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@cmk Anomalous diffusion models and their properties:
e non-stationarity, non-ergodicity, and ageing at
S 1s oaas e the centenary of single particle tracking

Ralf Metzler,**" Jae-Hyung Jeon,”® Andrey G. Cherstvy® and Eli Barkai®

Modern microscopic techniques following the stochastic motion of labelled tracer particles have
uncovered significant deviations from the laws of Brownian motion in a variety of animate and inanimate
systems. Such anomalous diffusion can have different physical origins, which can be identified from
careful data analysis. In particular, single particle tracking provides the entire trajectory of the traced
particle, which allows one to evaluate different observables to quantify the dynamics of the system
under observation. We here provide an extensive overview over different popular anomalous diffusion
models and their properties. We pay special attention to their ergodic properties, highlighting the fact
that in several of these models the long time averaged mean squared displacement shows a distinct
disparity to the regular, ensemble averaged mean squared displacement. In these cases, data obtained
from time averages cannot be interpreted by the standard theoretical results for the ensemble averages.
Here we therefore provide a comparison of the main properties of the time averaged mean squared
displacement and its statistical behaviour in terms of the scatter of the amplitudes between the time

Received 4th August 2014, averages obtained from different trajectories. We especially demonstrate how anomalous dynamics may

Accepted 19th September 2014 be identified for systems, which, on first sight, appear to be Brownian. Moreover, we discuss the ergodicity

DOI: 10.1039/c4cp03465a breaking parameters for the different anomalous stochastic processes and showcase the physical origins
for the various behaviours. This Perspective is intended as a guidebook for both experimentalists and

www.rsc.org/pccp theorists working on systems, which exhibit anomalous diffusion.

1 Introduction and historical fragment of the Sphinx.” In his second, 1906 paper Einstein then

quotes the experimental proof by Gouy® that indeed the motion
perpetuated by Robert Brown is caused by the irregular thermal
movements of the molecules of the liquid, and thus described by
Einstein’s theory." As remarked by Marian Smoluchowski in his
equally seminal 1906 article,* Einstein reinvigorated the interest
in Brownian motion. Since then, the interest in the molecular
phenomenon of diffusion is unbroken.

Considering the local concentration difference and the
counteracting flux of microscopic particles with a typical mean
free path, Einstein derived the diffusion equationf*

perspective

It is possible that the movements to be discussed here are identical
with the so-called “Brownian molecular motion’’; however, the
information available to me regarding the latter is so lacking in
precision, that 1 can form no judgment in the matter. This
statement is part of the introduction of Albert Einstein’s first
and seminal 1905 paper on the theory of diffusion.” It refers to
the observations reported by Robert Brown in 1828 of small
granules (or Molecules, as I shall term them) of z5th to <g55th of
an inch extracted from larger pollen grains. Brown found these 0 9*

particles evidently in motion.” He made meticulously sure that EP(X’ )= Kl@P(x’ J @)
the motion he observed was not the effect of living matter, and

he even studied the motion of such molecules as of a bruised With the coefficient of diffusion K, for the probability density

function (PDF) P(x,t) to find the particle under observation at
position x at time ¢. This equation is indeed equivalent to Fick’s
second law for the concentration of a chemical substance originally
presented by Adolf Fick from a combination of the continuity
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If the particle is released at the origin at time ¢ = 0 in an
unbounded space, the solution of the diffusion equation (1) is
the normalised Gaussian PDF
2
4Kt '

P(x,1) = (2)

1
VK (

Einstein remarks that this solution is that of the fortuitous error,
which was to be expected." From the PDF (2) we immediately
obtain the variance

x2P(x, )dx = 2Kt (3)
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the so-called mean squared displacement (MSD). From the

dynamic equilibrium of suspended particles Einstein (and later

independently Smoluchowski) derived the celebrated relation
__kgT (R/NA)T

K —
mn mn

(4)
between the diffusion coefficient, thermal energy kgT, the mass
m of the observed particle, and the friction coefficient # of unit
15~ ". In the second equality of eqn (4) we replaced the Boltzmann
constant kg by the ratio of the gas constant R, quite precisely
known at the time, and Avogadro’s number Ny.
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Yet another derivation of Brownian motion with the MSD (3)
was published in 1908 by Paul Langevin using the concept of a
stochastic force. The Langevin equation combines Newton’s
second law with the white Gaussian noise &(t) of zero mean and
autocorrelation function (£(£)é(t)) = 2K,5(t — ¢').%7 In its over-
damped form relevant for the single particle tracking experi-
ments we will refer to below, it reads®”

()] 5)

The Langevin formalism represents a very intuitive physical
picture for Brownian motion. From the Langevin eqn (5) it is easy
to get back to the MSD (3). Likely prompted by discussions with his
friend Paul Langevin,® the fundamental Einstein-Smoluchowski
relation (4) led Jean Perrin at the Sorbonne in Paris to conduct
the first extensive and systematic measurement of the diffu-
sion of single microscopic particles to determine Avogadro’s
number N,.+°

While Perrin was confined to short measured trajectories and
the need to use ensemble averages over not perfectly identical
particles, to the best of our knowledge it was Ivar Nordlund at
the University of Uppsala in Northern Sweden, who in 1914 came
up with the innovative idea to record the motion of individual
sedimenting mercury droplets on a moving film plate,” see
Fig. 1. Nordlund managed to produce impressively long individual
time series of the droplet position. From separate analysis of
each single trajectory he determined the diffusion coefficients of
the traced droplets. The mass of the droplets was deduced from
the sedimentation speed using Stokes’ formula.™ In the sense
of the combination of single particle tracking with the time
series analysis of single recorded trajectories first performed
by Nordlund, we celebrate this year the centenary of modern
single particle tracking.

Nordlund’s experimental setup, the MSD from a single
trajectory, as well as a sample trajectory are shown in Fig. 1
and 2. Nordlund advocated in his paper that the principle of the
method of measurement consists in the automated recording of the
Brownian displacements of the particles in exactly identical time
intervals, free of personal errors.'> Perrin’s and Nordlund’s
studies prompted a string of diffusion experiments to deter-
mine the value of N, ever more precisely in the years to come,
culminating in the high precision torsional diffusion experiments
by Eugen Kappler, who in his PhD thesis at the University of
Munich found the remarkable result N, = 60.59 x 10** + 1%.§"
We show the experimental shape of the torsional Brownian
motion measured by Kappler in Fig. 3.

i For completeness we mention that theories of Brownian motion appeared
earlier than Einstein’s studies. In particular, the Dane Thorvald Thiele set up a
theory for independent and normally distributed increments in his 1880 work on
the least squares method."'® Louis Bachelier in Paris applied a stochastic process
to model the dynamics of stock markets in 1900."" Concurrently with Einstein,
the Melbourne physicist William Sutherland followed similar lines to Einstein in
his 1905 paper on diffusion.'?

§ Immerhin diirfte die Bestimmung der Loschmidtschen Zahl mit dieser Methode auf
+1 Proz. erreicht sein.—After all, with this method the determination of the Loschmidt
[Avogadro] number should be achieved within +1 per cent."*
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Fig. 1 Centennial single particle tracking experiments of Ivar Nordlund.
Top: Nordlund’'s experimental setup with the light source, an infrared
absorbing water-filled cylinder, and the clock-controlled, electromagnetic
shutter (on the table to the left) constituting a stroboscope. Mounted on
the separate optical table on the rack to the right, the object chamber with
the mercury droplet, as well as the objective and the camera are the heart
of the experiment: the camera is connected to an electric motor moving
the photographic plate with constant velocity. Bottom: example for the
time averaged mean squared displacement versus time (in seconds) from a
single recorded mercury droplet. Images taken from ref. 13.

Hundred years after Nordlund’s conception of single particle
tracking by the analysis of individual particle traces, modern micro-
scopic technology is routinely used by experimentalists to record
the motion of fluorescently labelled single molecules or submicron
tracer particles.q"*'® In these experiments the recorded time series
x(¢') is evaluated in terms of the time averaged MSD ||

LJH' (e(t' + 4) — x(¢/)de". ©)

3 (A) =
(4) 4l

The time series x(¢') of length ¢ (the measurement time) is thus
evaluated in terms of squared differences of the particle position

€ We note that the concept of motion analysis of synthetic active matter is also a
topic of high current interest."”

| Usually, for data analysis a discrete version is used in which the integral is
replaced by a sum. We here use the equivalent continuous notation. In what
follows, we denote ensemble averages of an observable ¢ with angular brackets,
(0), and time averages with an overline, (. Note that the definition (6) is not
unique, however, it represents the most standard choice used in the literature.
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Fig. 2 Example for the recorded motion of a ‘submicroscopic’ mercury droplet using the clock-driven stroboscope and a moving film plate in the setup
shown in Fig. 1. The mass of the droplet could be determined from the droplet radius deduced from the sedimentation speed by use of Stokes’ formula.t®
Time is increasing from left to right. The stochastic, Brownian motion around the deterministic sedimentation with constant velocity can be clearly

distinguished. Image taken from ref. 13.
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Fig. 3 Experimental verification of the Gaussian shape by Kappler** with

the original figure caption. The symbols represent nine different measure-
ments of average duration of 11 hours of the torsional Brownian motion.

separated by the so-called lag time 4 which defines the width of
the window slid along the time series x(t'). Typically, 6*(4) is

This journal is © the Owner Societies 2014

considered in the limit 4 « ¢ to obtain good statistics. It is easy

to show that for Brownian motion 6%(4) = 2K; 4 as long as the
measurement is sufficiently long. Compared with eqn (3) we
observe the equivalence

3(4) = (x*(4)) )

and therefore call the process ergodic: ensemble averages and
long-time averages are equivalent in the limit of long measure-
ment times.

Apart from direct imaging of the motion of a tracer particle
using a microscope, optical tweezer setups can be used to
obtain an improved temporal and spatial resolution of a
suitable tracer.>® Such single particle tracking can be used to
measure the motion of tracers in quite complex media such
as living biological cells.’”'® Alternatively to single particle
tracking, which provides the time series x(¢) of the particle
position, the diffusion of labelled molecules can be measured
by methods such as fluorescence correlation spectroscopy
(FCS),>* fluorescence recovery after photobleaching (FRAP),*?
or fluorescence (Forster) resonant energy transfer (FRET).'7>?
While these latter methods have many advantages—for instance,
that they can measure the motion of smaller tracers—they have
the intrinsic disadvantage that the quantity they measure is not
the particle position but averages over the position such as the
blinking correlation function of fluorescent particles entering
and leaving the illuminated focal spot in FCS. Due to the
underlying averaging, these latter methods thus do not provide
the same full information as direct single particle tracking.
We note that the MSD of stochastic systems may also be deter-
mined with techniques such as dynamic light scattering®* or laser
Doppler velocimetry.>

Already in 1926 an exception to the linear time dependence
(3) of the MSD of Brownian motion was analysed by Lewis Fry
Richardson. For the relative diffusion of two tracer particles in a
turbulent flow he observed strongly non-Brownian behaviour.”®
He introduced the notion of non-Fickian diffusion and used

a diffusion equation with separation dependent diffusivity a—? =

const x %{14/3%] for the PDF g(1,¢) of the relative displacement

I to find the power-law MSD (I(¢)) ~ ¢* with the characteristic

Phys. Chem. Chem. Phys., 2014, 16, 24128-24164 | 24131
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Fig. 4 Motion of labelled messenger RNA molecules in a living E. coli cell. Left: time averaged MSD of individual trajectories plotted as a function of the
lag time 4 of egn (6) shows pronounced trajectory-to-trajectory scatter. Yet all exhibit approximately the same anomalous diffusion exponent o ~ 0.7,
with some local variations. In contrast, the control experiment in water (stars) shows normal diffusion with o = 1. Right: points of the trajectory of an
individual messenger RNA in the E. coli cell, showing that the molecule explores a major fraction of the bacterium’s volume. (Adapted from ref. 33.)

cubic scaling. Today anomalous diffusion typically refers to the
power-law form**

(@) ~ Kt" (8)

of the MSD with the anomalous diffusion exponent o and the
generalised diffusion coefficient K, of physical dimension cm? (s) ™.
This is what we refer to in the following, distinguishing subdiffusion
(0 < a < 1) and superdiffusion (« > 1).

The conditions assumed by Einstein in his derivation of
the diffusion equation are (i) the independence of individual
particles, (ii) the existence of a sufficiently small time scale
beyond which individual displacements are statistically inde-
pendent, and (iii) the property that the particle displacements
during this time scale correspond to a typical mean free path
distributed symmetrically in positive or negative directions.
These assumptions, by the help of the central limit theorem,
a forteriori lead to the Gaussian PDF (2) and thus to the
diffusion equation (1). The model described by Einstein may
therefore be viewed as a random walk or drunkard’s walk,
a concept introduced in the same year 1905 by Karl Pearson
in his famed letter to Nature.?® The connection of the diffusion
law to the random walk process was rendered more precisely by
Smoluchowski.

