erating potential of 80 kv.
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