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Optical activity in the scattering of structured
light

Robert P. Cameron* and Stephen M. Barnett

We observe that optical activity in light scattering can be probed using types of illuminating light other than

single plane (or quasi plane) waves and that this introduces new possibilities for the study of molecules and

atoms. We demonstrate this explicitly for natural Rayleigh optical activity which, we suggest, could be

exploited as a new form of spectroscopy for chiral molecules through the use of illuminating light comprised

of two plane waves that are counter propagating.

1 Introduction

It is now well established in theory that a difference in response to
left- and right-handed circular polarisations, or optical activity, in
the scattering of light is exhibited naturally by chiral molecules1–5

and can be induced additionally in all molecules and atoms by an
applied static magnetic5,6 or electric5,7 field. The phenomenon
permits the extraction of information about molecules and atoms
that is not readily obtainable through optical rotation or circular
dichroism, owing to the subtly different physical mechanism and
greater geometrical freedom involved.4,5

Many manifestations of optical activity in light scattering have
now been observed in experiment.5,8–12 Natural Raman optical
activity in particular has been developed into an incisive spectro-
scopic tool which has been employed to study large biological
molecules and even intact viruses.5,8,11,12 Owing primarily to the
smallness of the effects involved, there remains much to be
pursued, however. Natural Rayleigh optical activity for example
has thus far resisted attempts to observe it in experiment,5,13 in
spite of potential applications such as the robust assignment of
the absolute configurations of small chiral molecules.14

To the best of our knowledge, the theoretical and experimental
approaches undertaken to date towards the phenomenon have been
concerned with the illumination of molecules or atoms by single
plane (or quasi plane) waves.† 1–12,14 We observe, however, that
optical activity in light scattering can also be probed, in general,
using other types of illuminating light and that this introduces new
possibilities for the study of molecules and atoms. In the present
paper, we demonstrate this explicitly for natural Rayleigh optical
activity which, we suggest, could be exploited as a new form of
spectroscopy for chiral molecules through the use of illuminating
light comprised of two plane waves that are counter propagating.

In what follows, we work within the classical domain and
consider ourselves to be in an inertial frame of reference. We adopt
a right-handed Cartesian coordinate system; x, y, z. A double
appearance of an index taken from the start of the roman alphabet;
a, b, c,. . ., implies summation over x, y and z. The international
system of units is respected, with e0 and m0 the electric and
magnetic constants and c ¼ 1=

ffiffiffiffiffiffiffiffiffi
e0m0
p

the speed of light in vacuum.
Complex quantities are indicated as such using a tilde. Unit vectors
are indicated as such using a circumflex.

2 Natural Rayleigh optical activity

Consider a collection of N c 1 chiral molecules located at fixed
positions Rn (n = 1,. . ., N). Neglecting interactions between
them and assuming an absence of applied static electric and
magnetic fields, we take the molecules to be randomly orientated but
otherwise identical. We suppose, however, that they are illuminated
by weak, monochromatic, off-resonance light of angular frequency
o = ck, the length scale 2p/k associated with which is significantly
larger than each molecule. The electric field E = E(r,t) and
magnetic flux density B = B(r,t) comprising the illuminating light
evolve in space r and time t as

E = <[Ẽ exp(�iot)],

B = <[B̃ exp(�iot)], (1)

with the function < yielding the real part of its argument and
the complex quantities Ẽ = Ẽ(r) and B̃ = B̃(r) satisfying

r�Ẽ = 0,

r�B̃ = 0,

r � Ẽ = ioB̃,

r � B̃ = �e0m0ioẼ, (2)
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† In experiment, single beams of light that resemble plane waves.
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with r the gradient operator with respect to r, as follows from
the charge-free Maxwell equations:15 we regard the illuminating
light as being an externally imposed influence acting upon the
molecules that is (otherwise) freely propagating.