In anomalous diffusion processes, at least one of these funda-
mental assumptions is violated, and the strong convergence
to the Gaussian according to the central limit theorem broken.
In particular, by departing from one or more of the assump-
tions (i)-(iii), we find that there exist many different generali-
sations of the Einstein-Smoluchowski diffusion picture. Here
we examine the properties of several popular and widely used

** Curiously the very notion anomalous diffusion first appears in the literature in
the same year as Richardson’s paper, 1926, but in the context of o rays.”” Later
anomalous diffusion was used to describe the observation that in certain systems
the ‘Oeholm method’ does not return a constant for the diffusivity as expected if
the system was following Fick’s law.>® This paper by Herbert Freundlich and
Deodata Kriiger®® refers to first measurements in aqueous solutions of dyestuffs by
Herzog and Polotzky.*’

24132 | Phys. Chem. Chem. Phys., 2014, 16, 24128-24164

anomalous diffusion models which are important for the evalua-
tion and physical interpretation of single particle tracking data.
These models are conceptually very different from each other,
their only common ground being the non-Brownian form (8) of
the MSD. We pay particular emphasis on their ergodic behaviour,
that is, whether within the model the ensemble averaged MSD
(8) has the same form as the time averaged MSD (6) or not, an
important information for the evaluation of single particle tracking
time series in terms of physical theories, which are usually formu-
lated in terms of ensemble averages. We also check the ageing
properties of the processes, that is, the potential dependence of
physical observables such as the MSD on the time span between
initialisation of the system and the start of the measurement.
Both ergodicity breaking and ageing of a process are two
sides of the same medal and are intimately connected to the
(non-)stationarity properties.*"*>

As we will see, numerous experiments using the above
techniques demonstrate the non-Brownian diffusion of tracked
biological cells as well as of tracer particles inside those very
cells. Similarly, anomalous diffusion is often revealed for the
motion of passive particles in complex liquids. One of the
breakthroughs came with the study of Golding and Cox, who
used single particle tracking of labelled messenger RNA
(mRNA) molecules of some 100 nm in size in living bacteria
cells to demonstrate that the motion of the molecule is sub-
diffusive,*® shown in Fig. 4. Even more interesting and thought-

provoking was the fact that the time traces 6*(4) of individual
trajectories showed a massive scatter of amplitudes, similar to
those shown in Fig. 8. The question whether this behaviour
could be due to the intrinsic non-ergodicity of the anomalous
diffusion performed by the mRNA molecules was in fact one of
the ignition points for the research presented herein. We note
that non-ergodicity in the sense discussed in the following is
not restricted to the spatial diffusion of particles, but similar
principles hold for certain processes revealing non-exponential
dynamics, such as the blinking behaviour of individual quantum
dots® or laser cooling.®® To physically interpret such measurements

This journal is © the Owner Societies 2014
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we need to understand the time averages of individual time
series. As we will see, this requires information beyond the
conventional ensemble averages for a variety of anomalous
diffusion processes.

2 A short navigation chart through this
Perspective article

The main focus of this Perspective is two-fold. It is meant as an
introduction to the theory of anomalous diffusion processes
but also as a toolbox for the data analysis of anomalous stochastic
dynamics. Consider the experimental results of single particle
tracking experiments on fluorescently labelled messenger RNA
molecules in a living E. coli bacteria cell shown in Fig. 4.
Despite the fact that individual trajectories explore a large
portion of the entire cell volume, the amplitude and the local
slope of individual molecule traces, apart from the common
subdiffusive trend, vary massively. Is this apparent irrepro-
ducibility an artefact or the result of the physical mechanism
governing the molecule’s motion? What is the exact physical
origin of the variations in the slope? Will longer measurement
times improve the statistics? Can we interpret the time aver-
aged MSD shown here in terms of the ensemble results known
for anomalous diffusion? Such questions will be pursued in
what follows.

More concretely, this Perspective summarises a large variety
of stochastic processes yielding anomalous diffusion of the
power-law form (x*(¢)) ~ K,t*. We mostly focus on subdiffusion
with 0 < o < 1 but also consider superdiffusion characterised
by « > 1 as well as ultraslow diffusion with a logarithmic
form of (x*(¢)). The fact that we consider this large range of
anomalous diffusion processes is the non-universal nature
of anomalous diffusion itself. Once we leave the realm of
Brownian motion, we lose the confines of the central limit
theorem forcing the processes to converge to the Gaussian
behaviour predicted by Einstein. For this reason we address
the most common processes effecting anomalous diffusion and
compare their basic properties. The latter are important for the
second purpose of this Perspective, namely, to provide a tool-
box for the analysis of anomalous stochastic time series x(t).
Quite commonly such analyses of time series from experiment
or simulations are performed in terms of time averaged observ-

ables, in particular, the time averaged MSD &°(4). We point out
that the physical interpretation of the obtained behaviour of
such time averages in terms of the typically available ensemble
approaches may be treacherous: many of the anomalous diffu-
sion processes discussed herein lead to a disparity between the
ensemble and the time averaged observable, for instance,
between the ensemble and time averaged MSDs

(x*(4)) # lim 6°(4) 9)

1—00

even in the limit of long measurement times. Moreover, it turns

out that individual results for time averages such as &°(4)
appear to be irreproducible, despite long measurement times.
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Such strange kinetics®> was in fact observed in a number of
experiments mentioned below. Instead of insufficient statistics,
we show that such weakly non-ergodic behaviour reflects the
physical nature of the exact mechanisms effecting the observed
stochastic dynamics.

The degree of the disparity between time and ensemble
averaged observables and their apparent irreproducibility
differ between the anomalous diffusion processes discussed
hereafter. For each time series it is important to identify
the exact underlying stochastic process—or combinations
thereof—in order to deduce the correct physical behaviour of
the system, to obtain meaningful values of fitted parameters,
and to predict secondary processes such as rates for diffusion
limited reactions. We therefore discuss the behaviour of time
and ensemble averaged MSDs and other observables for the
different processes. In addition we also address the ageing
behaviour of such processes, that is, the dependence of
physical observables on the time span, which may elapse
between the initial preparation of the system and the start of
the measurement.

Conceptually, weak ergodicity breaking was originally intro-
duced by Jean-Philippe Bouchaud for systems, whose phase
space is not separated into mutually inaccessible domains as
for strong ergodicity breaking.*® Instead Bouchaud was con-
cerned with systems such as physical glasses in which the
exploration time of the phase space is infinite and thus the
particle occupancy in subdomains becomes non-ergodic in a
single trajectory sense. This is the situation that we will
encounter in Section 3. We will see, however, that the situation
is somewhat more subtle in that also a number of seemingly
simple stochastic processes feature similar weak ergodicity
breaking.

The reader may approach this Perspective in two ways. One
is to simply read the article sequentially. The second is to select
specific sections after consulting the basic properties of the
various processes listed in Table 1. In what follows we first
concentrate on continuous time random walks in Section 3,
starting from the classical Scher-Montroll-Weiss picture and
then turning to more recent variants of this model. We then
present the properties of the Gaussian models of fractional
Brownian motion and the closely connected fractional Langevin
equation in Section 4. Section 5 focuses on scaled Brownian
motion, while Section 6 is devoted to heterogeneous diffusion
processes. In Section 7 we discuss the stochastic motion on a
fractal support, and Section 8 covers strong anomalous diffusion
processes. Complementary statistical measurables to analyse
recorded data are presented in Section 9, before a general
discussion in Section 10. The weakly non-ergodic behaviour of
the various processes discussed in the text are summarised in
Table 1. All important symbols are collected in Table 2.

3 Continuous time random walks

We begin with the continuous time random walk (CTRW)
model introduced by Montroll, Weiss, and Scher.*”**® It became

Phys. Chem. Chem. Phys., 2014, 16, 24128-24164 | 24133
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Table1 Different stochastic processes and their (non-)ergodic behaviour. In column WEB, we first classify the processes as weakly non-ergodic (Yes) or
ergodic (No). We list the scaling of the MSD (x*(t)) and the time averaged MSD (6%(4)). Their disparity <x2(A)>¢<52(A)> signifies weak ergodicity
breaking. Note the very similar behaviour of ensemble versus time averaged MSD of several of these processes

Process WEB (x*(2)) <(52 (4) > Eqn Ref.
Correlated jump lengths Yes ~ ~ A%t (48) and (49) 120
Lévy walk, 0 < o < 1 Yes ~A(0)e? A(or) A2 (50) and (51) 136 and 137
T l-ua
Lévy walk, 1 < o < 2 Yes ~A* (o)t LA (50) and (52) 83, 136 and 138
Ta—1
évy flight es =oo[(]x ~ ~ , 137 and 275
Lévy fligh Y 24 ~ gl AP 129, 137 and 275°
FBMO < o < 2 No ~f ~ A (58) 156, 166, 176 and 276
Brownian motion No ~t ~A (3) and (12) 44, 277 and 278
FLE motion 0 < o < 1 No ~t* ~A* (66) 156, 166 and 176
Fractal environment No o Pl N St 50 and 218
HDP K(x) = K,|x|# Yes ~ /2P ~ AP (90), (91) and (93) 197 and 203
Correlated waiting times Yes ~ /1) ~ A1 (8), (46) and (47) 120-122
Subdiffusive CTRW Yes ~t* ~ A (8) and (20) 44, 63 and 64
Confined subdiffusive CTRW Yes ~t° ~ (476 (21) 45, 68 and 70
uenched trap/patch models es ~t ~ At 198 and 27

hed trap/patch model Y ” A! 98 and 279°

Ageing CTRW Yes it <y, ~ A (ta/O) A (27) and (29) 73
A 1>t
Scaled Brownian motion Yes ~t* ~ AP (8) and (80) 189 and 190
Ultraslow CTRW Yes ~log*(t) ~log*(t)4/t (43) and (44) 110
Sinai (quenched) Yes ~log’(¢) ~log*(t)4/t (42) 110
CTRW in ageing environment Yes ~log(t ~log(t)4/t 40) and (41 101
geing 44 2|

HDP K(x) = (Ko/2)e > Yes ~log*(?) ~(419)"? (94) and (95) 202

“ For Lévy flights the MSD diverges, however, we can define the rescaled fractional moment (|x|7)?7 ~ ¢

2 with 0 < g < o < 2. ? For the quenched

trap and patch models the relation between the exponent o defined in the MSD and the long-tailed waiting time PDF is not the same as in

subdiffusive CTRWS, at least for one dimension.

originally recognised for its successful quantitative description
of charge carrier motion in amorphous semiconductors.®” The
CTRW model can be viewed as a direct generalisation of the
Pearson drunkard’s walk: consider a particle, which starts at
the origin. It has to wait for a random waiting (trapping) time t
drawn from the waiting time PDF y(t), before it makes a jump
to left or right. The length of the jump can also be chosen to be
a random variable, ox, distributed in terms of the PDF (dx).
After the jump, a new pair of waiting time and jump length are
drawn from the PDFs (1) and /(6x). An important ingredient of
the CTRW process is its renewal character: after each jump values
of the new pair of random variables 7 and Jx are fully independent
of their previous values. For unbiased CTRW processes, the
jump length distribution is symmetric, A(—dx) = A(dx) such that
(ox) = 0.

We distinguish the sub- and superdiffusive versions of CTRWs
described in the following subsections. These cases arise depend-
ing on whether the characteristic waiting time

(r) = J:Qn//(r)dr (10)
and the variance of the jump length
(6x%) = f (6x)*2(8x)d(dx) (11)

are finite or infinite, respectively. In the case of diverging
moments (t) or (5x*) the anomalous character of the resulting
stochastic process is effected due to the Lévy-Khintchine
generalised central limit theorem (Lévy statistics),** *! according

24134 | Phys. Chem. Chem. Phys., 2014, 16, 24128-24164

to which sums of independent and identically distributed random
variables with diverging moments are stable distributions,
compare also Section 8. Simply put, this means the occurrence
of power-law tails of the waiting time or jump length PDFs. In
particular, we may find non-exponential relaxation patterns and
non-Gaussian spatial distributions.*> Apart from renewal CTRW
processes, in this section we also mention two non-renewal
versions of CTRWSs.

Let us first briefly consider the case when both (1) and (5x?)
are finite. In the diffusion limit this process corresponds to that
of regular Brownian motion with MSD (3), i.e., « = 1 in eqn (8),
where the diffusion constant is defined as K; = (6x*)/(2(z)) in
the limiting sense of a random walk.">** Note that apart from
the finiteness of the moments (z) and (5x®) the details of the
PDFs /(1) and A(0x) are irrelevant for the diffusive properties of
the CTRW process. In this case of normal diffusion we also
immediately evaluate the integrand in the time averaged MSD (6).
Namely, we know that as long as the lag time 4 is much larger
than the characteristic time (z) for a single jump, the average
number of jumps during this time span equals 4/(z). Thus,
the kernel [x(t' + 4) —x(t')]* in eqn (6) on average is given by
(0x*)A/(z). The result is

lim 6%(4) = 2K; 4.

