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inescence from Li2ZnGeO4:Ln
3+

(Ln = Er, Tm, Ho)

Nikola Bednarska-Adam, a Marta Kuwik, a Tomasz Goryczka,b Vitalii Ivanov, c

Józef Dresner,d Wojciech A. Pisarski a and Joanna Pisarska *a

In this work, ceramic compounds Li2ZnGeO4:Ln
3+ (Ln = Er, Tm, Ho), belonging to the family of germanate

olivines, were studied. The structural properties were examined using X-ray diffraction, scanning electron

microscopy, IR and Raman spectroscopy. Near-infrared luminescence spectra showed that the bands

located in the spectral range of 1400–2100 nm were due to the electronic transitions of lanthanide ions:
4I13/2 / 4I15/2 (Er3+), 3H4 / 3F4 and 3F4 / 3H6 (Tm3+), and 5I7 / 5I8 (Ho3+). Decay curve analysis

indicated that the near-infrared luminescence from the excited states of lanthanide ions in Li2ZnGeO4

was relatively long-lived. The results suggest that germanate olivines Li2ZnGeO4:Ln
3+ (Ln = Er, Tm, Ho)

are promising inorganic phosphors and can be successfully used as ceramic sources emitting near-

infrared radiation.
Introduction

In recent years, near-infrared (NIR) luminescent materials,1–5

with particular focus on NIR inorganic persistent phosphors,6,7

have gained signicant attention due to their numerous
multifunctional applications. Recently published papers report
interesting ndings regarding the potential applications of NIR
persistent phosphors in the third bio-imaging window (NIR-III).
Xu and co-workers8–10 suggested that NIR long persistent lumi-
nescence of erbium ions in inorganic phosphors such as garnet
Y3Al2Ga3O12 or perovskite LaAlO3 can be realized by utilizing
efficient energy transfer from Ce3+ to Er3+ or Cr3+ to Er3+,
respectively. These inorganic phosphors exhibit long (>10 h)
NIR persistent luminescence centered at approximately
1550 nm due to the 4I13/2 / 4I15/2 transition of erbium ions,
operating in the NIR-III biological window. These aspects are
particularly interesting for low-phonon inorganic matrices,
especially germanate ceramics, due to their promising optical
and dielectric properties.

In general, germanate-based ceramics are very attractive
materials for modern visible and near-infrared optoelectronics.
Doping with lanthanide ions (Ln3+) enables important multi-
functional applications of germanate ceramics, including their
use as inorganic phosphors in red-green-blue (RGB) technology.
Phosphors of ABGe2O7 (A = La or Y; B = Al or In) doped with
Er3+, Tb3+, Pr3+ or Tm3+, emitting red, green or blue light with
40-007 Katowice, Poland. E-mail: joanna.
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and

94
high color purity, are of interest for displays and lighting
devices.11–14 Eu3+-doped germanate ceramics, such as Zn2-
GeO4:Eu

3+, KNaGaGeO4:Eu
3+, and Ba2AGe2O7:Eu

3+ (A = Mg or
Zn), are thermally stable, efficient red-emitting phosphors,
which can be successfully applied to high-resolution and high-
sensitivity accurate latent ngerprint detection, multi-mode
anti-counterfeiting and white-LED applications.15–17 Phosphors
with the general formula A2B2GeO7 (where A = Ca or Sr; B = Al
or Ga) doped with Pr3+ ions18,19 and co-doped with Pr3+/Yb3+

ions20 may be applied for c-Si solar cells, biomedical imaging
and dynamic multicolor anti-counterfeiting under UV irradia-
tion. The energy transfer processes in germanate ceramics co-
doped with Dy3+/Tm3+ and Tb3+/Eu3+ ions21,22 have been
studied in relation to their practical applications as white-light-
emitting diodes. Phosphors, such as Zn2GeO4,23 Ca2Al2Ge3O12,24

and La4GeO8,25 co-doped with Er3+/Yb3+ ions have been
designed for ngerprint verication, anti-counterfeiting and
luminescent thermometry. The inuence of Yb3+ content on the
up-conversion luminescence of Er3+ ions in SrGe4O9 phosphors
has also been examined in detail.26 Further studies revealed that
germanate ceramic materials co-doped with transition metal
and lanthanide ions are also useful for a wide range of photonic
applications, including c-Si solar cells, infrared detectors and
long-wavelength NIR LED chips.27,28