The illuminating light induces oscillations in the charge
and current distributions of the molecules. In particular, the
components m(n)

a = m(n)
a (t), Y(n)

ab = Y(n)
ab (t) and m0(n)

a = m0(n)
a (t) of the

induced electric dipole, electric quadrupole and magnetic dipole
moments of the nth molecule are, in a standard notation,5

m(n)
a E <[~m(n)

a exp(�iot)],

Y(n)
ab E <[ ~Y(n)

ab exp(�iot)],

m0(n)
a E <[m̃0(n)

a exp(�iot)], (3)

with the complex quantities ~m(n)
a , ~Y(n)

ab and m̃0(n)
a related to the

illuminating light as

~m nð Þ
a � aab ~Eb Rnð Þ þ 1

3
Aabc@b ~Ec Rnð Þ � iGab

0 ~Bb Rnð Þ;

~Y nð Þ
ab � Acab

~Ec Rnð Þ;

~m
nð Þ
a0 � iGba

0 ~Eb Rnð Þ;

(4)

for o lying in the visible or near infrared say, with aab = aba =
aab( fo), Aabc = Aacb = Aabc( fo), Gab

0 = Gab
0( fo) molecular polaris-

abilities. These oscillations generate Rayleigh scattered light in
turn,4,5 the electric field Es = Es(r,t) and magnetic flux density
Bs = Bs(r,t) of which at a position R of fixed magnitude |R| c |Rn|,
2p/k are

Es E <[Ẽs exp(�iot)],

Bs E <[B̃s exp(�iot)], (5)

with the components Ẽsa and B̃sa of the complex quantities
Ẽs = Ẽs(R̂) and B̃s = B̃s(R̂) related to the oscillations in the charge
and current distributions of the molecules as5

~Esa ¼
XN
n¼1

o2m0
4pjRj exp ik R� Rnj jð Þ ~mðnÞa � R̂aR̂b~mðnÞb

n

� R̂b
1

c
eabc ~m0c

ðnÞ � ik

3
R̂b

~YðnÞab � R̂aR̂c
~YðnÞbc

h i�
;

~Bsa ¼
1

c
eabcR̂b

~Esc;

(6)

for eabc the rotational Levi-Civita pseudotensor defined such
that exyz = 1. The intensity I = I(R̂) of the scattered light seen at R
follows from Poynting’s vector as

I ¼ 1

m0
Es � Bs

����
����

� �
; (7)

with an overbar indicating a cycle average and angular brackets
indicating an isotropic rotational average,4,5 to account for the
random orientations of the molecules. Making no assumptions
beyond those described above whilst rejecting ‘A2’, ‘AG0’ and
‘G02’ contributions, which are anticipated to be some three
orders of magnitude smaller than the smallest contributions

thus retained,5 we find that we can express I in terms of six
properties A, B, C, D, E and F of the molecules and six related
properties W, Tab, H, S, Nab and Xab of the illuminating light:

I �
XN
n¼1

K

jRj2
AW Rnð Þ þBR̂aR̂bTab Rnð Þ
�

þ o CH Rnð Þ þDR̂ � S Rnð Þ
�

þ ER̂aR̂bNab Rnð Þ þFR̂aR̂bXab Rnð Þ
	

;

(8)

with K = m0
2co4/2880p2. Both A and B are equal for opposite

molecular enantiomers and are thus insensitive to the chirality
of the molecules, whilst W and Tab pertain to the energy and
linear momentum of the illuminating light. C, D, E and F,
however, each assume equal magnitudes but opposite signs for
opposite molecular enantiomers and so are sensitive to the
chirality of the molecules, whilst H, S and Nab pertain to the
helicity, spin and ab infra zilches of the illuminating light, these
being manifestly intrinsic rotation angular momenta.16–21 Explicit
expressions for these and Xab are given in Appendix A.

Our calculation differs from those that have been performed
previously1–5 in that the illuminating light here need not be
comprised of a single plane wave of angular frequency o but rather
can be constructed from any superposition of such waves. Moreover,
the molecules need not be distributed homogeneously and could
instead be confined within a plane, for example. It should be noted,
however, that (8) is not appropriate when the direction R̂ of
observation coincides with the direction of propagation of a plane-
wave component of the illuminating light, which will then interfere
with the scattered light as Rayleigh scattering is a coherent pro-
cess.4,5 Moreover, having been derived specifically for illuminating
light that is (otherwise) freely propagating in accord with the
charge-free Maxwell equations, (8) is not appropriate for illuminating
light the electric field of which possesses a non-vanishing
irrotational component, such as may be found in the near field
of a radiating structure, for example. We have refrained from
exhibiting a generalised structure factor (inter-molecule cross
terms4) in (8) as it makes no contribution in the examples that
follow and in most other geometries besides.

