Dalton Transactions

COMMUNICATION

Cite this: Dalton Trans., 2014, 43, 14514

Received 25th July 2014, Accepted 13th August 2014 DOI: 10.1039/c4dt02265c

www.rsc.org/dalton

The preparation and structure of Ge_3F_8 – a new mixed-valence fluoride of germanium, a convenient source of GeF_2 [†]

Andrew L. Hector, Andrew Jolleys, William Levason,* David Pugh and Gillian Reid

The new binary mixed-valence fluoride of germanium, Ge_3F_8 , has been obtained by heating GeF_4 with powdered Ge in an autoclave (390 K/4 bar/48 h). The structure contains pyramidal $Ge^{II}F_3$ and octahedral $Ge^{IV}F_6$ units, linked by fluoride bridges. The new compound is the missing member of the series $(GeF_2)_n \cdot GeF_4$ (n = 2, 4, or 6). Sublimation of $(GeF_2)_n \cdot GeF_4$ *in vacuo* provides a convenient source of GeF_2 in *ca.* 30% overall yield.

Although germanium is technologically very important both as the element and in oxide or chalcogenide compounds, with key applications in electronics, ceramics and optics,¹ its chemistry was neglected for many years compared with those of silicon and tin. It is now a very active area of main group chemistry and, in addition to the extensive chemistry of Ge(IV),² recent work has identified a large and complex coordination chemistry of $Ge(\pi)$;^{2,3} the latter contrasting with the limited coordination chemistry of $Si(\pi)$.² In Group 14 as well as the common tetrahalides MX_4 (M = Si, Ge, Sn; X = F-I),⁴ there are dihalides MX_2 (M = Ge, Sn), and the subhalides, GeBr and SnBr.⁵ Of these, the chemistry of GeF₂ has been very little explored since it is not readily available commercially and its preparation by repeatedly passing GeF₄ over heated germanium, is both inconvenient and time consuming,⁶ while the alternative method, involving the reaction of Ge with anhydrous HF in an autoclave, is hazardous. Both routes also require special equipment.⁷ A number of intermediate halides have also been identified.² The latter are of two types; the most common are those with element-element (E-E) bonds, including Si₂F₆, Si₂Cl₆, Si₃Cl₈, Si₆Cl₁₄, Ge₂Cl₆ and Ge₅Cl₁₂,⁸ with structures analogous to the corresponding alkanes. Much

rarer, and limited to Ge and Sn, are a second group of mixedvalence materials, including Sn₃F₈, Ge₅F₁₂, and Ge₇F₁₆, which are without direct E–E bonds, but are fluoride-bridged and contain distinct environments attributable to M^{II} and M^{IV} centres.^{9–11}

We are currently developing new routes for electrodeposition of p-block materials from non-aqueous media, using reagents including halometallate anions as the p-block element source,¹² and have recently reported the electrochemistry of $[GeX_3]^-$ (X = Cl, Br or I) and $[GeCl_6]^{2-}$ in CH₂Cl₂ solution.¹³ During the course of this work we have extended our studies to the fluoride systems. We report here the preparation and characterisation of a new binary, mixed-valence fluoride of germanium and its use to provide a convenient route to GeF₂.

Depending upon the experimental conditions, repeatedly passing GeF₄ at low pressure over heated germanium yields either GeF₂,⁶ or mixed valence Ge^{II}-Ge^{IV} fluorides.^{10,11,14} Two of the latter identified by single crystal X-ray diffraction (XRD) studies are Ge₅F₁₂[‡] and Ge₇F₁₆^{10,11} which are members of the series $(GeF_2)_n \cdot GeF_4$.¹⁴ These flow reactions are inconvenient and low yielding, hence we have investigated the reduction of GeF₄ with Ge powder in an autoclave under modest pressure (390 K/4 bar/48 h, see ESI[†]). Initial attempts at temperatures <370 K resulted in little reaction, but on increasing the temperature to 390 K/48 h, much of the GeF4 was consumed (as indicated by the drop in pressure), and upon opening the autoclave in a glove-box, a mass of white microcrystalline material was found on the cooler lid. The crystals are extremely moisture sensitive, converting into a pool of liquid immediately on exposure to air. Single crystal X-ray diffraction data were collected from one of the small crystals and the structure solution identified this product as Ge₃F₈, the missing third member of the series $(GeF_2)_n \cdot GeF_4$, with n = 2. Unit cell measurements on several other crystals confirmed these as the same compound. Powder X-ray diffraction (PXRD) data were also collected on the bulk material and that showed smaller amounts of Ge₅F₁₂ and Ge₇F₁₆, as well as traces of GeF₂ were also present. The simulated and experimental powder XRD data from this mixture are shown in the ESI.[†]