Among the germanate ceramics, special attention has been
paid to compounds with an olivine structure. The AYGeO4 (A =

Na or Li) germanate olivines doped with Eu3+, Sm3+ or Dy3+ have
been developed for potential applications in solid-state
lighting.29–31 The variation in the up-conversion luminescence
of LiYGeO4:Er

3+/Yb3+ phosphors with temperature has been also
investigated for optical thermometers and anti-counterfeiting.32

The results indicate that the modulation of emission color can
© 2025 The Author(s). Published by the Royal Society of Chemistry
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be realized by changing the laser excitation power, temperature
and pumping wavelength. Ceramics with the chemical formula
Li2ZnGeO4 belong to the same olivine-type germanate family.
The energy band gap for Li2ZnGeO4 calculated from the
Kubelka–Munk equation and Tauc plot method is equal to
5.78 eV.33 However, the data in the literature indicate that the
optical properties of Li2ZnGeO4 have been rarely studied.
Recently, the published papers mainly focused on the lumi-
nescence of Li2ZnGeO4 germanate ceramics doped with tran-
sition metal ions such as Mn2+ and Cr4+. The experimental
results suggest that Mn2+-doped Li2ZnGeO4 ceramics34,35 are
promising green-emitting phosphors in eld-emission displays
with high color purity, whereas Cr4+-doped Li2ZnGeO4 ceramics
are recommended as efficient broadband NIR-II phosphors.36

Factually, recent work on Ln3+-doped germanate olivines was
limited to Li2ZnGeO4 with Pr3+, Nd3+ or Gd3+, which exhibited
enhanced persistent blue luminescence.37 However, to date, the
infrared emission properties of Li2ZnGeO4:Ln

3+ have not been
studied. Lastly, the emission properties of NaYGeO4:Tm

3+

powders in the range of 1300–1600 nm and 1600–2200 nm due
to the 3H4 /

3F4 and
3F4 /

3H6 transitions of Tm
3+ have been

analyzed under 808 nm laser diode excitation.38 At this moment,
it should be also pointed out that Nd3+/Ho3+ co-doped NaLa9(-
GeO4)6O2 phosphors with an apatite structure have been
proposed for infrared luminescence applications.39

The aim of this work is related to germanate olivines Li2-
ZnGeO4:Ln

3+ emitting near-infrared radiation in the spectral
range of 1400–2100 nm. Lanthanide ions playing an important
role as optical dopants were limited to trivalent erbium,
thulium and holmium due to their near-infrared luminescence
bands located at about 1500 nm (Er3+), 1450/1800 nm (Tm3+)
and 2000 nm (Ho3+), respectively. Luminescence bands corre-
sponding to the 4I13/2 /

4I15/2 (Er
3+), 3H4 /

3F4 and
3F4 /

3H6

(Tm3+), and 5I7 /
5I8 (Ho3+) transitions of Ln3+ were analyzed.

Our studies showed that the Li2ZnGeO4:Ln
3+ germanate olivines

are promising inorganic phosphors and attractive candidate for
ceramic sources useful in near-infrared optoelectronics. Our
intention was to study the infrared emission properties of Ln3+-
doped germanate olivines for the rst time. The unique
advantages of this study are the characterization of the near-
infrared luminescence of Er3+, Tm3+ and Ho3+ ions in germa-
nate ceramic systems in the range of 1400–2100 nm, which has
not been examined and reported before, to the best of our
knowledge.