Our general result (8) reveals in particular that natural
Rayleigh optical activity, as manifest in I, can be utilised to
extract information about the chirality of the molecules using
essentially any type of illuminating light possessing non-
vanishing helicity, spin and/or ab infra zilches.16–21 A single
circularly polarised plane wave is, perhaps, the most obvious
example of such light and is examined in Section 3. It is not the
only one, however:22 as we will demonstrate in Sections 4–6,
types of illuminating light comprised of two plane waves that
are counter propagating can carry these angular momenta in
novel ways and thus enable new possibilities. In identifying
these, we were guided by symmetry considerations. In particular,
it is necessary for the illuminating light together with the
direction of observation to be of chiral character in order that I
itself be capable of distinguishing between opposite molecular
enantiomers, as is inherent, of course, in (8).
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3 Example zero: circularly polarised
illuminating light

As a check on the validity of (8) and for comparison in what
follows, let us begin now by following previous approaches1–5

and considering illuminating light comprised of a single circu-
larly polarised plane wave of amplitude E0 propagating in the z
direction as

Ẽ(0)
� = E0(x̂ � iŷ) exp(ikz),

B̃(0)
� = E0(8ix̂ + ŷ) exp(ikz)/c, (9)

with x̂, ŷ (and ẑ) unit vectors in the x, y (and z) directions and where
the upper and lower signs yield left- and right-handed circular
polarisation in the optics convention,15 which we adopt. This is
both the prototypical type of light possessing non-vanishing
helicity, spin and ab infra zilches17,18 and the prototypical type
of chiral light:5 as time passes, E and B rotate with a phase that
varies in z such that they trace out cylindrical helices, the chiralities
of which differ for the upper and lower signs in (9). Accordingly

W (0)
� = e0E0

2,

R̂aR̂bT (0)
ab� = R̂z

2e0E0
2,

H (0)
� = �e0E0

2/o,

R̂�S(0)
� = �R̂ze0E0

2/o,

R̂aR̂bN(0)
ab� = �R̂z

2e0E0
2/o,

R̂aR̂bX (0)
ab� = 0, (10)

where the upper and lower signs correspond to those in (9).
Taking the molecules to be homogeneously distributed around
the origin, we find then that

I
ð0Þ
� �

e0KNE0
2

jRj2
AþBR̂z

2 � CþDR̂z þ ER̂z
2

� �� 	
; (11)

where the upper and lower signs again correspond to those in (9).
Natural Rayleigh optical activity, as manifest in I(0)

� , is thus
attributable to the non-vanishing helicity, spin and ab infra
zilches possessed by the illuminating light: I(0)

� differs for left-
and right-handed circular polarisations because H(0)

� , S(0)
� and

N(0)
ab� do. For right-angled observation in particular, with R̂ = x̂ say;

I
ð0Þ
� ðx̂Þ �

e0KNE0
2

jRj2
ðA� CÞ: (12)

This situation is depicted in Fig. 1.
This phenomenon is neatly quantified by the circular inten-

sity difference D(0) = D(0)(R̂) defined as‡ 2

Dð0Þ ¼ I
ð0Þ
þ � I ð0Þ�

I
ð0Þ
þ þ I ð0Þ�

; (13)

which has equal magnitudes but opposite signs for opposite
molecular enantiomers. Without loss of generality, we take
R̂ = sinfx̂ + cosfẑ and find that

Dð0Þ sinfx̂þ cosfẑð Þ � CþD cosfþ E cos2 f
AþB cos2 f

; (14)

which is the anticipated result.3 For right-angled observation in
particular,2,4,5 with R̂ = x̂;

Dð0Þðx̂Þ � C

A
¼

2 45aG0 � 13bG
2 þ bA

2
� �

c 45a2 þ 13b2
� � : (15)

Owing primarily to the contribution made in the denominator
by a2, D(0) is rather small and, to the best of our knowledge, has
not yet been observed in experiment for chiral molecules:5,13

calculated magnitudes of D(0) typically lie between 10�6 and
10�4.14 We note, however, that experimental results have been
reported for large biological structures.23

4 Example one: superchiral
illuminating light

Following a procedure recently suggested24 and demon-
strated25 for luminescence-detected circular dichroism, we
observe here the possibility of using so-called superchiral
illuminating light, rather than illuminating light comprised
of a single circularly polarised plane wave, to ensure that a
larger fraction of I is sensitive to the chirality of the molecules,
albeit at the expense of an overall reduction in I. We associate
with this illuminating light, a quantity analogous to D(0)(x̂) that
can be made larger in magnitude and may, therefore, be more
amenable to observation in experiment.