1—00

(12)

Identifying the lag time 4 with the regular time ¢ in the MSD (8),
we indeed find the equivalence

(x*(4)) = lim 6*(4)

—00

(13)
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Table 2 Mathematical notations and physical dimensions used in the text

Quantity/functions Detailed description Units used
x Particle position cm
m Particle mass g
t Running time or trajectory length S
ty T, 4 Ageing, waiting/trapping, and recurrent (forward waiting) time s
Lag time s
&), Ewanlt) White and fractional Gaussian noise cm s !
B(t) = L’]g(;’)dﬂ Standard Brownian motion cm
P(x,t) Probability density function (PDF) em™!
<x2(t)) (Ensemble) mean squared displacement (MSD) cm®
o, H=a/2 Anomalous diffusion exponent and Hurst exponent 1
82(4), 32(4) Time averaged MSD and aged variant cm®
<52( )> N i 52(A) Time averaged MSD averaged over an ensemble of trajectories cm?
ta)t) = < > / < (4 > Ratio of aged and non-aged time averaged MSDs 1
D), é =04 )/<52(A)> Amplitude variation distribution of the dimensionless quantity & 1
EB(A) (E2(4)) — 1 Ergodicity breaking parameter 1
B =(x2) / < > Auxiliary ergodic parameter 1
G(A) Non-Gaussianity parameter 1
W(z), A(6x) Waiting time and jump length distributions s em ™t
u Stable index for jump-lengths of Lévy flights 1
v Velocity of Lévy walks cm s
Dapp Apparent diffusivity cm? 57.1
K, Generalized diffusion coefficient em? s™*
Ko Basal diffusion coefficient for HDPs, K(x) ~ Ko|x|” em>F 71
K(?) Time dependent diffusivity for SBM, K(t) = aK,*t* em® st
K,* Generalized diffusivity for FBM em?® s
m, Fraction of mobile traces for CTRW 1
T, Ty Absolute and glass temperature K
V(x), kgT External potential and thermal energy erg
Strength of external harmonic potential V(x) = mw’x*/2 st
d, di, d,, Spatial, fractal, and walk dimensions 1
R, Ny Gas constant and Avogadro’s number erg K1
7 Friction coefficient s
n*, y* Noise amplitude and generalised friction coefficient in FLE gs Lgs”
1/k Relaxation time to stationary solutions s
n(t) and N(z) Counting process and number of jumps 1
©.(1) Probability density of first passage times st
oDi Riemann-Liouville fractional derivative g7t
L0} Laplace transformation of the function f(t)
I'(y) Gamma function
1(x) Ly 0(x) One-sided and symmetric Lévy-stable law
Ipv) Infinite density of time averaged velocity v
E, 5(2), M(a,b,2) Mittag-Leffler and Kummer function
y ~ 0.5772 Euler constant

between the MSD (x?) and the time averaged MSD 52 which is in the limit T — oo with 0 < o < 1, effecting the divergence of
expected in an ergodic system.?>%447 the typical waiting time (t). Here the constant 7, is a scaling

factor corresponding to some fundamental time scale of the
3.1 Subdiffusive continuous time random walks process.

Power-law distributed waiting times following the asymptotic
law (14) with 0 < o < 1 are observed directly in various systems.
These include the diffusion of tracer microbeads in reconsti-
tuted, cross-linked actin networks,*® the motion of function-
alised colloidal particles along a complementarily functionalised
surface,”® or the stochastic pathway of potassium channels
diffusing in the plasma membrane of living human cells.>

We first study the case when the jump lengths are sufficiently
narrowly distributed such that (6x?) is finite. For instance, this
could correspond to a Gaussian form for the PDF /(dx) or the
motion on a lattice of spacing a, with A(9x) =1[6(dx — a) + J(dx + a)],
where J(-) denotes the Dirac d-function. Concurrently, successive
jumps do not occur at equal time steps but are assumed to face
waiting times t, which are distributed in terms of the asymptotic

power-law waiting time PDF Fig. 5 shows the asymptotic power-law behaviour of the waiting

times in the potassium channel data from ref. 50. The relatively
%

b = (14

large value of « ~ 0.9 is significant, as can be seen from
the measurement time dependence in the same system shown
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Fig. 5 Statistics of the waiting times measured in the motion of individual
labelled potassium channels in the plasma membrane of living human
kidney cells, combining the data of two different channel configurations,
see ref. 50 for details. The asymptotic power-law trend of the waiting time
distribution in this graph scales like ~11° Data courtesy Diego Krapf,
Colorado State University.

in Fig. 7. In a fashion similar to the above experiments, power-
law distributed waiting times characterise the interruption in
the motion of tracer particles in weakly chaotic flows represent-
ing persistent sticking to invariant surfaces (stable islands,
Cantori),>" and power-law transition times are often measured
for the on-off times of blinking quantum dots.** Such informa-
tion can be retrieved from single particle observations,** while
for the more common measurements of particle ensembles,
only indirect evidence for scale-free CTRW dynamics is possible,
notably in the seminal study reported by Scher and Montroll.*”
To identify CTRW dynamics or any other stochastic mechanism
in a given set of data without having the possibility to trace
individual test particles, complementary measures need to be
applied, see Section 9.

In the theory of CTRWs one can readily show that the
MSD with waiting time PDF (14) is subdiffusive and governed

by eqn (8), where the generalised diffusion constant is defined
. 42,43
via™”

K, = <i’i> (15)

What is the dynamic equation connected to this CTRW pro-
cess? On the stochastic level, the regular Langevin equation
dx(s)/ds = &(s) driven by the white Gaussian noise &(s) is
augmented with a second equation subordinating the number
of steps s to the real process time ¢.>>7>> After averaging over the
noise, in the diffusion limit we obtain the fractional diffusion
equation,**°®

) »*
—-P(x,1) = K,0D,"=—=P(x,1),

ot ox (16)

where we introduced the Riemann-Liouville fractional operator
defined by®”*®

(17)

1 !
oD!7*P(x,1) = Fl BJ Px, 1) det'.

(@)0t)o(r — 1)
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In the limit o« = 1 we recover the normal diffusion eqn (1). The
fractional diffusion eqn (16) can equivalently be formulated in
terms of the Caputo operator.’® In eqn (17) we see that the
process is dominated by the slowly decaying memory given by
the integral over the power-law kernel. In the presence of an
external potential, the dynamics is described in terms of the
fractional Fokker-Planck equation.*”>® This fractional Fokker-
Planck equation fulfils a generalised form of the Einstein-Stokes
relation as well as linear response.*>*® We note that reactions
in such a subdiffusive setting are discussed in ref. 60. An
interesting generalisation to evanescent CTRW subdiffusion
was discussed recently.®!

As illustrated in Fig. 6, during the evolution of the process
longer and longer waiting times emerge. Due to the lack of a
characteristic time scale of (), extreme individual waiting
times t arise which are of the same order as the measurement
time. In particular, there is no longer a scale (t) separating a
single or a few jumps from the limit of many jumps. This effects
a disparity between the MSD and the time averaged MSD, the
so-called weak ergodicity breaking®'>3¢:62767

(x*(4))# lim 8% (4). (18)

More specifically, as this subdiffusive process is no longer self-
averaging such as the normal Brownian motion, to be able to
obtain analytical results we introduce the additional averaging

(F) =27

over sufficiently many (more correctly, N — o0) individual
trajectories. From a data analysis point of view, this procedure

(19)

ensures smooth curves for <52> as function of the lag time 4.

Using the known fact that for subdiffusive CTRWs the
average number of jumps from ¢ = 0 up to time ¢ scales like
(n(t)) ~ ¢*, it is quite straightforward to show that in the limit
A « t the result for the time averaged MSD is*>**%%*

2K, A

() ~ ri s (20)

15 ‘ - : .
0 20 40 60 80

t/10*

100

Fig. 6 Trajectory of a subdiffusive CTRW with waiting time PDF (14) and
o = 1/2. In the evolving process longer and longer waiting times appear,
a characteristic of the scale-free underlying law (14) of this non-stationary
process.
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This is the first example of weak ergodicity breaking that we
analyse in the following. Remarkably, the linear lag time
dependence is different from the ¢*-scaling of the MSD (8).
Simultaneously, the length of the time series (measurement
time) ¢ occurs explicitly in expression (20). The latter echoes the
ageing dependence of the subdiffusive CTRW process, to be
addressed shortly in more detail: the longer the process lasts,
the smaller the time averaged MSD becomes. Physically, this
corresponds to the above observations that for the scale-free
waiting time distribution (14) longer and longer trapping times
occur, stalling the progress of x(¢). The linear form (20) of the
time averaged MSD was shown for the subdiffusive motion of
lipid granules in living yeast cells,®® and the ageing dependence

8% ~ 1/1'~* was observed for the motion of insulin granules in
the cytoplasm and of potassium channels in the plasma
membrane of living human cells.>>*® For the channel motion
in the plasma membrane the data are shown in Fig. 7.1+
Note that the linearity of the time averaged MSD (20) for
subdiffusive CTRWs may be deceiving: when such a linear
scaling is observed for the time averaged MSD in experiments,
it may easily be concluded that the observed process is normal.

Without testing other quantities, such as the dependence of >
on the measurement time ¢, such a conclusion may in fact be
wrong. Note that in the limit « = 1 eqn (20) reduces to the
ergodic Brownian form, independent of the trace length ¢.

Another a priori surprising result is that for confined sub-
diffusive CTRW motion the time averaged MSD does not converge
to the thermal plateau. Instead, after engaging with the confine-
ment it continues to grow in the power-law form*’

(F@) ~ ()t 2 (4)

(I —o)orm (21)

where the prefactor involves the first two moments of the
Boltzmann distribution,

(X" = 5’1100 X" exp (— Zé;})d\

—0o0

(22)

of the confining potential V(x). The normalisation factor is given
in terms of the partition function 2 = [*_exp(—V (x)/[kgT])dx.
Only in the Brownian limit o = 1, we observe a turnover from the

free diffusion behaviour to a plateau with <52(A)> ~ A°. In the
general case 0 < o < 1 the time averaged MSD (21) grows with 4,
however, as long as 4 « t, the value of <52(A)> never exceeds

((«*)g — (x)5?).1F The behaviour (21) was found from simulations
in ref. 70 and experimentally corroborated from optical tweezers
tracking data in ref. 68.

Each individual, sufficiently long time series of this sub-
diffusive CTRW process is characterised by a number of extre-
mely long waiting times. However, in each realisation different

11 Note that in the latter two examples the time averaged MSD (6) does not scale
linearly as in eqn (20), as the observed stochastic motion has an additional noise
source.”**’

i+ Note that the universal factor 2sin(no)/[(1 — o)un] varies between 2 (for the

limits « - 0 and o — 1) and 8/n &~ 2.55 (for o = 1/2).
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Fig. 7 Dependence of the time averaged MSD on the measurement time,
observed for the motion of potassium channels in the plasma wall
of human kidney cells in ref. 50. The straight lines show the scaling

&% ~ 1/~ with « = 0.9 deduced from the statistics of waiting times of
this system shown in Fig. 5. The predicted scaling is nicely fulfilled by the
data, corroborating the ageing nature of the system: the longer the system
evolves (given by the times in the figure key) the smaller the apparent
diffusivity. Data courtesy Diego Krapf, Colorado State University.

numbers and lengths of such waiting periods occur. This gives
rise to the fact that time averages remain random even for very
long averaging times, and time averaged physical observables
are thus irreproducible.*>**”* This situation is shown in Fig. 8,
where the simulation data show variations in the slope in

individual 6” traces as well as a distinct amplitude scatter

between different §°. Qualitatively these are reminiscent of the
observations made in the experiments of Golding and Cox.§§%
Similar amplitude variations are observed in the aforementioned
single particle tracking studies in living cells******"* and in the
simulation of associated water in the vicinity of lipid bilayers.”>
We quantify this randomness of the time averaged MSD in terms
of the dimensionless variable®

g= 24 (23)
<5%A)>
The associated distribution is®*”>
(1 +a), (TY%(1 +a)
O-Tam () e

for sufficiently long measurement times t. Here [, is a one-
sided, completely asymmetric Lévy stable law with the Laplace
image 2{L,(¢)} = exp(—u").994”* Note that the variable ¢ is in the
denominator of the argument of [, in eqn (24), and thus
moments (£") exist. In particular, for o = 1/2, the distribution of
$(&) is the half Gaussian ¢(¢) = (2/r)exp(—E*/n), whose maximum
occurs at ¢ = 0, i.e., in very long trajectories the most likely case

is that the amplitude 6 vanishes. For a fully ergodic process
§§ As argued in ref. 64 the fact that the average slope of 3*(4) is smaller than
unity in the data of ref. 33 may be due to the fact that the motion of the RNA in the
cell is confined.

