Impact of high π-density on the coordination properties of π-excess aromatic neutral σ^2P ligands – $P(\pi)$-donor bonds to Ag$^+$ and HgCl$_2$†

Mohammed Ghalib,a László Könczöl,b László Nyulászi,*b Peter G. Jones,*c Gottfried J. Palmd and Joachim W. Heinickea

Unprecedented coordination types of non-zerovalent d10 transition metals (AgX, HgCl$_2$) by π-excess aromatic $P\equiv C$ ligands involving $P(\pi)$-donor bond contributions were detected by structural and quantum chemical studies.

Trivalent phosphorus compounds are widely used ligands in coordination chemistry and homogenous late transition metal catalysis, but studies on ligands with dicoordinated (σ^2P) phosphorus are restricted almost completely to phosphabenzenes1 and some phosphaalkenes.2 Complexes with π-excess-aromatic σ^2P-azaphosphole ligands, apart from metal(0) complexes,3,4 are extremely sparsely documented,5,6 and only one, a 1,2-azaphosphole allylnickel chloride complex,6 has been characterized by crystal structure analysis. Complexes of the π-rich 1,3-azaphospholes with phosphorus in conjugation to nitrogen ($N\equiv C\equiv P \leftrightarrow N^+\equiv C\equiv P^-$) are still unknown for non-zerovalent transition metals. We report here the first examples with d10 metal cations; these 1,3-benzazaphosphole Ag(II) and HgCl$_2$ complexes display a hitherto unprecedented coordination pattern. Structurally characterized σ^2P–Ag(II) complexes are very rare,7,8 and we are not aware of any Hg(II) complexes with σ^2P-ligands.

Addition of toluene and NH$_3$ to an equimolar mixture of 19 and AgCl at -60 °C and warming to r.t. led to the formation of an inversion-symmetric benzazaphosphole silver chloride complex with a central Ag$_2$Cl$_2$ ring (Scheme 1). Colourless crystals of 2 were obtained on overlayering a concentrated solution in THF with hexane. The crystal structure analysis (Fig. 1) displays distorted tetrahedral coordination of Ag$^+$ with an interplanar angle of 80.8° between the Ag$_2$Cl$_2$ and the P$_3$$\text{Ag}$$\text{P}_3$$^\prime$ planes. The P–Ag bonds do not lie within the extended ligand ring plane, but are tilted away by 32.4 and 12.7°. The bond

![Scheme 1](image-url)
Formation of silver complexes of 1 (Np = neopentyl) and 3 (schematic structure presentation of 3).

![Fig. 1](image-url)
Structure of 2 in the crystal (ellipsoids with 50% probability).
lengths and angles within the ligand are only marginally changed (P-C3a slightly shortened) compared to 1. A cationic silver complex of a different coordination type was formed in THF at room temperature from a mixture of 1 and AgSbF6. Crystals of 3 were grown by slow evaporation of a solution of the pale brown crude product in CD3OD. They proved to be less stable than 2 and decomposed within a few days, but crystallographic analysis of freshly prepared crystals of 3 clearly revealed two [Ag(1)4THF4(SbF6)2]2+ clusters with μ-P coordination and four uncoordinated SbF6- counter-ions per unit cell (in space group P21/c). Full refinement was not possible, with the THF molecules and SbF6- ions being disordered (for details see ESI†). The sharp singlets lacking coupling with 107/109Ag in the CD3OD solution of silver complexes 2 and 3 indicate a rapid ligand exchange and thus kinetic lability. Complex formation is indicated mainly by upfield coordinated 31P chemical shifts, much stronger for the μ-P bridged 3 (Δδ = −76.7 ppm) than the terminally coordinated 2 (Δδ = −18.9 ppm). Characteristic features in the 13C NMR spectra are decreasing 1JCP coupling constants of C2 and C3a and downfield shifts of the C-2 signals, whereas proton NMR data are scarcely altered.

To find out if divalent mercury is also able to form complexes with 1,3-benzazaphospholes, the reaction of 1 with HgCl2 in THF was explored. Oxidation of phosphorus to a λ3P heterocycle as reported for the reaction of 2,4,6-triphenylphosphabenzene with Hg(OAc)2 was not observed. The NMR spectra of the yellow solid, with a marked upfield 31P coordination chemical shift in C6D6 (Δδ31P = −84.8 ppm), indicated complex formation, but attempts to grow single crystals for a detailed structural characterization failed. A crystalline 1,3-benzazaphosphole-HgCl2 complex was finally obtained from the recently reported σ1P,σ1P-hybrid benzazaphosphole 411 and HgCl2 in THF (Scheme 2). XRD analysis of the yellow single crystals of 5 (Fig. 2), grown from concentrated THF solution, showed a P,P′-chelate structure as expected. However, whereas in the recently reported Mo(0)(CO)6(P,P′)-chelate complex with 4 the zero-valent metal is only slightly (by 14.4°) tilted out of the ring plane with shorter ring-P-Mo than Ph3P-Mo(0) distances and marginal changes within the ligand,11 the HgCl2 complex 5 coordinates mercury almost perpendicular to the benzazaphosphole ring plane with much longer Hg-P3 (2.6978(7) Å) than Hg-P1 bonds (2.4219(5) Å) and altered P-C and C-N bond lengths within the ring. The angle of the Hg-P vector to the ring plane of 80.3° (deviation from plane 2.62 Å) and the angles C2-P-Hg (86.40(8)] and C3a-P-Hg (98.92(8)], average 92.7°, hint at a π-donor bond from the ring-P atom to Hg(ii).