Consider then a superposition of two circularly polarised
plane waves of opposite handedness, the first of which has

amplitude E1=
ffiffiffi
2
p

and propagates in the z direction whilst the

second has amplitude E2=
ffiffiffi
2
p

aE1=
ffiffiffi
2
p

and propagates in the�z
direction as

~E
1ð Þ
� ¼ E1ðx̂� iŷÞ expðikzÞ=

ffiffiffi
2
p
� E2ðx̂� iŷÞ exp �ikzð Þ=

ffiffiffi
2
p

;

~B
1ð Þ
� ¼ E1ð�ix̂þ ŷÞ expðikzÞ=

ffiffiffi
2
p

c� E2ð�ix̂� ŷÞ expð�ikzÞ=
ffiffiffi
2
p

c;

(16)

where the upper and lower signs distinguish the cases in which
the first wave is left- or right-handed. This illuminating light is
manifestly chiral as, at any given t, E and B twist helically in z,
the sense of twist depending on sgn(E1� E2) whilst differing for
the upper and lower signs in (16). As time passes, these helical
patterns themselves rotate rigidly about the z axis, with the
sense of rotation differing for the upper and lower signs in (16).
In the vicinity of the z = 0 plane, E twists unusually fast in z,
doing so at the cost of a reduced magnitude: a superoscillatory
phenomenon.26 In contrast, B twists rather slowly in the vicinity
of z = 0, but is of relatively large magnitude. The effect becomes
more pronounced as |E1 � E2| - 0.‡ D(0) differs in sign from the circular intensity difference introduced in ref. 2.
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Let us suppose then that the molecules are distributed
homogeneously in the z = 0 plane around the origin. Adopting
a right-angled observation geometry with R̂ = x̂, we find that

I
ð1Þ
� ðx̂Þ �

e0KN E1 � E2ð Þ
2jRj2

A E1 � E2ð Þ � C E1 þ E2ð Þ½ �; (17)

where the upper and lower signs correspond to those in (16).
Comparing (17) with (12), we see that the chirally insensitive A

contribution to I(1)
� (x̂) is reduced relative to the chirally sensitive

C contribution, albeit at the expense of an overall reduction in
I (1)
� (x̂). This occurs because the chirally insensitive A contribu-

tion to I (1)
� (x̂) is driven by E alone through %W whilst the chirally

sensitive C contribution is driven instead by both E and B
through %H: in the latter case, the unusually high degree
of twisting exhibited by E in the vicinity of the z = 0 plane,
where the molecules reside, together with the relatively large

magnitude of B compensates somewhat for the small magnitude
of E there. The situation is depicted in Fig. 2.

We quantify this phenomenon through a generalised inten-
sity difference w(1) defined as

wð1Þ ¼ I
ð1Þ
þ ðx̂Þ � I ð1Þ� ðx̂Þ
I
ð1Þ
þ ðx̂Þ þ I ð1Þ� ðx̂Þ

� E1 þ E2

E1 � E2

C

A

� E1 þ E2

E1 � E2
Dð0Þðx̂Þ;

(18)

which has equal magnitudes but opposite signs for opposite
molecular enantiomers. This w(1) should be equal to or greater
in magnitude than D(0)(x̂) and diverges, in fact, as |E1 � E2| - 0
(and I (1)

� (x̂) - 0). In reality, such enhancements of w(1) relative

Fig. 1 Illuminating light comprised of a single circularly polarised plane wave is scattered differently by the molecules depending upon whether it is left-
or right-handed.
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to D(0) are limited by contributions to the m0(n)
a induced

by B, which we have omitted explicitly from our analysis.
Nevertheless, gains up to three orders of magnitude may be
possible.4,5,24,25

5 Example two: r–r illuminating light

We observe now the possibility of using so-called s–s illuminating
light, rather than illuminating light comprised of a single circularly
polarised plane wave, to remove isotropic contributions to I whilst
retaining both chirally insensitive and chirally sensitive anisotropic
contributions. We associate with this illuminating light, a quantity
analogous to D(0)(x̂) that is significantly larger in magnitude whilst
offering different and perhaps more desirable information about
the chirality of the molecules. This quantity may, therefore, be

more suitable for observation in experiment. s–s light is employed
for example in the laser cooling of atoms.27