Experimental

Li2Zn(1−x)LnxGeO4:xLn
3+ (Ln3+ = Er3+, Tm3+ or Ho3+ with

a concentration equal to 0.5 mol%) samples in the form of
pellets were prepared using the high-purity initial reagents of
ZnO (99.99%), GeO2 (99.99%), and Li2CO3 (99.997%), and the
appropriate lanthanide oxides of Er2O3 (99.999%), Tm2O3

(99.999%) or Ho2O3 (99.999%) from Sigma-Aldrich Chemical
Co. (St. Louis, MO, USA) via the conventional high-temperature
solid-state reaction method. The appropriate amounts of raw
materials were milled and homogenized in an agate mortar for
1 h with C2H5OH medium (POCH basic 96% pure). The ground
© 2025 The Author(s). Published by the Royal Society of Chemistry
samples were calcined in a non-covered Pt crucible at 1100 °C/
6 h in an air atmosphere. The calcination process was divided
into two steps, i.e., reaching the temperature of 800 °C/0.5 h,
and then 1100 °C/10 min. The calcinated samples were ground
again and divided into smaller batches. Pellets with a diameter
of 10 mm were formed using a binder (PVA) and cold pressed at
375 MPa. Next, the pellets were subjected to heat treatment to
remove the binder at 550 °C/2 h and cooled to room tempera-
ture. The samples were sintered at 1200 °C/5 h and cooled to
room temperature. The sintering process included several steps
of heating to 800 °C/1 h, then sintering for 15 min, heating to
1200 °C and sintering for 5 h.

To characterize the undoped and Ln3+-doped ceramic
samples, several measurements were performed, including
XRD, SEM, transmittance, Raman and near-infrared emission
spectroscopy. The nature of the studied samples was identied
using a diffractometer (X'Pert-Pro, PANalytical, Eindhoven, The
Netherlands). X-ray diffraction measurements were performed
with CuKa1 and 2 radiation. The microstructure of the samples
was observed using a JSM6480 scanning electron microscope
(SEM) along with JSM-7100F TTL LV (Jeol Ltd., Tokyo, Japan).
Transmittance spectra were recorded on a Nicolet™ iS™ 50 IR
spectrometer. Raman spectra were measured using a Thermo
Scientic™ DXR™2xi Raman imaging microscope. Data were
recorded with a 455 nm laser (the power 4 mW on samples).
Near-infrared luminescence measurements were carried out
using a Photon Technology International (PTI) Quanta-Master
40 (QM40) UV/VIS steady-state spectrouorometer including
a double 200 mm monochromator, an Xe lamp (75 W) as the
light source, and Hamamatsu H10330B-75 and InGaAs detec-
tors. The spectra were measured with a resolution of ±0.5 nm.
For the decay curve measurements, a pulsed tunable optical
parametric oscillator (OPO) pumped by the third harmonic of
an Nd:YAG laser (Opotek Opolette 355 LD, Carlsband, CA, USA)
was used. The decay curves with an accuracy of ±0.5 ms were
recorded using a PTI ASOC-10 USB-2500 oscilloscope (Horiba
Instruments).

Absolute photoluminescence quantum yield was measured
using a Petite integrating sphere (PTI Horiba Instruments),
which is the standard accessory for QM40. It replaces the
sample holder, and thus no modication of excitation or
emission optics was required. The integration sphere had
a powder or pellet holder inside it. The method applied used
two-step luminescence measurement, with the excitation set to
lexc. Firstly, the entire luminescence spectrum, including the
scatter of excitation line around lexc, was recorded with the
“active sample” in the pellet mount. In the second step, the
same measurement was executed with the “reference sample”,
which was prepared in the same way as the active sample, but
without Ln3+ ions. This procedure guaranteed that all the
conditions for sample and reference runs were as similar as
possible. Both spectra were actively recorded with real-time
emission correction. A QM40 EXCORR real-time excitation
source intensity monitor was used to verify the stability of the Xe
lamp source. Dark background subtraction before each run was
also applied. All measurement conditions were kept identical in
both runs with the exception of a neutral density lter to reduce
RSC Adv., 2025, 15, 8784–8794 | 8785
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Fig. 2 Ceramic particles observed with SEM-BE images: (a) undoped
sample and samples doped with (b) Er3+, (c) Tm3+ and (d) Ho3+ ions.
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the intensity of the strong scattered band at lexc to keep the
intensity of this band in the same order as the luminescence
band of interest around lem. Then, the attenuation coefficient
was carefully measured. The integral intensities of the scatter
I(lexc) band and luminescence with any possible trace of the
scatter at I(lem) for the active and reference samples were
calculated and subtracted, respectively, yielding a good repre-
sentation of the number of photons absorbed and emitted by
the sample. The ratio of the latter to the former, corrected by the
attenuation factor of the ND lter used resulted in the absolute
quantum yield of the I(lem) emission band.

