PCCP

CORRECTION

View Article Online

Cite this: Phys. Chem. Chem. Phys., 2014, 16, 22426

Correction: A unified study for water adsorption on metals: meaningful models from structural motifs

Guillem Revilla-López* and Núria López*

DOI: 10.1039/c4cp90133a

Correction for 'A unified study for water adsorption on metals: meaningful models from structural motifs' by Guillem Revilla-López et al., Phys. Chem. Chem. Phys., 2014, **16**, 18933–18940.

www.rsc.org/pccp

Authors noticed erroneous values in Table 2 that should be the result of applying the formula: γ_{ads} (eV Å⁻²) = E_{ads}/A where E_{ads} are the total adsorption energies for each motif, and A the surface area where the motif was calculated.

Consequently the first paragraph of section 3.1, "Strain effects on DFT adsorption energies" from line 47 on page 18935 to line 8 on page 18936, should read:

The DFT-D2 adsorption energies for different sets of training structures under $\pm 4\%~d_{XY}$ deformation are presented in Table 1 in eV per H₂O. Table 2 reports the same energies per surface area unit, Å⁻², to better understand the experimental results. The direct comparison between data in Tables 1 and 2 indicates that the adsorption energies and surface energies follow a similar pattern. In both cases sqrt(37), 0.7 ML, shows the lowest energy. In contrast, ice-like bilayer, 0.67 ML, and Rosette, 0.5 ML, swap their position in the ranking with the latter being the least stable. Yet, in Ru(0001) dissociated ice-like bilayer has the lowest adsorption energy, $\gamma_{\rm ads}$, followed by the other three in the same ordering.

Table 2 DFT-D2 calculated adsorption energies for H-down ice-like, sqrt(37) and Rosette structures on Pd, Pt and Ru. All energies are in eV Å $^{-2}$. All d_{XY} are in plane deformations (in %) with respect to the unstrained metal slab

	Pd(111)			Pt(111)			Ru(0001)			
d_{XY}	Ice-like	sqrt(37)	Rosette	Ice-like	sqrt(37)	Rosette	Ice-like	Ice-like diss.	sqrt(37)	Rosette
4	-0.059	-0.071	-0.048	-0.057	-0.068	-0.047	-0.061	-0.099	-0.083	-0.059
2	-0.061	-0.072	-0.048	-0.058	-0.070	-0.047	-0.064	-0.099	-0.082	-0.059
0	-0.063	-0.073	-0.049	-0.060	-0.071	-0.047	-0.064	-0.092	-0.082	-0.058
-2	-0.064	-0.074	-0.050	-0.061	-0.072	-0.047	-0.064	-0.084	-0.083	-0.057
-4	-0.065	-0.075	-0.049	-0.063	-0.073	-0.047	-0.066	-0.075	-0.083	-0.056

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.