99 The Laplace image f(u)

L{f(0)} = [ f (1) exp(—ut)dr.

of a function f(f) is defined as f(u)=

Phys. Chem. Chem. Phys., 2014, 16, 24128-24164 | 24137
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A

Fig. 8 Sample trajectories of a subdiffusive CTRW with power-law waiting
time PDF (14) for « = 1/2. For 10 individual trajectories of length 10° (a.u.)
we show the time averaged MSD (6). While the general slope of the time
averaged MSD 62(A) follows the linear lag time dependence predicted by
eqn (20), local deviations of the slope are visible. Moreover, the variation
(scatter) of the amplitudes between different time traces is distinct. Both
effects are due to the occurrence of long waiting times between jumps,

due to the scale-free nature of (), egn (14).

with o = 1 the distribution has the sharp form ¢(&) = §(¢ — 1),
which implies that individual trajectories are completely
reproducible and there is no scatter in the relative amplitude
¢ around the ergodic value £ = 1. The variance of the amplitude

fluctuations of 8* is measured in terms of the ergodicity break-
ing parameter®"”’

(14 )

e G
I'(1+2a)

EB = lim [(&%) - (¢)’]

lim (25)
which monotonically varies from EB = 1 for o« — 0 to EB = 0 for
o — 1. The latter mirrors the ergodic behaviour found for
Brownian motion by Nordlund.

How can scale-free forms of the waiting time distribution
(14) come about? Scher and Montroll explained this in terms
of energetic traps in a quenched energy landscape as that
shown in Fig. 9. When the depths of individual energy wells
are exponentially distributed, the motion of a particle on this
landscape is dominated by individual thermal escapes from
these traps characterised by the Kramers/Arrhenius activation,
only to be trapped again in the next well. As the motion of the
particle progresses, it typically encounters ever deeper wells,
effecting the subdiffusive behaviour.>® This scenario indeed
gives rise to the waiting time PDF (14).]||*””® The correspon-
dence of the Arrhenius-type escape in the energy landscape
to power-law waiting time distributions renders the CTRW an

Il More precisely, the quenched trap model in one and two dimensions leads to
correlations when the particle revisits traps. The resulting process is thus
different from the annealed subdiffusive CTRW. Such correlations can be avoided
when the process is embedded in three or more dimensions, as now the random
walk is transient. Alternatively, an additional bias as shown in Fig. 9 can be used
to eliminate correlations. The concept of trapping landscapes was extensively
broadened by Bouchaud to introduce ageing and weak ergodicity breaking in
glasses.>*7®
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Fig. 9 Quenched trap model with constant bias.>®> We show a realisation of
the trapping landscape with exponential distribution p(E) = Tg’lexp(fE/Tg)
of trap depths E, where we set the Boltzmann constant to unity. The system
specific “glass” temperature Ty (here, Ty = 1) sets the width of p(E). We also
include a unit tilting force. On its way through this landscape, a random
walker successively falls into traps and faces escape times given by
Arrhenius’ law © ~ exp(E/T), where T is the temperature of the thermostat.
Due to the tilt, revisits to a given trap are unlikely, and the model thus
corresponds to an annealed (biased) continuous time random walk with
power-law waiting time PDF (14) with o = T/T,. When the system temperature
is below T, subdiffusion is effected.

extremely successful mathematical model for the description
of the mechanisms of anomalous diffusion in a number of
important physical systems.

Alternative sources for the power-law form (14) are spatial
traps. One example is the Havlin-Weiss comb model originally
designed to mimic the spatial trapping of particles in the
dangling ends of a percolation cluster:”” a particle moves along
the x axis but can get transiently trapped in perpendicular one-
dimensional channels, a structure similar to the teeth of the
comb. As the returning probability scales like t~*/%, the effective
motion along the x axis is governed by the waiting time PDF
(14) with o = 1/2. This exponent is indeed observed in typical
experiments of tracer dynamics in subsurface aquifers and
may correspond to the trapping of tracer molecules in thin
cracks off the main water artery.”® Further examples of systems
leading to a power-law form of ¥(t) are dynamic maps’®** and
the sticking of tracer particles around stable islands of weakly
chaotic systems.*x**>"8

Ageing effects of the subdiffusive CTRW. Power-law distri-
buted waiting times lead to ageing in a wide variety of systems.
Suppose you observe the on-off blinking of a single, illumi-
nated quantum dot between a light emitting and a dark state.**
While such an experiment will show many rapid transitions
between the on and off states, occasionally very long on or off
periods will appear. Over a sufficiently long observation period ¢,
the duration of these long events typically increases with ¢.>*
A similar effect is observed for the motion of potassium channels

*** In the latter example of weakly chaotic systems the waiting times interrupt
ballistic phases, so that the overall motion is anomalous with exponent 1 < o < 2,
see Section 3.5.
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Fig. 10 Schematic of the forward (recurrence) waiting time. A process
governed by the waiting time PDF (14) is started at t = 0. Events (jumps of
a random walker or on-off transitions of a blinking quantum dot) are
symbolised by the blue impulses. When we start to follow the system’s
dynamics after the ageing period at t,, the forward waiting time until the
first jump occurs is t;.

in the plasma membrane of living cells*® or for the diffusion of
submicron tracers in a cross-linked actin mesh:*® longer and
longer immobilisation periods occur in the course of the
measurement. We already alluded to this phenomenon in the
discussion of the CTRW trajectory in Fig. 6 and from Fig. 7.
Such strongly non-stationary, out-of-equilibrium behaviour is
indeed well known from glassy systems,”®®® a field in which the
term ageing was originally coined. Subdiffusive CTRWs are non-

stationary, as we could see from the explicit dependence of &
on the measurement time ¢ in eqn (20), and they have been
proposed to capture the observed dynamics in glassy systems.®”

What if we start to probe such an ageing system only at some
(ageing) time ¢, after the system was initially prepared at time ¢ = 0?
As the subdiffusive CTRW evolves, on average longer and longer
waiting time events appear in the trajectory (compare the time trace
in Fig. 6). When we start to observe the particle we will typically find
it within one of the extremely long waiting periods. The occurrence
of the first step in this scenario is no longer determined by the
statistics of the waiting time distribution () from eqn (14) but
occurs at the forward waiting (recurrence) time ¢; (see Fig. 10),
which is governed by the PDF"%%8-%

sin mo I
h(t, ta) = —a
(f151) n Bt +t)

(26)

At longer ageing times (¢, > t;), the scaling A(ty,t,) ~ t;* in
terms of ¢; of the forward waiting time PDF is thus broader than
that of the original waiting time PDF (14), () ~ t'~* Due
to the memory of the CTRW process—directly visible in the
fractional diffusion eqn (16)—strong ageing persistently affects
the time evolution of the process.

The behaviour of the MSD for free, unconfined CTRW motion
in this ageing scenario then exhibits the crossover’*%°

(R~ {

K27, 1>t
(27)

K., L, <Lt

which for strong ageing (¢, > t) shows an apparent linear
scaling with time ¢. Only when the process evolves for much
longer than the original ageing time, ¢ > t,, the scaling with ¢
reflects the subdiffusive nature of the process.

Remarkably, the behaviour of the associated time averaged
MSD

. 1 tat+t—A , 2
52(4) —J x(t' + 4) — x(¢')de (28)

t—4),
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is much more transparent in the presence of ageing. Namely,
in the limit 4 « ¢ the result is”

<m> - Ay(ta/1) 4

r(1+a) "
where the right hand side involves the non-aged quantity 5.
The physical scaling with the lag time 4 is not affected, and all
information on the ageing enters as the ratio ¢,/t into the
universal algebraic prefactor

= 4,(/0(5(2)),  (29)

AlZ)=(1 +2) — 2" (30)

As shown in ref. 73, this ageing depression also occurs for other
time averaged physical observables. In contrast to the ensemble
average, the scaling with 4 is the same for any ageing time ¢,,
and thus time averages are in that sense more suitable measur-
ables for aged systems. Finally, we remark that in the limit of
strong ageing ¢, » t » 4, we even obtain an equivalence of the
limiting behaviour of the regular MSD and the time averaged
MSD,”?

<6a2(A)> ~ 71"(?]2 O()tj"zl ~ <x2(A)>u. (31)

Another important lesson to be drawn from ageing renewal
theory”*®” is the fact that in a growing fraction of trajectories
no jump occurs within the observation window from the ageing
time ¢, to ¢, + t. It was shown in ref. 73 that the probability to
have a nonzero number of steps during this observation
window decays as m, =~ (t/t,)' * for strong ageing ¢, > ¢t
Concurrently the discrete probability for not moving at all
during the observation grows. Observing a series of individual
particles, one therefore finds a population splitting into mobile
and immobile particles.”® This fact is important when one
wants to extract the amplitude—for instance, the anomalous
diffusion coefficient K,—from a given set of time averaged
data.” Notably, also the scatter distribution ¢(¢) is significantly
altered.”® The splitting into mobile and immobile fractions may
be underlying the experimentally observed population splitting
in molecular biological systems.®" Fig. 11 demonstrates for the
same number of simulated trajectories how ageing suppresses
the mobile fraction of particles within the observation window
by ta + .73

Ageing also affects other quantities of the subdiffusive CTRW
process, for instance, the first passage behaviour. Thus, for
unbiased subdiffusion on a semi-infinite domain the density of
first passage times acquires the three distinct scaling regimes®”

.
ol

>,

o, (1) = { rr fa L <L 15, (32)

xoKy P12 o<,
with the time scale t* ~ #"2K.?/x, containing the initial
distance x, between the particle and the absorbing boundary.
As expected, as long as ageing is weak, the scaling of the

first passage time PDF with ¢ features the exponent (—1 — /2)
of the non-aged system.****°* However, as ageing becomes
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Fig. 11 Time averaged mean squared displacement 6*(4) for individual
free CTRW trajectories (full symbols) and the averages according to
egn (29) (bold black lines). Left: non-aged system with m,, = 1. Right: aged
process, t, = 10 (a.u), in which the large fraction 1 — m, ~ 94% of
trajectories is suppressed in the log—log plot. The parameters are o = 1/2,
(6x?) = 1, (1) = 1, and t = 10°. Compare ref. 73.

more severe, there exists a competition between the magni-
tudes of the ageing time ¢, and the measurement time ¢, with
the intermediate scaling exponent (—1 — «) and the fully aged
exponent (—a). In particular, the intermediate scaling is steeper
than for both the non-aged and the fully aged system. This
observation, in principle, offers the possibility to determine
the age t, of the system from observation of the first passage
behaviour, albeit sufficiently many and long trajectories are
needed to evaluate g, (¢).”

We so far discussed the case with 0 < o < 1, when the
characteristic waiting time (t) diverges. What happens when (t)
is finite but the fluctuations around it diverge, i.e., for the case
1 < a < 2? It can be shown that indeed the process in many
facets is different from the naively expected Brownian behaviour.
Instead, different ageing features characterise the process.”>®
To fully understand the consequences on quantities such as the

time averaged MSD 4°(4) or its amplitude scatter, more work is
needed.

3.2 Noisy continuous time random walks

In the subdiffusive CTRW the particle becomes fully immobi-
lised with respect to the co-ordinate x(¢) in between successive
jump events (see Fig. 6). For charge carriers in an amorphous
semiconductor or for tracer particles firmly stuck to much
larger objects or solid surfaces this assumption appears to be
reasonable. However, imagine a submicron tracer particle in a
cross-linked network consisting of semi-flexible actin filaments.*®
In this case the particle is stuck in cages for waiting times
distributed like the power-law (14). The actual trajectory shows
distinct fluctuations of approximately constant amplitude
around a mean location.*® This behaviour stems from the
thermal nature of the system, that is, the cages in the mesh
are typically somewhat larger than the tracer particle and/or the
actin filaments making up the mesh are themselves subject to
thermal agitation, compare the results of recent simulations of
tracer motion in a flexible gel.”” In the noisy CTRW the super-
imposed noise is combined with the fully immobilised periods
of the native CTRW.’® This model is therefore relevant for the
quantitative description of the stochastic particle motion in
a large range of systems. In particular, a detailed analysis of
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recorded data in terms of the noisy CTRW may unveil an
underlying power-law waiting time despite the fact that no
clear stalling events feature in the measured trajectory.

In the above scenario of approximately constant amplitude
noise around the horizontal immobilisation periods in the x(¢)
diagram, it is a natural choice to add Ornstein-Uhlenbeck noise
in the position space to the native subdiffusive CTRW process
(see Fig. 12). For the MSD this leads to the additive terms®®

2K. D :
ROV =F gt e )
where the first term represents the contribution of the native
CTRW. The second term contains the noise strength 7D made
up of the diffusivity D of physical dimension cm? s~ ' and the
empirical noise amplitude #. This dimensionless noise strength
should not be confused with the friction coefficient used earlier.
Moreover, k is an inverse time scale governing the relaxation of
the Ornstein-Uhlenbeck process to stationarity. The Ornstein—-
Uhlenbeck component in the MSD (33) after the time scale 1/k
becomes merely an additive constant, whose relative amplitude
becomes progressively smaller compared to the first term. The
effect on the trajectory itself is displayed in Fig. 12: for increasing
noise amplitude the stalling periods of the native CTRW become
more and more masked and resemble the experimental trajectories
of the submicron tracers in the semi-flexible polymer network.*®
The results for the MSD are shown in Fig. 13.