Consider then a superposition of two circularly polarised
plane waves of the same handedness and equal amplitude

E0=
ffiffiffi
2
p

, the first of which propagates in the z direction whilst
the second propagates in the �z direction as

~E
ð2Þ
� ¼ E0ðx̂� iŷÞ expðikzÞ=

ffiffiffi
2
p
þ E0ðx̂� iŷÞ expð�ikzÞ=

ffiffiffi
2
p

;

~B
2ð Þ
� ¼ E0 �ix̂þ ŷð Þ expðikzÞ=

ffiffiffi
2
p

cþ E0 �ix̂� ŷð Þ expð�ikzÞ=
ffiffiffi
2
p

c;

(19)

where the upper and lower signs distinguish the cases in which
the waves are left- or right-handed. This illuminating light is
manifestly chiral, as E and B oscillate linearly and parallel to
each other at each z whilst the plane in which they oscillate

Fig. 2 Superchiral illuminating light can be employed to ensure that a larger fraction of the intensity of the scattered light is sensitive to the chirality of
the molecules, as compared to illuminating light comprised of a single circularly polarised plane wave.
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twists helically in z, the sense of twist differing for the upper
and lower signs in (19) whilst E lags or leads B by a quarter
cycle. In the z = 0 plane, E and B lie parallel to the x axis.

Let us suppose then that the molecules are distributed
homogeneously in the z = 0 plane around the origin. Adopting
a right-angled observation geometry with R̂ = x̂, we find that

I
ð2Þ
� ðx̂Þ �

e0KNE0
2

jRj2
A�Bð Þ � C� Eð Þ½ �; (20)

where the upper and lower signs correspond to those in (19).
Evidently, I(2)

� (x̂) contains no isotropic contributions, either
chirally insensitive: a2, or chirally sensitive: aG0. It does, how-
ever, possess non-vanishing anisotropic contributions, both
chirally insensitive: b2, and chirally sensitive: bG

2 and bA
2. This

may be understood simply by recalling that an oscillating
electric dipole moment radiates no energy on axis and so an
isotropically polarisable molecular species would, to the order
of present interest, exhibit no scattering in the direction R̂ = x̂ of
observation as the latter lies parallel to the (electric-dipole-

inducing) E vectors in the z = 0 plane where the molecules
reside. The situation is depicted in Fig. 3.

We quantify this phenomenon through a generalised inten-
sity difference L(2) defined as

Lð2Þ ¼ I
ð2Þ
þ ðx̂Þ � I ð2Þ� ðx̂Þ
I
ð2Þ
þ ðx̂Þ þ I ð2Þ� ðx̂Þ

� C� E

A�B

¼
2 bA

2 � 3bG
2

� �
3cb2

;

(21)

which has equal magnitudes but opposite signs for opposite
molecular enantiomers. This L(2) should be larger than D(0)(x̂)
by around two orders of magnitude14 owing to the absence of a
contribution from a2 in the denominator. Moreover, L(2)(x̂)
offers different and perhaps more desirable information about
the chirality of the molecules than D(0)(x̂) as its numerator is
comprised solely of the quantities bG

2 and bA
2 of particular

interest. We note that L(2) is �1 times the familiar depolarised

Fig. 3 s–s illuminating light can be employed to ensure that the intensity of the scattered light contains no isotropic contributions whilst still being
sensitive to the chirality of the molecules.
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right-angled circular intensity difference.4,5 The latter, however,
requires analysed measurements of the intensities of scattered
light polarised perpendicular to the scattering plane and is
prone to spurious effects,13 owing to the relatively large

intensities of scattered light polarised parallel to the scattering
plane. In contrast, L(2) requires measurement only of unana-
lysed scattered intensities and should, therefore, be robust in
this regard. Theoretical predictions of the variation of the

Fig. 4 A parity inversion of the lin > lin illuminating light and the direction of observation R̂ = ŷ through the origin can be mimicked in the z = 0 plane by
leaving the light unaltered and changing the direction of observation from R̂ = ŷ to R̂ = x̂.
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familiar depolarised right-angled circular intensity difference
(and hence, L(2)) with frequency for various molecules can be
seen in the work of Züber, Wipf and Beratan.14