Results and discussion

The X-ray diffraction patterns of the undoped Li2ZnGeO4 and
lanthanide-doped Li2ZnGeO4:Ln

3+ (Ln= Er, Tm, Ho) germanate
ceramics are presented in Fig. 1. All the diffraction peaks can be
assigned to the Li2ZnGeO4 ceramic compounds, which crystal-
lize in a monoclinic lattice with the P21/n space group (ICDD
PDF-4 database – card no. 00-038-1082). It is also well evident
that Ln3+ doping had no effect on the crystalline structure and
no additional phases related to impurities existed compared to
the pure Li2ZnGeO4 monoclinic phase. This suggests that Ln3+

ions well entered Li2ZnGeO4 with an olivine structure.
Further studies using the SEM-BS images (Fig. 2) sensitive to

the contrast of the chemical composition conrmed that no
other phases, precipitation, or inclusions existed in the undo-
ped and Ln3+-doped ceramic samples. Similar to previously
published results for Li2MgGeO4 doped with Pr3+ and Tm3+

ions,40 the objects shown in the SEM-BS images have an even
shade of gray, suggesting that all the ceramic components
reacted and only one crystalline phase of Li2ZnGeO4 was
formed.

Previous investigations on Li2ZnGeO4 ceramics using Raman
spectroscopy revealed that bands observed in the low frequency
range below 400 cm−1 correspond to the wagging and twisting
vibrations of the GeO4 tetrahedra.41,42 Fig. 3 shows the Raman
spectrum measured in the higher frequency region, which
Fig. 1 X-ray diffraction patterns of Li2ZnGeO4 and Li2ZnGeO4:Ln
3+.

8786 | RSC Adv., 2025, 15, 8784–8794
consists of two groups of bands. These two groups are located in
the frequency range of 440–550 cm−1 and 650–850 cm−1,
respectively. The rst group of bands near 442 cm−1, 494 cm−1

and 529 cm−1 is related to the bending vibrations of the GeO4

groups.33 In the second group, the three bands located at about
725 cm−1, 752 cm−1 and 820 cm−1 are due to the stretching
vibrations of the GeO4 groups.43 Based on previous results ob-
tained for zinc germanate nanomaterials, Zn2GeO4, the Raman
bands located at 750 cm−1 and 820 cm−1 were assigned to the
symmetric and asymmetric stretching vibration of the Ge–O–Zn
bond, respectively.44

Numerous near-infrared luminescent materials containing
lanthanide and/or transition metal ions have been reported.1

Among them, low-phonon germanate ceramics seem to be
perspective emerging infrared luminescent materials for next-
generation optoelectronic devices.45 In particular, there has
been a signicant increase in the search for germanate-based
materials emitting infrared radiation in the spectral range of
1400–2100 nm.46,47 Near-infrared laser sources are an attractive
scientic topic due to their various elds of applications such as
Fig. 3 Raman spectrum of germanate ceramics Li2ZnGeO4.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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laser remote chemical sensing, medical surgery and atmo-
spheric monitoring. They can be also applied as the main
components in eye-safe laser radars and optical ampliers. In
this spectral region, materials doped with Er3+, Tm3+ and Ho3+

can emit infrared radiation due to their characteristic intra-
congurational 4f–4f electronic transitions. Based on absorp-
tion and luminescence spectra measurements, the energy level
diagram including main laser transitions at 1450 nm, 1550 nm
1800 nm and 2000 nm was constructed for numerous
germanate-based compounds doped with Er3+, Tm3+ and Ho3+,
which have been studied systematically by us in detail.48–54 The
near-infrared luminescence bands of the Ln3+ ions correspond
to the 4I13/2/