The associated time averaged MSD becomes®®

ST 2K, A D, iy
(@)~ ri it (=™,

in absence of ageing (¢, = 0). In contrast to the MSD (33), the
time averaged MSD (34) contains the factor #~ " in the first term
representing the native CTRW contribution, while the ampli-
tude of the noise in the second term on the right hand side
is independent of ¢. While for small noise amplitude # the

(34)

observable & will essentially be indistinguishable from the
native CTRW, for larger n we observe a distinct crossover

behaviour for 5. Namely, for shorter lag times the time averaged

x(t)
%
x(t)

4t W 4t /’kﬂt———~
Gl—w v 1 glon n o 5
0 20 40 60 80 100 0 20 40 60 80 100
t/1000 t/ 1000
I, g
1=0.01

0 20 40 60 80 100 0 20 40 60 80 100

t/ 1000 t/1000
Fig. 12 Noisy CTRW process with Ornstein—Uhlenbeck noise with « = 0.8,
for different amplitudes 5 of the superimposed Gaussian noise. Increasing
n washes out the immobilisation periods of the pure CTRW process.
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Fig. 13 Ensemble averaged (top) and time averaged (bottom) MSDs for
the noisy CTRW process.®® In each case we present results for « = 0.5 and
o = 0.8 for three different noise strengths. The trajectory lengths are
t = 10°, and the symbols represent an average over 10° trajectories.

MSD shows contributions from both the native CTRW and the
Ornstein-Uhlenbeck noise. Writing <?> ~ 2Dqgppd, for 4 « 1/k

we find Dy, ~ K,t* '/I'(1 + o) + n’D. At longer lag times, solely
the native CTRW contribution is visible and Dyp,, ~ K, '/I'(1 +0).
In between these two regimes, a crossover behaviour is observed,
as shown in Fig. 13. However, when the measurement time ¢ is
much longer than the lag time 4, the Ornstein-Uhlenbeck term
is dominant. Again the time average has a clear advantage
over the ensemble average, as it reveals additional detail of the
behaviour.

A different scenario can also be envisaged.’® For instance,
when the observer is interested in the motion of a tracer inside
a living cell and the attachment of the cell to the cover slide in
the microscope turns out to be broken, the data will show the
additional Brownian noise stemming from the random cell
motion superimposed to the anomalous motion with respect to
the reference frame of the cell. In that case the MSD reads®®

2K,
<x2(t)> = m

 + 2n*Dt, (35)
which exhibits a turnover from the subdiffusive scaling with ¢*
to the linear Brownian growth ~¢ in the long time limit. The
associated time average is always linear,”®

<55625>hV44%§£47447+72n;DA' (36)

I'(l+4a)i-—

We note that the superposition of Poissonian and non-

Poissonian noise was also discussed in a biologically inspired
reaction rate model.”®

3.3 Ultraslow diffusion of continuous time random walks in
an ageing environment

The subdiffusive CTRW process discussed so far is a renewal
process. That is, after each step the waiting time 7 is randomly
chosen from the same PDF y(t). Physically, this corresponds to
an annealed environment.>® More formally, one can view this
process as if the random walker carried his own clock around
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whose random ticks trigger the occurrence of the jumps. As we
discussed above, if we want to describe an aged subdiffusive
CTRW initiated at ¢t = 0 and evolving for the ageing time ¢,, the
statistics for the occurrence of the first jump in an observation
beginning at ¢, is modified. The first jump occurs after the
forward waiting time ¢;, which is distributed with the prob-
ability density function (26). All subsequent waiting times are
then again drawn from the standard law (14).

Here we consider a different scenario, in which each jump
event depends on the present age of the system. Imagine a
toy scenario for a rupture model, in the spirit of Zener’s
famous work on stress relaxation in solids:'* a crack in a two-
dimensional material is propagating along the discrete n axis,
as sketched in Fig. 14. The crack is represented by the bold
black zig-zag line. As indicated by the arrow, this crack has just
propagated from site n to n + 1. Crack propagation is triggered
by the red circles (the ‘vacancies’), which diffuse along the
perpendicular x axis. When the vacancy at site n hit the x = 0
line the crack tip was allowed to extend to site n + 1. To
propagate to site n + 2, the vacancy at n + 1 has to diffuse to
x =0, etc. If the vacancies can only diffuse along a finite interval
of length / on the x-axis, they return to x = 0 on time scales
7, =~ /> This 1, then is the average time for the crack propa-
gation from one site to the next, and we will find the crack
propagation law (n(t)) ~ t/t,.

What happens if the length / becomes very large and the
vacancies can venture far away? As known from the theory of
comb models,”” the probability density of return to x = 0 is of
power-law form, proportional to t~* ~ ¥, Typically, when the tip
of the crack reaches a new site, the vacancy will be away from
x =0, and the triggering event for the crack propagation to the
next site then corresponds to the forward waiting time ¢,
distributed according to eqn (26) with o = 1/2. In contrast to
the previously discussed renewal ageing CTRWs, however, the
next propagation step of the crack tip again occurs with the
forward waiting time, characterising the arrival of the next
vacancy at x = 0, and so forth. In other words, every step occurs

A Xx

01T AAAAY g

n n+1 n+2
Fig. 14 Sketch of the crack propagation model discussed in the text. The
tip of the crack (black zig-zag line) propagates from site n to n + 1 when
the vacancy represented by the red circle diffuses to the origin (x = 0) at
point n.
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with the forward waiting time ¢;. The probability that the tip
arrives at an extremely long forward waiting time ¢, increases
considerably.ff{ This fact significantly alters the dynamics of
the process. Formally, this scenario corresponds to a random
walker, which is updated by stationary, site-specific clocks.

If we generalise the CTRW model and consider a process in
which every jump occurs with the waiting time PDF (14) with
general 0 < « < 1, it can be shown that the crack propagation
dynamics is reduced to the much slower logarithmic law"**

() ~ 12E/0)

PR (37)

where p = —I''(«)/I"'(2) — 7 in terms of the complete I" function
and its derivative I/, = 0.5772. .. is Euler’s constant, and ¢, is a
cutoff time to avoid divergencies at ¢ = 0. The counting process
n(t) is deterministic in the sense that the relative fluctuations

(m2(1) = (n(1))? N 1 (8)
(n(1)) — \ ulog(t/ty)
albeit slowly, decrease during the progress of time.'®" For o > 2

the process is normal and statistically equivalent to a Poisson
update, which is equivalent to the above scenario with finite
length ¢/ for the vacancy diffusion leading to the linear time
dependence (n(t)) ~ t. However, similar to our observations
above, the case with a finite characteristic update time (z) but
diverging variance of waiting times with 1 < « < 2 displays the
power-law anomaly (n(¢)) ~ ¢ '.'!
Interestingly, the time average over the time series n(¢),

<5@ﬁ>~7%bg(£)4

is linear in the lag time 4, in analogy to the results (20) for the
regular renewal subdiffusive CTRW process. The inverse depen-
dence on the measurement time ¢ with the logarithmic correc-
tion observed here, in a rough way can be viewed as the o — 0
behaviour of the power-law relation in eqn (20).

Above we constructed the crack propagation model such
that the motion of the tip is fully biased and each step is
directed to higher n values. What if we interpret the update rule
for the counting dynamics n(¢) as jumps of a random walk
process in real space? To avoid correlations when the random
walker revisits the same spatial point and its next update is
governed by the same clock as during the previous visit, in
analogy to the discussion of the quenched trap model we could
include a spatial bias of the random walk. Alternatively, we
could embed the random walk in three dimensions. Due to
the transient nature of this process, revisits are significantly
reduced, and the MSD

(r°(e) =~ log(t/to)

(39)

(40)

+11 Remember the fact that for long ageing times the probability density function
(26) of the forward waiting time decays with the power —o and is thus signifi-
cantly broader as the regular waiting time density (14).
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of the walker is then proportional to (n(¢)), while the corre-
sponding time averaged MSD

(3(2)) = 1og(1/10) (41)

t

(A)>. Such a random walk process thus exhibits
weakly non-ergodic behaviour.

The random walk process in an ageing environment corre-
sponds to a non-renewal process in dimension one and two.
In dimension three it is a renewal process, however, here the
waiting time distribution (14) is replaced by the PDF of the
forward (recurrent) waiting time. In other words, due to
the logarithmic nature the process, eqn (37), can be shown to
be governed by the limiting distribution for the product of
independent random variables, the log-normal distribution.'®*
This approach may thus be of relevance to a large range of
applications in which this distribution is identified."*>

In the regular, renewal subdiffusive CTRW ageing affects the
statistics of the first jump, given in terms of the forward waiting
time ¢. All subsequent jumps occur with the regular waiting
time PDF (14). The system remembers the first step, due to the
slowly decaying memory inherent to the process, seen in the
non-local time operator of the associated fractional diffusion
eqn (16). Once the process time exceeds the ageing time signi-
ficantly, i.e., t > t,, the ageing effects are no longer visible.}%%
In the non-renewal scenario discussed here the system has a
high likelihood to encounter atypically long waiting times at
every step and thus every single step includes ageing. This
causes the massive retardation of the motion, giving rise to the
emerging logarithmic law. Such time dependencies occur in a
large variety of systems, inter alia, the crumpling of paper,'®®
compactification of grains,'®* or record statistics."®> Recently,
it was shown that the long time behaviour of a tracer particle in
a single file system, in which individual particles repel each
other and may stick to a functionalised channel with power-
law waiting times, can indeed be described in terms of the
logarithmic time dependence derived here within the non-
renewal ageing process.'%°

Other ultraslow diffusion processes. In the theory of stochastic
processes, the logarithmic time evolution has a prominent
representative, namely, Sinai diffusion.’®” In this special case of
Temkin’s model,'°® the random walker moves in the quenched
energy landscape created by a seed random walk. Thus, locally
the walker experiences a force of the same amplitude, randomly
to the left or the right. The walker can become trapped signi-
ficantly when the bias in a number of adjacent sites points in
the direction of the walker’s current location. To get to a
distance x from its starting point the particle needs to cross
an energy barrier of the typical order /X, corresponding to an
activation time scale t ~ 7, exp(c+/X), where 7, is a fundamental
time scale and ¢ a dimensional constant. The typical distance
covered by the walker during time ¢ then scales according to

scales like <

i+ This is true for the ensemble averaged MSD (27) as well as for the corre-
sponding time averaged MSD. In the latter, the ageing depression A(t,/t) converges
to unity, compare eqn (28) and (29).
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the ultraslow, logarithmic law x> ~ log*(t/,),*° compare also
the discussion in ref. 109. Referring to ref. 110 for further
explanations, we quote the result for the time averaged MSD

— . 3721 A — 5494
2 ~ o 4 Z 2 e
<5 (A)> ~ 1708008 (7 = (Wgsz 7

where the tilde denotes the disorder average. Interestingly, also
here the time averaged MSD increases linearly with the lag time

(42)

and exhibits a strong sensitivity to the measurement time.
A generalisation of the Sinai model with strongly correlated
disorder'"® and a periodic Sinai model**" were reported recently.
The splitting probability of the Sinai model is determined in
ref. 112.

In terms of a renewal CTRW ultraslow processes can be
established by using a waiting time PDF of the form () ~
1/(¢log"*7t),'***711® which is normalised but does not possess
finite moments of any power () with g > 0. It produces an
MSD of the form

(x*(t)) ~ log’t, (43)

i.e.,, for y = 4 the MSD scales identically to that of the Sinai
diffusion. The weakly non-ergodic behaviour of ultraslow CTRWs
is analogous to eqn (42) for Sinai diffusion, apart from the general
exponent y and the prefactor,
204y 2 4
<5 (A)> ~ () x . (44)
The time averaged MSD, the localisation of the diffusion
particle, as well as the ergodic properties of both Sinai and
ultraslow CTRW diffusion are analysed in ref. 110, discussing
some of the fundamental differences between time averages
recorded in annealed versus quenched environments.

Finally, ultraslow diffusion can also be effected by iterative
dynamics maps, as shown by Driiger and Klafter."'® Instead of
the power-law maps with a single exponent z discussed in ref. 79,
however, ultraslow diffusion emerges when an entire hierarchy
of exponents is considered. In very dense two-dimensional lattice
gas systems, ultraslow diffusion emerges, as well.'"”

3.4 Correlated continuous time random walks

Another way to break the renewal character of the standard
CTRW process is to introduce correlations between successive
waiting times. Correlations appear naturally in the motion
behaviour of higher animals or humans, or in the dynamics
of financial markets. They are also present for particles
diffusing in quenched disorder, compare the above discussion
of the quenched trap model or Sinai diffusion. It is there-
fore consequent to consider non-renewal CTRW processes
with built-in correlations. This can be achieved by extension
of the subordination of the physical time to the number
of steps of the process.''®''® An alternative approach is the
following.

Assume that successive waiting times are correlated in a way
that waiting time t; is given by waiting time 7, ; modified by a
small increment, dz;, that is, 7, = 7;_; + J7;. The increments
0t; may be positive or negative. Successive waiting times are
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thus correlated: a short waiting time is followed by a similarly
short one, and vice versa for a long waiting time. This approach
corresponds in fact to a random walk in the space of waiting
times, and we can write the current waiting 7, time as the sum
of increments'*°7'%?