View Article Online

Chemistry, University of Southampton, Southampton SO17 1BJ, UK. E-mail: wxl@soton.ac.uk; Tel: +44 (0)2380 593792

[†] Electronic supplementary information (ESI) available: Experimental details for the syntheses of Ge₃F₈ and GeF₂, and the PXRD data for all the products. Further details of the crystal structure investigation may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www. fiz-karlsruhe.de/request_for_deposited_data.html) on quoting CSD number 427896. See DOI: 10.1039/c4dt02265c

Dalton Transactions

Ge2

F2

F1

Sublimation of the mixture (390 K/0.5 mm) gave ~30% yield of GeF₂ (based on elemental Ge used in the first step), which was identified by PXRD (see ESI[†]). Some involatile orange material (cf. ref. 6) was also formed.

Germanium difluoride has a polymeric chain structure based upon trigonal pyramidal GeF_3 units (Ge-F = 1.79(2),

Ge1

1.91(2), 2.09(2) Å), with a distant fourth fluoride at 2.57(2) Å that cross-links the chains.¹⁵ The new preparation is a convenient way to obtain GeF2 in useful quantity for further studies of its coordination and organometallic chemistry.

The single crystals of the mixed-valence Ge3F8 are isomorphous with Sn₃F₈,⁹ adopting the monoclinic space group $P2_1/n$. The structure is composed (Fig. 1) of slightly distorted GeF_6 octahedra with four terminal Ge-F bonds (1.767(1), 1.782(1) Å), and two slightly longer Ge-F bonds (1.855(1) Å) that are involved in bridging to the Ge^{II} units. The germanium (II) core environment is trigonal pyramidal, composed of one terminal (Ge-F = 1.938(1) Å) and two bridging (Ge-F = 1.980 (1), 2.010(1) Å) fluorides, one linked to Ge^{IV} and one to a second Ge^{II} centre. There are also longer Ge^{II}...F contacts (2.56 Å), and if these are included, the germanium(π) geometry is a distorted saw-horse shape, reminiscent of GeF₂. Overall, the packing is best considered as sheets in the (101) planes (Fig. 2a), with each sheet being made up of puckered chains of GeF_3 units along [010] connected together by the GeF_6 octahedra (Fig. 2b).

Considering the structures of Ge₅F₁₂¹⁰ and Ge₇F₁₆^{,11} the same basic building blocks are present (trigonal pyramidal GeF_3 and octahedral GeF_6), but as the F/Ge ratio declines, the

F1ⁱⁱ ⊕

Ge1ⁱⁱ

Fig. 2 The Ge_3F_8 structure viewed along: (a) the b axis to observe the sheets, and (b) the a axis, showing the connectivity within the sheets.

(a) View of the structure of Ge_5F_{12} .¹⁰ (b) View of the structure of Fig. 3 Ge₇F₁₆.¹¹

structures become more distorted to maintain the germanium coordination numbers. In Ge₅F₁₂, if we ignore the distant fourth fluoride at 2.44 Å, the GeF₃ trigonal pyramids (Ge–F = 1.80(2), 1.99(2), 2.20(2) Å) form corrugated sheets in (001), based on GeF₆ octahedra linked to dimers of two corner-linked GeF₃ pyramids. As a consequence of the 4 : 1 Ge^{II} : Ge^{IV} constitution, the GeF₆ units are linked to four dimers (rather than two as in Ge₃F₈) (Fig. 3a). The structure of Ge₇F₁₆ is complicated in that there are seven distinct germanium sites,¹¹ but again, the building blocks are trigonal pyramidal GeF₃ and octahedral GeF₆ units. The structure is best described as chains of GeF₃ pyramids along [001] with side chains of four GeF₃ units terminated by a GeF₆ octahedron attached to every second GeF₃ of the main chain (Fig. 3b).

In conclusion, the missing member of the unique series of mixed-valence germanium fluorides $(GeF_2)_n \cdot GeF_4$ (n = 2, 4, or 6) has been obtained by reaction of GeF_4 and Ge powder under modest pressure and temperature, its structure determined and the structural relationships within the series established. Sublimation of the $(GeF_2)_n \cdot GeF_4$ *in vacuo* provides a convenient route to the previously rather inaccessible GeF_2 . Further work to explore the chemistry of GeF_2 formed by this route is underway and will be reported in due course.

Acknowledgements

We thank EPSRC for support (EP/1033394/1 and EP/1010890/1). The SCFED Project (http://www.scfed.net) is a multidisciplinary collaboration of British universities investigating the fundamental and applied aspects of supercritical fluids.