4I15/2 (Er
3+) transition located at 1550 nm, the 3H4

/ 3F4 and 3F4 / 3H6 (Tm3+) transitions near 1450 nm and
1800 nm, and the 5I7 /

5I8 (Ho3+) transition at 2000 nm. They
are schematically illustrated in the energy level diagram of Ln3+

ions shown in Fig. 4.
According to transmittance spectrum measurements, it is

well known that the infrared band located near 3400 cm−1 is
due to the stretching vibrations of hydroxyl groups. The rela-
tively high content of hydroxyl groups effectively quenches the
emission from the excited states of Ln3+ ions in different
compounds. This phenomenon is especially important for
Er3+,55–57 Tm3+,58 and Ho3+ ions59 in inorganic glasses emitting
near-infrared radiation at 1550 nm (6450 cm−1), 1800 nm
(5550 cm−1) and 2000 nm (5000 cm−1) because less than two
vibrations of OH− groups can effectively bridge the energy gaps
between 4I13/2 and

4I15/2 (Er
3+), 3F4 and

3H6 (Tm
3+), and 5I7 and

5I8 (Ho3+), and quench the near-infrared emission. Structural
transformation from glasses (completely amorphous) to glass–
ceramic materials (partially crystallized) progressively results in
a decrease in the number of hydroxyl groups with an increase in
heat-treatment temperature.60 Further systematic studies
suggest that the increase in the photoluminescence intensity of
the lanthanide ions with the calcination temperature is attrib-
uted to the removal of the hydroxyl groups.61 Thus, the high-
temperature sintering process (1200 °C/5 h) used for the
Fig. 4 Energy level diagram of Ln3+ ions, with near-infrared lumi-
nescence transitions indicated.

© 2025 The Author(s). Published by the Royal Society of Chemistry
preparation of the Li2ZnGeO4:Ln
3+ germanate ceramics, where

Ln denotes Er, Tm or Ho (see Experimental section), can effi-
ciently reduce the OH− content. The results from the trans-
mittance spectrum measurements given in Fig. 5 show that the
IR band intensity near 3400 cm−1 is extremely low and nearly
invisible compared to our previous results for oxide and oxy-
uoride germanate glass systems based on BaO–Ga2O3–GeO2

(BGG), where the IR absorption coefficients, aOH, are close to
0.25 cm−1 (0% BaF2) and 0.020 cm−1 (10% BaF2), respectively.50

This suggests that the presence of OH− groups cannot make
a substantial contribution to the luminescence quenching from
the excited states of Ln3+ ions (Ln = Er, Tm, Ho) in the Li2-
ZnGeO4 germanate olivines.

Initially, the near-infrared emission spectra and decays of
Li2ZnGeO4:Ln

3+ (Ln = Er, Tm, Ho) were tested under different
excitation wavelengths. The spectra measured for the Ln3+-
doped samples show near-infrared luminescent bands corre-
sponding to the characteristic electronic transitions of Ln3+ ions
at 1550 nm (Ln = Er), 1450 nm and 1800 nm (Ln = Tm) and
2000 nm (Ln = Ho), as schematized in the energy level diagram
(Fig. 4). These optical effects were not observed for the undoped
Li2ZnGeO4 sample, which is experimental proof for the pres-
ence of lanthanide ions (Er3+, Tm3+ or Ho3+) in the nal prod-
ucts. Generally, it is also accepted for inorganic phosphors that
each excited state of Ln3+ ions further splits under the inuence
of the crystal eld produced by the chemical environment.62

Thus, the broad emission bands consist of several Stark
components induced by the crystal eld and their spectral
proles are usually unsymmetrical. The comparative studies
indicated that the infrared emission peaks originating from
sub-levels of erbium ions are quite well-resolved and the Stark
level structures of multiplets depending on the crystalline eld
of the inorganic matrices are completely different for the
Y2O3:Er

3+, Sc2O3:Er
3+ and YF3:Er

3+ systems.63 In the case of
Fig. 5 Transmittance spectrum of germanate ceramics Li2ZnGeO4.
Inset shows the transmittance bands due to the stretching vibration of
OH− groups. For comparison, the results for germanate glass (BGG)
are also given.