7;= |01g + 0Tp + ... + 014 (45)

The absolute value occurs here as waiting times always have to
be positive. These increments dt; are then chosen to follow a
given probability distribution. We may, for instance, consider
the symmetric Lévy stable law defined in terms of its Fourier
transform as exp(—c,|k|”). The process can then be shown to
produce a power-law MSD of the form (8) with anomalous
diffusion exponent

Y

=— 46
* 1+y (46)

whose range spans from zero (for y = 0) to 2/3 (for y = 2) and
thus leaves a gap to normal diffusion.’*>'*! Brownian motion
with « = 1 in this model can only be restored by completely
breaking the correlations."*® In the limit y = 2 the mode relaxation
is of stretched exponential form, P(k,t) ~ exp(—ct"?), and for the
range 0 < o < 2 it is of power-law shape, ~¢ *.'**

Fig. 15 compares the CTRW model with correlated waiting
times (45) with the regular subdiffusive CTRW. In the corre-
lated case the gradual increase of the waiting times is distinct
from the occasional very long waiting times of the uncorrelated
model. Also the trajectories of the two models are very different:
without correlations, the long waiting times effect distinct
immobilisation events, while for the correlated waiting times, the
motion appears almost Brownian, albeit with a gradual increase of
the waiting times.

In this process the waiting time on average is an increasing
function and diverges in the limit of many steps. The correlated
CTRW process indeed exhibits weakly non-ergodic behaviour,'**

=5 A
2 ~—
<(S (A)> /() (47)
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Fig. 15 Trajectory x(t) (top) and individual waiting times (bottom) in the
regular subdiffusive CTRW model with o = 2/3 (left) and the CTRW model
with correlated, Gaussian waiting times®>® with y = 2 (right). Both cases
lead to the same MSD (8) with o = 2/3.
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such that the range of the ageing exponent 1 — y/(1 + y) is in
between 1/3 and one. Moreover the process ages, as shown via
the decaying response of the process to a sinusoidal driving
force.'??

Similarly, when the waiting times are exponentially distri-
buted but the jump lengths correlated the process leads to the
exact form™*°

() = Ks(t(t + 1)(2t + 1)) ~ Kst® (48)

of superdiffusive behaviour with the asymptotic cubic
Richardson form® when the distribution of jump length incre-
ments is Gaussian. When the jump length increments are
drawn from a Lévy stable law with index u, the MSD diverges.
From fractional oder moments one can derive the scaling
relation x* ~ " For the case u = 2 the weakly non-
ergodic form of the MSD

- K A 34> A K
<¥u»:%y%+&(ﬁj———>~iﬁ%

474 4 4 (49)

was obtained exactly, and the expansion is valid for 4 « ¢.'*°
3.5 Superdiffusive continuous time random walks and
ultraweak ergodicity breaking

For completeness we also consider superdiffusive renewal
CTRW processes. To that end we note that the introduction
of a waiting time distribution into a standard random walk
process at most leads to a subdiffusive behaviour when the first
moment of the waiting time PDF (t) diverges. Superdiffusion
cannot be achieved within the approach of a generalised waiting
time concept. There exist, however, two pathways to extend the
CTRW model to superdiffusion.

The first way is to modify the distribution of jump lengths.
All CTRW processes considered so far (apart from the case of
correlated jump lengths in the preceding section) correspond
to the motion on a lattice, or in continuous space with a jump
length PDF that possesses a finite variance (5x*) and zero mean
(ox). What if we choose a jump length distribution A(dx), for
which the variance (0x*) diverges? Consider a Lévy stable form
with the asymptotic power-law behaviour A(6x) ~ 1/|dx|""* of
the jump lengths with the stable index 0 < u < 2. When the
waiting time PDF has finite moments, this process was called a
Lévy flight by Mandelbrot."** The divergence of the jump length
variance translates into the divergence of the second moment
of the PDF P(x,t),"*> and only fractional order moments (|x|*)
with 0 < x < p exist.”” The trajectory of a Lévy flight is fractal
(see below) of Hausdorff dimension u. A single trajectory
therefore never fully covers an embedding space whose dimen-
sion is larger than p. This is particularly relevant in the two-
dimensional world, in which effectively most human and
animal motion occurs. There exist also several studies con-
sidering the combination of a diverging characteristic waiting
time () with a Lévy stable distribution of jump lengths, either
in terms of fractional diffusion equations'?® or via using
subordination arguments.'®” Due to its fractality a single Lévy
flight trajectory cannot visit all points in space when the
stable index u is smaller than the embedding dimension d.
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Under confinement to a finite area, Lévy flights are ergodic,"®
and the convergence to the ergodic state can be analysed in
terms of the apparent fractal dimension or in terms of the first
passage dynamics.'®® The divergence of (x*) as well as the
ensuing non-ergodicity of Lévy flights can be rectified by a cutoff
in the jump length PDF"*° or by dissipative non-linearities."*!
Such stochastic processes behave like a Lévy flight until the
regularisation of the jump length PDF comes into effect.

The alternative approach is to introduce a coupling between
jump lengths and waiting times. In subdiffusive CTRWSs
described previously the waiting time and jump length PDFs
enter in the multiplicative form (dx,7) = y(t)A(6x).** Intro-
ducing a functional dependence between waiting times 7 and
jump lengths dx, this spatiotemporal coupling preserves the
renewal properties of CTRW processes but due to penalising
long jumps—associating them with long waiting times—yields
a finite MSD.**"*? The simplest choice is the coupling y/(6x,7) =
W()o(|ox| — wr), in which the velocity v is introduced.
It bestows a propagating horizon to the process in the form
of two travelling ¢ peaks with decaying amplitude. For waiting
time PDFs y(t) ~ 1" with 1 < o < 2, in between these
peaks, a Lévy stable distribution is building up.'** Also Lévy
walks are non-ergodic, albeit in a way, that is different from the
above discussed non-ergodic behaviour.

To see this, we first recall that for a waiting time PDF of the
power-law form (t) ~ t~'~* their MSD scales"**'%°

{vz(lot)tz7 O<a<l1

(x*(1)) ~ (50)

2K .37 l<a<?2

The associated time averaged MSD in the ballistic phase with
0 < a < 1 scales like

@%m>~yu% (51)
with a higher order correction scaling with A*(4/¢)>*."3%'%7
In the enhanced diffusion phase 1 < « < 2 the result is**®*3®
(32(a)) ~ Koz o (52)
o—1

In both the ballistic and enhanced diffusive phases the
MSD differs from the time averaged MSD merely by a factor
of 1/|o — 1|. This phenomenon may be referred to as ultraweak
ergodicity breaking."*® Note that an analogous result was
obtained by Zumofen and Klafter for Lévy walks with stationary
and non-stationary initial conditions,** compare the discus-
sion in ref. 138. To leading order, the time averaged MSDs (51)
and (52) do not exhibit ageing in the sense that the measure-
ment time ¢ does not appear explicitly, in contrast to the
corresponding forms for the subdiffusive CTRW processes
discussed above. Further physical properties of Lévy walks, in
particular, the amplitude scatter of the time averaged MSD, are
studied in ref. 138 and 140 Additional recent studies of Lévy
walks analyse their response to an external bias and the power
spectral properties,'>® 1?8140

Lévy flights and walks are used as statistical models in many
fields, for example, to quantify blind search processes of animals
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for sparse food.'*'”'** In the science of movement ecology, the
so-called Lévy foraging hypothesis has become widely accepted."**
Recently this model was qualified for human motion behaviour
and when different search criteria and external forcing are
considered.’*” These stochastic processes also describe the
propagation of visible light in disordered optical media'*’
and the dynamics of quantum dots.>® In optical lattices the
divergence of the position of single ions was shown to follow
Lévy statistics.’*® For more details compare also Section 7.

4 Fractional Brownian and Langevin
motion

Next to the CTRW model, fractional Brownian motion (FBM) and
the motion governed by the fractional Langevin equation (FLE)
represent the second major stochastic models for the description
of anomalous diffusion processes both in the presence and in
the absence of external potentials. Physically, these types of
motion arise when we observe the effective motion of a single
tracer particle in a coupled many-body system such as a single
file of excluded volume particles, see below.

4.1 Fractional Brownian motion

We believe that FBMs do provide useful models for a host of natural
time series and wish therefore to present their curious properties to
scientists, engineers and statisticians, argue Mandelbrot and van
Ness in their defining work on FBM.'*” The motivation for this
study and Mandelbrot’s earlier work'*® were Hurst’s laws for
the discharge of the Nile and other rivers.'*
literature Kolmogorov introduced an analogous process already
in 1940"° which was then analysed further by Yaglom.'*!
Mathematically, FBM indeed has curious properties,'*’ as it is
not a semimartingale and cannot be interpreted in terms of a
random walk process.'>*"** Despite the many studies on FBM
and its wide application in various fields of science, engineering,
and beyond, many fundamental properties of FBM remain elusive,
such as the first passage properties.”>*">® At the same time FBM is
distinguished by the fact that it is the only self-similar Gaussian
process with stationary increments.'*” Note that for notational
consistency in the following we use the anomalous diffusion
exponent « in the formulation of the fractional Gaussian noise
which is related to the Hurst exponent H commonly used in the
FBM literature via o« = 2H.

Mandelbrot and van Ness define FBM in terms of the
stochastic integral'*’

_ 1 PRINCEY: ,
) = v a7 Uo“ r)T B

+ ri ((z _ e (—t’)“‘”/z)dB(t/)}

In the Russian

(53)

where B(f) is ordinary Brownian motion. A more intuitive repre-
sentation uses the Langevin equation

dz(tt) = (1),

(54)
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which is fuelled by the fractional Gaussian noise &gy(t). The
latter has a standard normal distribution for any ¢ > 0 but is
power-law correlated,§§§

<£fGn(tl)£fGn(t2)> = 05(‘9‘ - 1)Ko¢*|tl - lemi2 (55)

for t;, t, > 0 and ¢; # t,. The physical dimension of &, (2) is
thus [éegn] = cm s~ . Due to the factor (x — 1) the fractional
Gaussian noise is persistent or positively correlated for the case
1 < o < 2, and it is antipersistent or negatively correlated for
0 < a < 1. The PDF for free FBM is given by the Gaussian

P(x,1) L ( - ) (56)
X, 1) = .
Vark, 7 P\
The position autocorrelation of FBM is
(x(t)x(t2)) = K (65 + &=t — &), (57)

and reduces to the MSD (8) for ¢ = ¢; = t,. From this quantity we
can obtain the time averaged MSD'>®

<52(A)> = 2K, 4" = (x*(4)), (58)
showing that FBM is ergodic in the sense that is equivalent to
the MSD (8). As the process is self-averaging, for sufficiently
long measurement times we even obtain the single trajectory
equality, formally,

lim &°(4) = 2K, 4*.

1—00

(59)

demonstrated in ref. 156 and 157. As shown in ref. 156,
ergodicity is reached algebraically slowly, a property shared
with that of regular Brownian motion (see also Section 4.3).
For finite trajectory length ¢ the scatter distribution of the
relative amplitude ¢ = 6*(4)/(5°(4)) can be approximated by
the Gaussian™®

2
b0 /szixexp< (flé)hgzzl))

where t* is a binning time scale. Fig. 16 shows the reproduci-
bility of unconfined FBM. Note that the scatter for longer lag
times 4 — t is due to insufficient statistics of the time average.

(60)

4.2 Fractional Langevin equation motion

The FLE for the position co-ordinate x(t) of a particle with mass
m is written ag'®71°97161

dx(0) [ na—2 (Ax()\
m dt2 = -7 ,[O(t_t) (T)df +71 éfGn(t)v (61)

where y* is a friction coefficient of physical dimension [y*] =
g s~ % and ggn(¢) represents the fractional Gaussian noise (55)
with1 < a < 2.

The FLE (61) is a special form of the Hinggi-Kubo generali-
sed Langevin equation'®*'®>'® driven by noise, which is not
white but correlated. In contrast to the d-correlated white noise
encountered in the Langevin eqn (5), that is, the correlation

$§§ One could also write{Eiu(t:)erunlta)) = 0K 6 — 6ol + 22|ty — " 5(t, — 1),
to include the case t; = ¢, explicitly.
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10° 10" 102 10°

A
Fig. 16 Time averaged MSD &%(4) as a function of the lag time 4 for FBM
with o = 0.5. Individual trajectories provide quite reproducible results, no

significant scatter of the amplitude between different 6%(4) arises, and the

anomalous scaling §°(4) ~ 4'/? is fulfilled.

function of the noise at time ¢ explicitly depends on past times
¢ < t with a given weight function. Concurrently, the friction
term becomes a convolution integral such that the noise kernel
balances the non-local noise to fulfil the generalised fluctua-
tion dissipation relation.'®>"®>'®* Such equations with memory
arise in the Mori-Zwanzig projection operator framework."'®*
The FLE corresponds to the special case for which the noise
autocorrelation is given by the power-law decay of the fractional
Gaussian noise &ggp(t). The friction kernel is then equally of
power-law form.