Notes and references

 Ge_5F_{12} was originally formulated as Ge_2F_5 ,¹⁴ the correct formula subsequently being established from the crystal structure determination.¹⁰

- (a) D. D. Vaughn II and R. E. Schaak, *Chem. Soc. Rev.*, 2013,
 42, 2861; (b) S. Raoux, W. Welnic and D. Ielmini, *Chem. Rev.*, 2010, 110, 240; (c) D. V. Talapin, J. S. Lee,
 M. V. Kovalenko and E. V. Shevchenko, *Chem. Rev.*, 2010, 110, 389.
- 2 (a) J. Parr, in Comprehensive Coordination Chemistry II, ed. J. A. McCleverty and T. J. Meyer, Elsevier, Oxford, 2004, vol. 3, p. 545; (b) W. Levason, G. Reid and W. Zhang, Coord. Chem. Rev., 2011, 255, 1319; (c) N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Butterworth, Oxford, 2nd edn, 1997; (d) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn and D. Stalke, Angew. Chem., Int. Ed.,

2009, **48**, 5683; (e) A. C. Filippou, O. Chernov and G. Schnakenburg, *Angew. Chem., Int. Ed.*, 2009, **48**, 5687.

- 3 For lead references on Ge(II) complexes see: (a) A. J. Arduengo III, H. V. Rasika Dias, J. C. Calabrese and F. Davidson, Inorg. Chem., 1993, 32, 1541; (b) P. A. Rupar, V. N. Staroverov, P. J. Ragogna and K. M. Baines, J. Am. Chem. Soc., 2007, 129, 15138; (c) F. Cheng, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, Angew. Chem., Int. Ed., 2009, 48, 5152; (d) F. Cheng, J. M. Dyke, F. Ferrante, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, Dalton Trans., 2010, 39, 847; (e) F. Cheng, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, Inorg. Chem., 2010, 49, 752; (f) J. England and Wieghardt, Inorg. Chem., 2013, K. 52, 10067: (g) P. A. Rupar, M. C. Jennings and K. M. Baines, Organometallics, 2008, 27, 5043; (h) S. M. I. Al-Rafia, M. R. Momeni, R. McDonald, M. J. Ferguson, A. Brown and E. Rivard, Angew. Chem., Int. Ed., 2013, 52, 6390.
- 4 A. K. Wolf, J. Glinnemann and M. U. Schmidt, *CrystEng-Comm*, 2008, **10**, 1364.
- 5 (a) A. Schnepf and R. Köppe, Z. Anorg. Allg. Chem., 2002,
 628, 2914; (b) C. Schrenk, R. Köppe, I. Schellenberg,
 R. Pöttgen and A. Schnepf, Z. Anorg. Allg. Chem., 2009, 635, 1541.
- 6 N. Bartlett and K. C. Yu, Can. J. Chem., 1961, 39, 80.
- 7 E. L. Muetterties, Inorg. Chem., 1962, 1, 342.
- 8 (a) E. Hengge, in *Halogen Chemistry*, ed. V. Gutmann, Academic Press, NY, 1967, vol. 2, p. 169; (b) D. Shriver and W. L. Jolly, *J. Am. Chem. Soc.*, 1958, **80**, 6692; (c) I. R. Beattie, P. J. Jones, G. Reid and M. Webster, *Inorg. Chem.*, 1998, **37**, 6032.
- 9 M. F. A. Dove, R. King and T. J. King, J. Chem. Soc., Chem. Commun., 1973, 944.
- 10 J. C. Taylor and P. W. Wilson, J. Am. Chem. Soc., 1973, 95, 1834.
- 11 J. Köhler and J.-H. Chang, Z. Anorg. Allg. Chem., 1997, 623, 596.
- 12 (a) P. N. Bartlett, D. Cook, C. H. de Groot, A. L. Hector, R. Huang, A. Jolleys, G. P. Kissling, W. Levason, S. J. Pearce and G. Reid, *RSC Adv.*, 2013, 3, 15645; (b) P. N. Bartlett, D. A. Cook, M. W. George, A. L. Hector, J. Ke, W. Levason, G. Reid, D. C. Smith and W. Zhang, *Phys. Chem. Chem. Phys.*, 2014, 16, 9202.
- 13 P. N. Bartlett, C. Y. Cummings, W. Levason, D. Pugh and G. Reid, *Chem. – Eur. J.*, 2014, 20, 5019.
- 14 G. P. Adams, J. L. Margrave and P. W. Wilson, *J. Inorg. Nucl. Chem.*, 1973, **33**, 1301.
- 15 (*a*) J. Trotter, M. Akhtar and N. Bartlett, *J. Chem. Soc. A*, 1966, 30; (*b*) G. Denes, *J. Solid State Chem.*, 1989, **78**, 52.