RSC Adv., 2025, 15, 8784–8794 | 8787
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Fig. 7 Luminescence decay from the 4I13/2 excited state of Er3+ ions.
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Li2ZnGeO4:Ln
3+ (where Ln denotes Er, Tm or Ho), its Stark level

structure of multiplets is rather less evidenced and the experi-
mental results are comparable to the NaLaMgWO6 inorganic
phosphors emitting near-infrared radiation from sub-levels of
Nd3+ and Er3+ ions.64

The preliminary spectroscopic results for the Er3+, Tm3+ and
Ho3+ ions in the Li2ZnGeO4 olivines indicate that the proles of
the emission bands and decays from the excited states of Ln3+

are nearly independent of the excitation wavelength. This
suggests that the Ln3+ ions occupy only one site in Li2ZnGeO4,
in contrast to Y2SiO5 (ref. 65) or CaSc2O4,66,67 where two Er3+

centers were identied using emission spectroscopy. At this
moment, it should be noticed that the atomic positions of Zn2+

may be occupied by Ln3+. This was observed earlier for similar
germanate olivines, Li2SrGeO4:RE

3+, where the positions of the
divalent Sr2+ were occupied by trivalent lanthanide (Ce3+, Tb3+,
or Dy3+) ions.68

Fig. 6 presents the near-infrared luminescence spectrum of
Li2ZnGeO4:Er

3+ excited at 980 nm line. The characteristic
emission band at 1542 nm corresponds to the 4I13/2 / 4I15/2
(Er3+) transition. The excitation spectrum for Li2ZnGeO4:Er

3+

measured by monitoring the emission wavelength at 1542 nm is
presented in the inset of Fig. 6. The band located at 980 nm
corresponds to the transition originating from the 4I15/2 ground
state to the 4I11/2 excited state of Er3+.

Fig. 7 shows the emission decay from the 4I13/2 state of Er3+.
Previous studies demonstrated that the emission decays from
the 4I13/2 state of Er3+ in some ceramic compounds can vary
greatly with experimental values ranging from microseconds to
milliseconds. In fact, the 4I13/2 lifetime of Er3+ ions changed
from 370 ms for Ca2SiO4:Er

3+ phosphors obtained from agro-
food waste materials69 to 9.5 ms for Ba(Zr, Mg, Ta)O3:Er

3+

perovskite ceramics.70 In our case, the decay curve was well
tted using a mono-exponential function given by I(t)= I0 exp(t/
sm) and the calculated luminescence lifetime 4I13/2 (Er

3+) in the
Fig. 6 Near-infrared emission spectrum of Li2ZnGeO4:Er
3+. The inset

shows the excitation spectrum under monitoring the emission
wavelength at 1542 nm.

8788 | RSC Adv., 2025, 15, 8784–8794
Li2ZnGeO4 germanate ceramics possessing an olivine structure
is nearly 8.27 ms. The Li2ZnGeO4:Er

3+ germanate ceramics
exhibit a relatively large 4I13/2 lifetime compared to the values
obtained for similar oxide phosphors documented in the liter-
ature. For example, the luminescence decay from the 4I13/2 state
is considerably longer compared with the values for Er3+ ions in
ZnO semiconductor quantum dots71 and germanate
compounds.72–74

Fig. 8 presents the near-infrared luminescence spectrum of
the Li2ZnGeO4:Tm

3+ germanate olivines under 797 nm excita-
tion. The inset shows the excitation spectrum measured on
monitoring the emission wavelength at 1802 nm, where the two
characteristic bands are related to the 3F2,

3F3 /
3H6 (650–700

nm) and 3H4 /
3H6 (797 nm) transitions of the Tm3+ ions. The

latter transition near 800 nm, i.e. 3H4 /
3H6 transition, is oen
Fig. 8 Near-infrared emission spectrum of Li2ZnGeO4:Tm
3+. The

inset shows the excitation spectrum under monitoring the emission
wavelength at 1802 nm.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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used as the excitation line to examine the up-conversion
processes and near-infrared luminescence properties of
thulium ions in numerous inorganic compounds.75,76