6 Example three: lin > lin illuminating
light

We observe finally the novel possibility of using so-called lin > lin
illuminating light which is essentially achiral, rather than illumi-
nating light comprised of a single circularly polarised plane wave,
to extract information about the chirality of the molecules through
I. We associate with this illuminating light a quantity analogous to

D(0)(x̂) that is impervious to spurious contributions attributable to
circular dichroism whilst being of a different form. Lin > lin light
is employed for example in the laser cooling of atoms.27

Consider then a superposition of two linearly polarised plane
waves of equal amplitude E0, the first of which is polarised along
the x axis and propagates in the z direction whilst the second is
polarised along the y axis and propagates in the �z direction as

Ẽ(3) = E0ix̂ exp(ikz) � E0ŷ exp(�ikz),

B̃(3) = E0iŷ exp(ikz)/c � E0x̂ exp(�ikz)/c. (22)

It should be noted that we only have one form of illuminating
light here, in contrast to examples zero, one and two where

Fig. 5 Lin > lin illuminating light, which is by itself essentially achiral, can be employed to probe the chirality of the molecules by making explicit use of
the degree of freedom that is the direction in which the intensity of scattered light is observed.
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there were two forms of illuminating light which we distinguished
using plus and minus signs. In the z = 0 plane, E and B rotate in
opposite directions which is, by itself, an essentially achiral configu-
ration. The combination of E, B and the direction of observation R̂,
however, is chiral in general. In particular, a parity inversion of the
illuminating light and the direction of observation R̂ = ŷ through the
origin yields a new configuration not superposable upon the old. An
essentially equivalent transformation is invoked, however, by leaving
the illuminating light unaltered and changing the direction of
observation from R̂ = ŷ to R̂ = x̂. This is depicted in Fig. 4.

Let us suppose then that the molecules are distributed
homogeneously in the z = 0 plane around the origin. We then
find that

I ð3Þðx̂Þ � e0NKE0
2

jRj2
Aþ ðEþFÞ½ �;

I ð3ÞðŷÞ � e0NKE0
2

jRj2
A� ðEþFÞ½ �:

(23)

Evidently, information about the chirality of the molecules can
be extracted simply by contrasting I(3)(x̂) and I(3)(ŷ). This is of
course possible owing to the equivalence described above. The
situation is depicted in Fig. 5.

We quantify this phenomenon through a generalised inten-
sity difference U (3) defined as

U 3ð Þ ¼ I ð3ÞðŷÞ � I ð3Þ x̂ð Þ
I ð3ÞðŷÞ þ I ð3Þ x̂ð Þ

� �EþF

A

¼
2 45aG0 þ bG

2 � bA
2

� �
c 45a2 þ 13b2
� � ;

(24)

which has equal magnitudes but opposite signs for opposite
molecular enantiomers. This U (3) is of a different character, of
course, to D(0), w(1) and L(2) as it is dependent upon scattered
intensities associated with one form of illuminating light rather
than two. It should be comparable in magnitude to D(0)(x̂)14 but
offers somewhat different information about the chirality of the
molecules: the contributions made by bG

2 and bA
2 to U (3) are of

opposite sign to those in D(0)(x̂) and the former is 13 times
smaller. Although we have assumed the illuminating light to be
off resonance, there will always exist in reality some absorption
of the illuminating light by the molecules. Owing to circular
dichroism: the differential absorption of left- and right-handed
circularly polarised light, D(0)(x̂), w(1) and L(2) will therefore
suffer from spurious contributions attributable not to light
scattering but rather, to luminescence. By its very nature,
U (3), however, is impervious to such contributions. Moreover,
lin > lin illuminating light will be absorbed at the same rate by
opposite molecular enantiomers, as it is essentially achiral.

7 Discussion

We have demonstrated that natural Rayleigh optical activity
can be probed using illuminating light comprised of two plane

waves that are counter propagating and that this permits new
possibilities for the study of molecular chirality. Exploitation
of these possibilities requires, however, that the scattering
molecules be confined to a plane, in which case their number
and hence, the scattered intensity, is necessarily reduced
relative to that attainable in a fully homogeneous sample. It
is unclear to us at present whether this limitation can be
overcome simply. In experiment, such confinement might be
realised by depositing the molecules onto a surface.30 Of
course, additional effects associated with the surface, such as
reflection and refraction of the illuminating light and molecular
orientation,31 would then have to be considered with care.