In combination with the elongated C2-P and shortened N-C2 bond (1.770(3) and 1.343(4) Å compared to 1.7173(17) and 1.369(2) Å in the Mo(0) complex11) this implies a high weight for a zwitterionic P-coordinated phosphidomethylenimmonium “resonance structure” (cf. Scheme 2). The increased NH acidity favours N-H···Cl hydrogen bonds (H01···Cl(2)2+ 2.42(3), N1···Cl(2)2+ 3.238(2) Å, N-H···Cl 169(3)°) in the crystal packing and in solution, the latter indicated by a strongly downfield shifted NH proton signal (Δδ = 3.0 ppm). The coordination of HgCl2 at the two P-atoms is indicated in solution by a downfield shift for the phosphanyl group Δδ = 31.0 ppm, similar to that of (Ph3P)2HgCl2 (Δδ = 39 ppm12), and upfield shift for the ring-P atom, which is however much smaller than for the μ-bridging coordination in 3 and even smaller than for the two terminal benzazaphosphole ligands in 2. The coordination at the ring-P atom is labile, displaying a rather sharp doublet by two-bond P-P-coupling but no 1J(111Hg-31P) satellites, whereas the coordinated phosphanyl group exhibits a broad signal associated with the dynamic behaviour at the other P-atom.

The coordination of two benzazaphosphole ligands at each Ag(i) atom, the tilting of the P-Ag bond out of the ring plane in 2, the μ-coordination mode in 3 and the unprecedented side-on coordination in the chelate complex 5 distinguish the complexes of the π-excess-type P=C-N ligands 1 and 4 from phosphabenzenene complexes, which usually coordinate non-zero-valent transition metals within the ring plane.1 To shed light on the background of these differences and to understand the unusual bonding in more detail, density functional calculations were carried out at the mB97D/6-31G* level.1 First a second order perturbation analysis of the donor-acceptor interaction between NBOs at the crystal structures of 2 and 5 was performed. While in the case of 2 both P lone pairs at each atom exhibit about 60.5 kcal mol−1 stabilization donating to Ag, an additional 6.4 kcal mol−1 stabilization interaction was obtained for the (P=C bond)-Ag interaction in the case of the 32.4° tilted azaphosphole ring, showing some donor contribution of the π electron pair to the dative bonding. In the case of 5 the interaction between the σ1P lone pair and mercury amounts to 129.0 kcal mol−1, while the interaction
between the σ^2P and mercury is only 12.1 kcal mol$^{-1}$. The small interaction with the mainly s-type14 σ^3P lone pair is in agreement with the near perpendicular position of the Hg atom with respect to the benzazaphosphole ring. The apparently lost (P lone pair)–Hg interaction, however, is amply compensated by the 40.0 kcal mol$^{-1}$ stabilization arising from the interaction between the P=Cr π-orbital and mercury. This interaction is also clearly seen on the HOMO of 5 with the involvement of both Hg and the mainly P=Cr bonded delocalised π orbital (the HOMO of the benzazaphosphole ligand) as is shown in Fig. 3.

The involvement of the (largely) P=Cr bonded orbital in the dative bonding is in agreement with the shortening of the P=Cr distance (see above). It is noteworthy that no back-bonding from P=Cr to π^* type orbitals was detected. Optimization of the structure of 5 at the ωB97D/6-31G* level resulted in a shift of the Hg atom from phosphorus towards the ring nitrogen, together with the formation of an intramolecular C⋯H bond (see Fig. S3.3 in the ESI†). This behaviour is in agreement with the conclusions drawn from the solution NMR data discussed above. To understand why mercury prefers to interact with the P=Cr bond rather than the P lone pair, further model calculations were carried out. In order to exclude the effect of any steric constraint caused by the interlocking of the two phosphorus atoms of 4, the structure of various L(PMe$_3$)HgCl$_2$ complexes was investigated, where L contained σ^2P in different bonding environments.