The Kubo generalised fluctuation dissipation relation fixes
the noise amplitude in the form

“/*kBT

i e )

Typically, in single particle tracking experiments one observes
the overdamped motion of the tracer. Such overdamped motion

corresponds to neglecting the inertia term in eqn (61), produ-
cing the overdamped FLE

«/*Jr (t—1)? (dx(l,))dt’ = 1" Eran (1)

0 dr

(63)

The convolution integral can be replaced with the Caputo time
fractional derivativeqqq

dzic{x(l)i 1 ! no2 ((dx(?') '
dp _F(oc—l)JO(t_[) 2( dr )dl’

(64)

which then constitutes the fractional Langevin equation™>’

d*x(1) d>*x(1)
de? de—

m =—yTe-1) + 1" (1), (65)
or the corresponding overdamped FLE. Note that due to the
coupling of the friction kernel and the fractional Gaussian noise

via the fluctuation dissipation relation a large instantaneous

999 Or, alternatively, with the Riemann-Liouville fractional operator (17), if only
the initial values are included properly.**
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value of the noise couples to a high effective friction. For this
reason fractional Gaussian noise with 1 < o < 2 effects
subdiffusion behaviour, as shown in eqn (66) and (68). The
fact that the friction increases with how strongly we push a
substance is indeed an everyday experience when we deal with
viscoelastic substances such as toothpaste, honey, or liquid
concrete.'®® Poking gently with our finger into toothpaste, it
yields like a liquid. If we hit it hard or jump onto the toothpaste
tube, the response is that of a very highly elastic substance,
causing the tube to explode.
The MSD described by the underdamped FLE becomes'®®
2
(x¥*(4)) = lim 6*(4) = Zp T4

1—00

Ey3 (—F(oc - 1)%1“), (66)

and is thus ergodic. From the series expansions around z = 0
and oo of the generalised Mittag-Leffler function

) N ) zn
L = =- 7
w00 = 2 5 m = " 2T = pn) (67)
we thus obtain the limiting behaviours
, ks Tt*/m, 1 < [m/y*)'*
(P(0) ~ 1 NC
s T(I( = 1))~ 27 13> [mfy]”

of short time ballistic motion,"®” which eventually crosses over to
the overdamped subdiffusion with exponent 2 — o for1 < o < 2.
In this regime, that is, the motion is subdiffusive for persistent
noise.

The FLE can be shown to govern the effective dynamics of a
tagged particle in a single file'®® or the motion of a monomer
in a long polymer chain.’®® The FLE was used to model the
internal dynamics of proteins.””® It occurs naturally for the
description of particle motion in a viscoelastic environment,"*’
and is related to generalised elastic models'”* as well as hydro-
dynamic interactions.'”>'”® FLE-governed motion was also
identified from the motion of individual lipid molecules
from large scale simulations of lipid membranes."’*'”> Visco-
elasticity controlled subdiffusion was reported for the motion
of messenger RNA molecules and chromosomal loci in living
E. coli cells.”»"7*""7 In ref. 68, the long time motion of lipid
granules in living yeast cells was shown to cross over from non-
ergodic CTRW motion to viscoelastic-type subdiffusion, con-
sistent with observations in a different strain of yeast cells.*
In complex fluids, viscoelastic subdiffusion was, inter alia,
revealed in ref. 179 and 178 Based on microrheology data of
endosomes in living cells,'®® stochastic models for active
transport in the molecularly crowded cytosol of living cells
were recently discussed. These include the viscoelastic nature
of crowded fluids'”® in terms of the FLE, and it can be shown
that depending on the size of the cargo or the biochemical
turnover rate of the motor molecule, normal ((x(t)) ~ ¢) or
anomalous ((x(¢)) ~ t* with 0 < « < 1) transport can be
effected.'® We finally note that the FLE exhibits dynamic
transitions with different critical exponents of the driving
fractional Gaussian noise for free and forced motion.'%
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4.3 Transient non-ergodicity and transient ageing

While we saw that asymptotically the unconfined motion of
both FBM and FLE motion is fully ergodic, we mention the
following caveat lector for these processes in the confines of an
harmonic external potential V(x) = 2mw?x® of strength w® > 0,
such that the dimension of w is s~ .

Namely, consider the subtle difference in the equilibration
behaviour between the MSD for FBM, 6183

2 2 2 * 02 ot
(x*(1)) ~ (x >st_E°‘(°‘ — DK, e, (69)

which features an exponential relaxation to the stationary value
(x*)¢, and the time averaged analogue'®®

KO(*F(] + OC)Q—U)A 2“(“ — I)KO(*
- R

8*(4) ~ 2(x*) (70)

st w®

The relaxation dynamics of the time averaged MSD &°(4) is

algebraically slow. Note that the stationary value'®®'%*
K *
) o
) = I'(1 71
<Y >st ® ( + OC) ( )

for FBM explicitly depends on the exponent o as the noise is
external and thus not coupled to the friction constant, i.e., no
fluctuation dissipation relation is fulfilled here. Moreover the
factor of two in front of the stationary value (x”)s; appears in
the time averaged MSD (70) due to the very definition (6)
involving two times the MSD at times ¢’ + 4 and ¢’ and a decaying
cross-term."®®

A behaviour similar to that of eqn (71) is observed for FLE
motion. Here, however, the noise is internal, i.e., the fluctua-
tion dissipation theorem is fulfilled. Thus, the thermal value

<x2>th_ kBT

T ma?
is reached for any o. The power-law relaxation for the time
averaged MSD in a viscoelastic environment was indeed observed
experimentally by optical tweezers single particle tracking in
wormlike micellar solution,"”® as shown in Fig. 17.

What about ageing, the dependence of some physical obser-
vable on the time span ¢, between initial preparation of the
system at t = 0 and start of the measurement (see Fig. 10)? For
regular Brownian motion physical observables are independent
of the ageing time ¢,. In the following cases for the FBM/FLE
models, however, we find transient ageing. For both FBM and
FLE motion the time averaged MSD splits into two additive
terms, %

(72)

(87(4)) = fuld) + fuge( 512, (73)

The stationary term f;; depends solely on the lag time 4, while
the ageing term f,. is an explicit function of ¢ and ¢,. As long as
the initial velocity distribution is not thermal, f;,. ~ 1/¢ for long
t. For free FLE motion at sufficiently long 4, the stationary term
is subdiffusive, f;, ~ 4>~*. When additionally we are in the
strong ageing regime ¢, > t, the scaling

fage = &7 (74)
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10° 10'
lag time A (ms)

Fig. 17 Comparison of the time averaged MSD <52(A)> from 10 individual
trajectories for beads of d = 0.96 um diameter in 1 weight% worm-like
micellar solution compared to the control data in pure water”® Two different
fitting curves to the results are depicted: the full solid line represents the
exponential relaxation pattern foy(4) = 2(x*)n(1 — Cie~“24), while the dashed
line represents the power-law relaxation behaviour foo(4) = 2(xz>th(1 — C3/4%9),
where C; are fit parameters. For the data shown here the arbitrary units on the
ordinate are converted to nm? by multiplication with ~8 x 10% [179].

is derived.'® For confined FLE motion, the ageing term now
features the power-law dependence,"®>

Joge = 28,

For confined FBM, however,
exponentially,'®

(75)

the ageing term decays

Sage ~ Xo exp(—2kt,). (76)

Thus, the ageing behaviour for FBM is negligible, while for
strongly aged FLE motion the transient ageing may be obser-
vable under specific conditions.

5 Scaled Brownian motion

A popular model for the description of anomalous diffusion is
that of scaled Brownian motion (SBM), which is based on the
time-dependent diffusivity K(¢)."**'®® The associated Langevin
equation with the white Gaussian noise &(¢) of unit intensity,
(E(O)E(E)) = o(t—t'), and zero mean then becomes

O AR < &) (77)

dt

For the power-law form
K(t) = ak,*t" " (78)

of the diffusion coefficient the MSD of the process is given by
eqn (8) with K, = I'l1 + «)K,*. Note that while the physical
dimension of K(t) is cm® s ", that of the constant K,* is cm® s~ ™.
In SBM the scaling exponent is allowed to vary in the range
0 < o < 2, so that the process describes subdiffusion as well as
sub-ballistic superdiffusion.
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The associated time averaged MSD can be calculated exactly,
yielding"®%1%°

) =m0 007 e

In the limit 4 « t, we obtain the linear lag time dependence'®>'*°

PPN A4
2
(5°(4)) ~ 2K, (80)
familiar from subdiffusive CTRW processes, eqn (20). However,
expression (80) for SBM is valid in the whole range 0 < o < 2.
When the lag time 4 approaches the measurement time ¢, the
limiting form™®®

oo — 1)K~
Ry

oK,
-

<62(A)> ~ 2K = I (= A) + (t—4)> (81)
describes a cusp at around 4 = ¢ as shown in Fig. 18 the

time averaged MSD (81) converges to the value of the MSD

(x*(#)). However, while the disparity (x(4))+#0(4) between
the MSD and its time averaged analogue renders SBM weakly
non-ergodic in the sense defined above, the amplitude scatter

of 6*(4) around the trajectory-to-trajectory average o°(4)
measured in terms of the dimensionless variable ¢ is approxi-
mately of Gaussian form with a relatively narrow width. For
sufficiently long trajectories, that is, the randomness in single
trajectories of SBM is deterministically decreased with time
and the process becomes practically reproducible.'®® SBM
therefore belongs to a non-ergodicity class, that is funda-
mentally different from subdiffusive CTRW, for which the
randomness of time averages is present no matter how long
the process is followed.

Equipping the Langevin eqn (77) for SBM with an additional
external potential force F(x), one can derive the associated
Fokker-Planck equation. For the special case of a confining
harmonic potential V(x) = lmw®x”* we find"*’

0

EP(X’ 1) = (%(LDX + K(l)%) P(x,1), (82)

28

27 F

logqq <x?(A)>, logyo <6%(A)>

2.6
o=1/2 0=3/2
s : : : J 75
48 49 5 48 49 5
logqg A log4g A

Fig. 18 Convergence of the time averaged MSD (32(A)> (blue line) to the
MSD (x2(t)) (orange line) when the lag time 4 approaches the process time
t =10°1%
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where @ = »”/y includes the friction coefficient 5 of dimension s~
In the limit of unconfined motion, w = 0, the resulting dynamic
equation was used by Batchelor'®’ to describe the relative
diffusion in turbulence as a complementary approach to
Richardson’s mentioned above (see also Section 6). The force-
free propagator encoded by eqn (82) is exactly that of free FBM,
eqn (56), despite the fundamental difference between the two
processes. However, in the presence of the confinement, » > 0,
we obtain the MSD

(x3(2)) = 2K, *t"e > M(o,1 + a,200t) (83)

in terms of the Kummer function M(a,b,z)."**> The limiting

behaviour at short times ¢ « 1/@ is that of free anomalous
diffusion, (x*(¢)) = 2K,*t*, i.e., when the particle starts in the
vertex of the potential it initially moves force-free. At long times,
we observe that the motion does not become stationary but the
MSD exhibits the scaling law'®°

(84)

The motion is thus influenced by the effective strength o of the
potential. However, as the diffusion coefficient is explicitly time
dependent, this implies that the system is characterised by a time
dependent temperature, see also the discussion of Fulinski.'®®
Alternatively, one could view this as an effect of a time depen-
dent mobility. Clearly this corresponds to a far from thermal
equilibrium state.

For its interesting behaviour, we mention the associated
time averaged MSD in the harmonic confinement. In the limit

A « t we find the result'®®

S\ KA A  oa
<5 (A)> =T (1= 2 (89)
where we observe an apparent plateau at 4 > 1/@,
<\ 2K)S
2 A ~ % -1
(F(a)) ~ ==, (86)

as demonstrated in Fig. 19, in which we compare the full
analytic solution (83) for the MSD and the exact form for
the time averaged MSD with results from simulations. In a
way, the behaviour is opposite to that of subdiffusive CTRWs,
for which we observe the thermal plateau for the MSD and a
continuing power-law growth for the time averaged MSD,*’
confirmed by experiment.®® Experiments observing the
apparent plateau (86) for the time averaged MSD of SBM may
misinterpret this for a sign of confinement, contradicting the
result (83).

In view of these results SBM represents a very simple model
for sub- and superdiffusive anomalous diffusion. However, its
physicality is somewhat questionable for most experimental
settings, in which the system is connected to a heat bath, or
when the system is stationary. Its non-ergodic properties are
certainly interesting, and may be used to model active processes
in the superdiffusive range 1 < « < 2. SBM-type dynamics in
fact occurs in free granular gases.”®
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Fig. 19 MSD (x(t)) (orange symbols) and time averaged MSD (4%(4)
(blue symbols) of SBM with « = 0.5 (top) and o = 1.5 (bottom). In each case
we consider the potential strengths w? = 0.01 (circles) and w? = 0.1
(squares). The full lines represent egn (83) and the numerical evaluation
of the exact results for the time averaged MSD.18° The convergence of the
corresponding ensemble and time averages at 4 = t = 10° can be shown
numerically, in analogy to Fig. 18 for the unconfined motion.