For our two-plane-wave examples, we restricted our attention to
right-angled observation which is particularly well suited to experi-
ment as it ‘avoids’ the illuminating light as much as possible.
Nevertheless, more information about the chirality of the mole-
cules may be extracted by exploring other scattering geometries, as
has been suggested for illuminating light comprised of single
circularly polarised plane waves.3 Our approach has been centred
upon the unanalysed scattered intensity as this is, perhaps, the
most readily measurable property of the scattered light. The
polarisation properties of the scattered light remain to be explored,
however, and may yield additional possibilities. Finally, we high-
light the fact that analogous approaches to those undertaken in
the present paper can be pursued for other manifestations of
optical activity in light scattering. We shall return to these tasks
elsewhere.

Appendix A: definitions

A, B, C, D E and F pertain to the molecules as

A = 2(45a2 + 13b2),

B = 2(45a2 + b2),

C = 4(45aG0 � 13bG
2 + bA

2)/c,

D = 8(�45aG0 + 5bG
2 + 3bA

2)/c,

E = 4(�45aG0 � bG
2 � 3bA

2)/c,

F = 16bA
2/c, (25)

for

a2 = aaaabb/9,

b2 = (3aabaab � aaaabb)/2,

aG0 = aaaGbb
0/9,

bG
2 = (3aabGab

0 � aaaGbb
0)/2,

bA
2 = oeabcaadAbcd/2. (26)

a2 and b2 do not distinguish between opposite molecular
enantiomers and are strictly positive. They can be measured
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through a combination of optical refraction and depolarised
Rayleigh scattering experiments.3–5 b2 is typically an order of
magnitude smaller than a2 14 and vanishes entirely for an
isotropic molecule.4,5 aG 0, bG

2 and bA
2 do distinguish

between opposite molecular enantiomers however, by taking
on equal magnitudes but opposite signs.§ aG 0 can be mea-
sured through a combination of optical refraction and
optical rotation experiments.3–5 In contrast, bG

2 and bA
2

cannot be readily measured by other means and they are,
therefore, quantities of particular interest.5,14 aG 0/c, bG

2/c
and bA

2/c are typically three to five orders of magnitude
smaller than a2.4,5

W = W(r), Tab = Tab(r), H = H(r), S = S(r), Nab = Nab(r) and Xab =
Xab(r) pertain to the illuminating light as

W ¼ 2� e0E �E=2;

Tab¼ 2� e0 dabE �E�2EaEbð Þ=2;

H ¼ e0c A? �B�C? �E
� �

=2;

S¼ 2� e0E�A?=2;

Nab¼ e0c dab A? �B�C? �E
� �

�A?a Bb�A?b BaþC?a EbþC?b Ea

� 	
=2;

Xab¼ e0c @d ebcdA?b A
?
c þ ebcdA?a A?c

� �� 	
=2;

(27)

with dab the Kronecker delta and A> = A>(r,t) and C> = C>(r,t)
the transverse, gauge-invariant pieces of potentials defined
generally for the charge-free Maxwell equations such that
E = �qA>/qt = �e0m0 r � C> and B = r � A> = �qC>/qt.28,29

W, Tab and S can be identified as being (twice the cycle-averaged
forms of the electric pieces of) an energy density,15 a linear
momentum flux density15 and a spin density16 of the illuminating
light whereas H and Nab can be identified as being (the cycle-
averaged forms of) a helicity density¶ 17,32 and an ab infra zilch
density18 of the same. Whereas the energy and linear momen-
tum of light are rather well established, the helicity, spin and
ab infra zilches of light have only recently been scrutinised:
they are manifestly intrinsic angular momenta associated with
various rotational symmetries inherent in the charge-free
Maxwell equations.16–21 Xab is unfamiliar to us and vanishes,
in fact, for illuminating light comprised of a single plane
wave. It is non vanishing in general, however. We could have
incorporated Xab into part of Nab whilst retained the inter-
pretation of the latter as being the (cycle-averaged form) of an
ab infra zilch density, as Xab is a total divergence which
vanishes when integrated over all space. Indeed, the identifi-
cation of W, Tab, H, S, Nab and Xab in (8) is neither funda-
mental nor unique. Nevertheless, it provides us with a simple
physical picture.
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