Two emission bands were observed for Tm3+ in the studied
spectral range of 1400–2100 nm under 797 nm excitation. The
near-infrared emission bands correspond to the 3H4 /

3F4 and
3F4 /

3H6 transitions of Tm
3+. The near-infrared luminescence

band near 1450 nm corresponding to the 3H4 /
3F4 transition

of the Tm3+ ions was successfully quenched due to the presence
of a cross-relaxation (CR) process between the 3H4 excited state
and 3H6 ground state. The 3H4 state is quickly depopulated
because the cross-relaxation process between pairs of Tm3+: 3H4

+ 3H6 / 3F4 + 3F4 is very efficient.77–81 Consequently, the
intensity of the near-infrared emission band centered at
1802 nm due to the 3F4 /

3H6 transition is signicantly strong.
Moreover, the emission linewidth for the 3F4 /

3H6 transition
of thulium in Li2ZnGeO4:Tm

3+ dened as the full width at half
maximum (FWHM) is relatively broad and equals 145 nm.

Fig. 9 shows the emission decays from the 3H4 and
3F4 states

of thulium ions in the olivine Li2ZnGeO4:Tm
3+. In both cases,

the emission decay curves become nearly mono-exponential.
Based on the decays, the luminescence lifetimes for both the
3H4 and 3F4 excited states of Tm3+ ions were determined. The
values of the emission lifetimes are close to 0.2 ms (3H4) and
2.14 ms (3F4), respectively. This indicates that the lifetime of
Tm3+ (0.5 mol%) is nearly 10-fold larger for the 3F4 state than
the 3H4 state. Interestingly, similar effects were also observed
for Tm3+ ions in apatite-type germanate phosphors with the
chemical formula NaLa9(GeO4)6O2, where the activator
concentration-dependent decay times were larger for the 3F4
state (133–1313 ms) than the 3H4 state (19–432 ms).82

Finally, the germanate ceramics with an olivine structure
doped with Ho3+ ions were investigated. In general, Ho3+-doped
germanates belonging to the family of low-phonon systems are
known as efficient compounds emitting near-infrared radiation
Fig. 9 Luminescence decays from the 3H4 and 3F4 excited states of
Tm3+.

© 2025 The Author(s). Published by the Royal Society of Chemistry
at 2000 nm.53 However, the infrared emission properties of Ho3+

ions in germanate ceramics have not been studied to date, to
the best of our knowledge. Recently, Ho3+:Y2O3–MgO nano-
composite ceramics have been proposed as new promising IR
emitting materials for use in high-power eye-safe laser systems
operating in the 2 mm wavelength range.83 Previous works
published by Singh et al.84–86 focused on green light emitting
phosphors containing Ho3+. Here, the results for Li2ZnGeO4:-
Ho3+ emitting IR radiation near 2000 nm are presented and
discussed. The near-infrared emission spectrum corresponding
to the 5I7 /

5I8 transition of Ho3+ ions is presented in Fig. 10.
The emission spectrum centered at 1998 nm was measured

under 450 nm excitation. The value of FWHM for the 5I7 /
5I8

transition of Ho3+ is equal to 112 nm. The inset presents the
excitation spectrum for Li2ZnGeO4:Ho3+ measured by moni-
toring the emission wavelength at 1998 nm. The spectrum
consists of bands assigned to transitions of Ho3+ ions, which
originate from the 5I8 ground state to the higher-lying 5G4,5,

5G6,
5F2,3 and

5S2,
5F4 excites states. The intensity of band centered at

450 nm due to the 5I8 /
5G6 transition is considerably higher

compared to other bands. Therefore, the 450 nm excitation line
is oen chosen to measure the near-infrared emission proper-
ties of holmium ions.87 Fig. 11 shows the nearly mono-
exponential luminescence decay from the 5I7 state of
holmium ions in the Li2ZnGeO4:Ho3+ germanate olivine.