During the geometry optimization of the benzazaphosphole the HgCl$_2$ unit occupies an out-of-plane position similar to that in 5 (albeit with larger P–Hg distances), even if the geometry optimization is started from a structure where Hg lies in the plane of the benzazaphosphole15 ring. The complexes with the other ligands exhibit similar structural characteristics, with the exception of the in-plane complexed phosphabenzen ligand. The optimized structures can be seen in Fig. S3.4 of the ESL†. It is noteworthy that the σ^2P–Hg distance (between 2.57 and 3.49 Å) is related to the interaction energy between the π-system and mercury. Strongest interactions are obtained with ligands (L) having high energy (and localised) HOMO (Table 1) as can easily be explained by simple perturbation theory arguments.

Accordingly, while the phosphabenzen ligand with stabilized P=Cr π-orbitals (in agreement with the aromaticity) has a limited π-interaction and thus prefers the “classical” $n_p \rightarrow$ Hg bonding, the electron-rich P=Cr-N units (high energy HOMO) prefer the π interaction. The aromatic stabilization on the P=Cr π-orbital16 of the 1,3-azaphosphole (compared to the 1,3-azaphospholine), together with the delocalization, weakens the interaction with mercury. It should be noted that a phenyl mercury compound with intermolecular phenyl Hg π-interactions is known,17 however, its linear geometry is not distorted by the weak interaction.

In conclusion, we have presented the first complexes of π-rich σ^2P-aromatic 1,3-azaphosphole ligands with non-zero-valent late transition metals and revealed unprecedented significant π-donor contributions in the coordinative bond. Our findings suggest to search for related P(π)-donor complexes which open up new tuning possibilities in the highly important field of phosphorus-based late-transition metal catalysis.

This work was supported by the Deutsche Forschungsgemeinschaft. We thank Dr M. K. Kindermann, G. Thede and M. Steinich for NMR, mass spectra and elemental analyses. Support from OTKA K 105417 and the Jedlik fellowship (L. K.) is also gratefully acknowledged.

Table 1: Interactions of various P–C ligands with HgCl$_2$

<table>
<thead>
<tr>
<th>Ligands</th>
<th>ε_{HOMO} of L (eV)</th>
<th>D_{P-Hg} (Å)</th>
<th>$\pi_{P-C \rightarrow Hg}$ (kcal mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH=CH$_2$</td>
<td>−9.50</td>
<td>3.49</td>
<td>5.6</td>
</tr>
<tr>
<td>H/C</td>
<td>−8.93</td>
<td>2.99</td>
<td>9.6</td>
</tr>
<tr>
<td>H/C</td>
<td>−8.65</td>
<td>2.95</td>
<td>21.5</td>
</tr>
<tr>
<td>H/C</td>
<td>−7.46</td>
<td>2.79</td>
<td>62.1</td>
</tr>
<tr>
<td>H/C</td>
<td>−7.40</td>
<td>3.11</td>
<td>33.2</td>
</tr>
<tr>
<td>H/C</td>
<td>−7.08</td>
<td>2.57</td>
<td>149.2</td>
</tr>
</tbody>
</table>

Notes and references

5 (a) K. C. Dash, H. Schmidbaur and A. Schmidpeter, Inorg.
Chim. Acta, 1980, 41, 167; (b) J. G. Kraaijkamp, D. M. Grove,
G. van Koten and A. Schmidpeter, Inorg. Chem., 1988, 27,
2612.

6 K. Angermund, A. Eckerle, J. Monkiewicz, C. Krüger and

7 D. Gudat, M. Schrott, V. Bajorat, M. Nieger, S. Kotila,

8 (a) E. Deschamps, B. Deschamps, J. L. Dormieux, L. Ricard,
N. Mezailles and P. Le Floch, Dalton Trans., 2006, 594;
(b) A. Hayashi, M. Okazaki, F. Ozawa and R. Tanaka,
Organometallics, 2007, 26, 5246.

9 B. R. Aluri, M. K. Kindermann, P. G. Jones, I. Dix and

11 B. Niaz, M. Ghalib, P. G. Jones and J. W. Heinicke, Dalton
Trans., 2013, 42, 9523.

12 P. S. Pregosin and R. W. Kunz, 31P and 13C NMR of Tran-
sition Metal Complexes, Springer, Berlin, 1979, p. 133.

13 Density functional calculations (see details in the ESI†)
were carried out at the ωB97D/6-31G* level (for Hg and Ag
the pseudopotential defined for the def2-ccPVTZ basis was
applied) using the Gaussian 09 suite of programs.

M. J. Frisch et al., Gaussian 09, Revision B.01, Gaussian,

15 Since the Cl⋯H₅ interaction modifies the geometry, we
used the N-methylated benzazaphosphole as L.

16 It has been shown that the stabilization of the lone pair
orbital energies – as judged from the corresponding
measured ionization energies compared to the saturated
counterpart – in five membered heterocycles is related to
the aromaticity. L. Nyulászi, Gy. Keglevich and L. D. Quin,
J. Org. Chem., 1996, 61, 7808. This is because of the favour-
able HOMO–LUMO interaction between the fragments in
the case of the cyclic conjugated compounds.

17 Y. Sarazin, J. A. Wright and M. Bochmann, J. Organomet.