Based on the decay measured from the 5I7 state of holmium
in Li2ZnGeO4:Ho3+, the emission lifetime was calculated and its
experimental value is close to 6.98 ms. The lifetime 5I7 (Ho3+) in
the Li2ZnGeO4:Ho3+ germanate olivine is comparable with the
values obtained for Y3Al5O12:Ho3+ ceramics (s = 7.04 ms)
produced from laser-ablated nanoparticles88 and Yb3Ga5O12

nanocrystals with 0.5% Ho3+ (s = 7.77 ms) synthesized via the
sol–gel combustion technique using citric acid.89
Fig. 10 Near-infrared emission spectrum of Li2ZnGeO4:Ho3+. The
inset shows the excitation spectrum under monitoring the emission
wavelength at 1998 nm.
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Fig. 11 Luminescence decay from the 5I7 excited state of Ho3+ ions.
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Finally, the photoluminescence quantum yield (PLQY),
which is dened as the ratio of the number of emitted photons
to the number of absorbed photons, was determined by the
absolute method using an integrating sphere.90 Among the
infrared phosphors, the determination of the absolute photo-
luminescence quantum yield is mainly limited to erbium-doped
compounds emitting radiation near 1500 nm under 980 exci-
tation. For example, literature data indicates that the PLQY
values changed signicantly from 3.6% (in water) for poly(-
acrylic acid) (PAA)-modied NaLnF4:40Gd/20Yb/2Er nanorods91

up to even 18.7% for NaErF4@NaYbF4@NaYF4 nanoparticles,92

32.8% for NaCeF4:Er/Yb nanocrystals,93 and 35.74% for Ce3+/
Er3+:LiYbF4 nanocrystals.94 Further luminescent studies on up-
converted PbF2:Er

3+/Yb3+ crystals fabricated using the Bridg-
man method well demonstrated that the PLQY values varied
from 2.7% to 4.5%, depending on the activator (Er3+/Yb3+)
content.95 In our case, the absolute quantum yield of NIR
luminescence near 1550 nm (excited at 988 nm) for the Li2-
ZnGeO4:Er

3+ sample in the powder pellet form is close to 5.9%
and its value is comparable to the experimental results (PLQY =

6%) obtained for core–shell nanostructures with homogeneous
core (a-NaYF4:Yb

3+/Er3+) and shell (a-NaYF4) domains.96

However, the latter PLQY value increased to 30% in the case of
a-NaYF4:Yb

3+/Er3+ core–shell structures with heterogeneous
(CaF2) shell domains. A similar situation was observed for the
same a-NaYF4:Yb

3+/Er3+ core–shell systems with Ce3+ co-
doping. The structural transformation from homogeneous (a-
NaYF4) to heterogeneous (CaF2) shell domains strongly inu-
enced the PLQY values determined for a-NaYF4:Yb

3+/Er3+/Ce3+

core nanocrystals. Thus, the absolute quantum yield increased
drastically from 24% up to 50% at 60 mW cm−2; one of the
highest reported PLQY values to date.96

In summary, we can conclude that the near-infrared lumi-
nescence of lanthanides (Er3+, Tm3+, Ho3+) in the studied Li2-
ZnGeO4 olivines is quite long-lived. Our experimental studies
based on near-infrared luminescence spectra and their decays
8790 | RSC Adv., 2025, 15, 8784–8794
indicate that the Li2ZnGeO4:Ln
3+ (Ln = Er, Tm, Ho) germanate

olivines are promising inorganic phosphors and can be
successfully used as ceramic sources emitting near-infrared
radiation.

Conclusion

The near-infrared luminescence properties of Li2ZnGeO4:Ln
3+

(Ln= Er, Tm, Ho) ceramic phosphors belonging to the family of
germanate olivines were investigated for the rst time. Their
spectra showed near-infrared emission bands centered at
1550 nm, 1450 nm, 1800 nm and 2000 nm, corresponding to
4I13/2 /

4I15/2 (Er
3+), 3H4/

3F4 and
3F4/

3H6 (Tm
3+), as well as

5I7 / 5I8 (Ho3+) transitions, respectively. The decay curve
analysis demonstrated that the lifetimes for the excited states of
Ln3+ (Ln = Er, Tm, Ho) are relatively long. The experimental
results showed that the Li2ZnGeO4:Ln

3+ germanate olivines are
attractive inorganic phosphors and can be applied as ceramic
sources emitting near-infrared radiation.
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