6 Heterogeneous diffusion processes

Single particle tracking experiments usually employ relatively
large tracers. The above mentioned granules and artificial
tracers are all in the range of several hundreds of nanometres
in size,48750:68:69:179.193,194 Gonsiderably smaller tracer proteins were
recently employed to sample much larger subvolumes of living cells,
producing cell-wide mobility maps. The results show significant and
systematic variations in the position-dependent cytoplasmic diffu-
sivity K(x) with a growing distance from the nucleus.” Similar
approaches using space-dependent diffusivities are routinely used
in various fields, for instance, in the mathematical modelling of
tracer dispersion in subsurface hydrology.'*® We also recall
Richardson’s approach to the description of his measurements
of the relative dispersion of two tracer particles in a turbulent
flow, in terms of a diffusivity depending on the relative tracer
position,*® mentioned in the Introduction.

Diffusion processes with position-dependent diffusivity, K(x),
are described by a simple Markovian Langevin equation with
multiplicative noise™®”

dx (1)
dt

= VK@) x (1), (87)
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where &(¢) represents white Gaussian noise. In the Stratonovich
sense, the diffusion equation for this heterogeneous diffusion
process (HDP) has the symmetric form

%P(x, 0) = a%(m%[ K()P(x, z)} ) .

A diffusing particle tends to accumulate in regions of low diffusivity.
The HDP is fundamentally different from the CTRW approach:
standard CTRWs are running off in an annealed environment and
thus constitute renewal processes. HDPs represent a deterministic
(in contrast to random) quenched environment. The particle, that is,
has the same diffusivity K(x) each time it returns to the point x.
Interestingly, despite the different nature of HDPs they share some
common features such as weak ergodicity breaking with renewal
CTRW processes. Even when the space dependence of the diffusivity
becomes annealed, many of these effects are preserved.'*®
Let us first consider the power-law forms

(88)

B + |X0ff‘ﬁ,

1/ (17 +

~ Ko|x|’

X

p>0
K(X) :Ko

xoff‘iﬁ)a B<0 (89)

for the diffusivity. The amplitude K, has physical dimension
em®# 571, The offset x in eqn (89) is introduced to avoid either
divergencies of K(x) (8 < 0) or stalling (f > 0) of the particle around
x = 0 in the simulations. In the analytical calculations we use the
bare scaling form K(x) ~ Ko|x|”. The HDP based on the diffusivity
(89) and d-initial condition for the PDF at the origin has the MSD"®”

<x2(l)> — M(%)M(KOI)M

nl/2 o

(90)

shown in Fig. 20. It is thus of the generic power-law form (8)

with the anomalous diffusion exponent o given in terms of the
197

scaling exponent f§ from eqn (89) as

(o1)

10° 10" 10% 10% 10* 10° 10° 10" 10% 10° 10* 10°

A A
Fig. 20 Ensemble and time averaged MSDs for sub- and superdiffusive
HDP processes with power-law diffusivity (89), for t = 10° and Ko = 0.01.
Note that in the simulations, to avoid divergence (subdiffusion) or stalling
(superdiffusion) at x = 0, we, respectively, use the forms K(x) = Ko/(x* + 1)
and K(x) = Ko(lx| + 1). Thin red lines represent individual traces 6*(4), thick

blue lines refer to the MSD (x3(t)) and the trajectory average <('>'2(A)>. The

expected results (90) and (93) are shown by dashed lines.
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such that we observe superdiffusion in the range 2 > f > 0 and
subdiffusion for f < 0. We note that when f approaches
the critical value f§ = 2, the anomalous diffusion exponent o
diverges. In that case the MSD assumes an exponential time
dependence. The PDF of the HDP with power-law diffusivity
(89) is given by the exponential'®”

exp x>
(2 - B)’Kot)

In the subdiffusive range, f < 0, this PDF is of compressed
Gaussian shape and exhibits a dip to zero at the origin, that is,
it is bimodal. For superdiffusion with 2 > f > 0, the PDF is a
stretched Gaussian and has a non-differentiable cusp at x = 0.
This is opposite to the behaviour observed for subdiffusive and
superdiffusive fractional diffusion equations.***9%:2%°

For the HDP with the diffusion coefficient (89) we obtain the
weakly non-ergodic behaviour'®”

(Fay= () ey T g L

o

|x|—ﬁ/2

Plx, 1) =
0=

(92)

(93)

Fig. 20 shows the MSD (8) and the mean time averaged MSD
(93) for a sub- and superdiffusive case. The linear scaling of

<52(A)> is nicely fulfilled, and individual realisations <52(A)>
show pronounced amplitude scatter around this mean. The
initial deviation of (x*(4)) from the expected behaviour is due
to the offset x.¢ used in the simulations.'®” The fluctuations of
<52(A)> around the mean <52(A)> can be fitted by a Gamma

197

distribution for both sub- and superdiffusive HDPs. " In contrast
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to subdiffusive CTRW processes the amplitude scatter distribu-
tion ¢(&) decays to zero at & = 0, that is, the process never leads to
complete stalling of the diffusing particles during the observation
time window. Concurrently, the ageing behaviour of HDPs with
power-law form of K(x) was numerically shown to be in good
agreement with the form (30) of the ageing depression of the
CTRW approach.”®! From a data analysis point of view the similar
behaviour of various quantities requires some care not to confuse
HDPs from CTRW processes.

We note that different forms for the position dependent
diffusivity K(x) such as an exponential and logarithmic depen-
dence were studied in ref. 202. The exponential case with
K(x) = (Ko/2)exp(—2x/x*), where x* sets the length scale, leads
to the MSD*”*

2
(20) ~ L 1og? () Ko

(94)
which belongs to the range of ultraslow processes discussed
earlier. The associated time averaged MSD becomes®®*

) - (2)

and exhibits an interesting square root scaling in the lag time
A for initially highly mobile particles, with initial position x, on
the negative semi-axis. For intermediate x,, however, a pro-
found splitting of the tracer populations is observed, exhibiting
AY? and A* scaling forms of the time averaged MSD, respectively,
for highly mobile and rather trapped fractions of particles in
the ensemble. This fact is reminiscent of the population splitting
effect observed for CTRW processes, Section 2.1. For more details

1/2

(95)
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Fig. 21 MSD (x*(t)) (thick blue curves), time averaged MSDs 6°(4) (thin red curves), and trajectory average <52(A)> (thick blue curves) for confined HDPs

with power-law diffusivity (89) and different exponents B2 All curves converge to the plateau value (96). For each exponent f we show N = 300 time

averaged traces of length t = 10° in the interval {—L,L}.
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0 10 20 30 40 50
t/10*
Fig. 22 Trajectory in the heterogeneous diffusivity domain model of
ref. 198. While on short scales the process appears to be Brownian (inset)

on the larger scale distinct stalling events are reminiscent of scale-free CTRW
dynamics. Data for the figure courtesy John Lapeyre.

see ref. 202. The fluctuations in the HDP model were analysed in
more detail in ref. 197, and a two-dimensional analysis para-
phrasing the mobility experiments in living cells in ref. 195 was
presented recently.”*

In Fig. 21 we demonstrate how under confinement the ensemble
and time averaged MSDs converge to the plateau value

<x2>st~ <§>sl/2 ~ of”Lz/S

where v ~ 0.6 and 2L is the length of the interval with reflecting
boundaries.”! The convergence to the plateau for both ensem-
ble and time averaged MSDs (with the aforementioned factor of
two for the time average) sets the HDP process apart from the
subdiffusive CTRW, in which no long time plateau occurs for

<52(A)>.

Finally, Fig. 22 shows the result for a typical trajectory in the
recent study of ref. 198, in which a random walker travels on a
landscape with randomly switching local diffusivity. As can be
seen from the graph, on finer scales the motion appears to be
more like normal diffusion, due to the broad distribution of
K(x) magnitudes, on a coarser resolution the trajectory appears
to be similar to that of a subdiffusive CTRW with a diverging
characteristic time scale shown in Fig. 6. It will be interesting to
compare these results to the behaviour of stochastic HDPs in
annealed and quenched environments.>**

(96)

7 Fractals

Finally we come to the third major model for anomalous
diffusion, namely, the transport on a fractal support. Like
fractional Brownian motion and Lévy flights, fractals were
popularised by Mandelbrot, in whose book The fractal geometry
of nature he came up with the epitomised phrase Clouds are not
spheres, mountains are not cones, coastlines are not circles, and
bark is not smooth, nor does lightning travel in a straight line."**
Instead, Mandelbrot argues that many natural phenomena are
statistical fractals, i.e., objects which, in a statistical sense, do
not have a scale and thus one cannot judge at what resolution a
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picture of the object was taken. Or, in other words, their length
(or area, etc.) depends on the applied scale in a measurement,
as in the celebrated coastline of the Britain paradox: with a
smaller yardstick finer details can be measured and the length
of the coastline is larger than when we apply a larger yardstick.
Mandelbrot accredits the discovery of this effect to Lewis Fry
Richardson.>*>?%°

We distinguish mathematical fractals with their strict build-
ing rules and exact self-similarity from statistical fractals, for
which self-similarity is present only in a certain average sense.
Let us briefly address these two concepts. First, mathematical
fractals are constructed by iteration. For instance, see the
Sierpinsi gasket in Fig. 23. An equilateral triangle is divided
into four equilateral triangles and the central one removed.
This subdivision rule is repeated, ideally an infinite amount of
times. From the iteration scheme: scale the original triangle
down by a factor of 2 and keep three of the resulting four objects,
we obtain the similarity dimension log3/log2 ~ 1.585, which
gives the same result as the formal Hausdorff approach.*?*2%”
We would obtain the same result if we had started by arranging
three copies of the original triangle into an object with twice the
original edge length. The Sierpinsi gasket is more space filling
than a line but does not fully fill an area. In particular, we see
that the generated object contains empty triangles on all scales.
To come from one given sector to another, a random walker on
such a geometry needs to first locate and then traverse narrow
causeways, as sketched in Fig. 24. This considerably slows down
the particle propagation in the embedding space.

As said, natural objects are not exact mathematical fractals.
However, for example, the coastlines of Britain or Norway are
statistical fractals: while their shape does not repeat exactly
on a smaller scale, their overall length fulfils a scaling law
L(e) ~ &'~ where ¢ is the length of the yard stick applied to
measure the coastline.”**'*>?%%2%° If the coastline were a
perfect line with d; = 1, its length L would be independent of

ANANANAN

ANANAKNANLNAN

Fig. 23 Sierpinsi gasket. An equilateral triangle is constructed iteratively
such that the edges of three congruent triangles make up the edges of a
triangle twice their size. The centre of this larger triangle remains empty.
Here we show the fourth generation of the Sierpihsi gasket.
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Fig. 24 A random walk on part of a Sierpinsi gasket. Each time the walker
wants to reach a sector of the gasket across one of the larger holes, it needs
to traverse a narrow causeway.

the length ¢ of the yard stick (resolution) applied for the
measurement. However, within a certain upper length scale—of
the order of the extension of the country—and a lower length
scale—e.g., the finest features appearing on a map—the fractal
dimension of coastlines typically differs from unity. Thus, while
the South African coastline with d¢ = 1.02 is almost a perfect
line, the West coast of Britain has d; = 1.25, and is thus
significantly more ramified. For finer measurement resolutions
(shorter yard stick length ¢) the measured length increases,
while coarser measurements (longer yard stick length ¢) lead to
shorter apparent L. For general fractals with a fractal dimen-
sion df embedded in a d-dimensional space, it is often useful
to think in terms of the mass of the fractal object, which, on
average, grows like M(R) ~ R as a function of the radius R.
As by necessity dy < d, the mass density therefore shrinks with
R as R% 9 as fractals are characterised by ‘holes’ on all scales
(compare the Sierpinsi gasket in Fig. 23).

An important approach to the description of porous or
crowded media is the percolation model. In site percolation each
point on a lattice is occupied with probability p and remains
empty with probability 1 — p. At the critical occupation probability
P =P (pe ~ 0.59... in two’® and p. ~ 0.31... in three®"
dimensions for a square and cubic lattice, respectively) the
correlation length of the system diverges and an infinite cluster
is formed. The percolation cluster then has a fractal dimension
df = 91/48 ~ 1.896... in two*'® and d; ~ 2.52... in three
dimensions.>"* A random walker placed on the fractal, incipient
infinite cluster allowed to move between nearest neighbour
occupied sites performs anomalous diffusion with an anomalous
diffusion exponent o = 2/d,, related to the walk exponent d,, which
is larger than d;.*'**"* According to the Alexander Orbach conjecture
dy = 3d;,*"* which is close to experimentally observed values,
compare ref. 216. Note that when the averaged motion of random
walkers placed on all clusters, a different scaling exponent char-
acterises the MSD, for more details see ref. 217.

Fig. 25 shows the critical percolation cluster on a square
lattice used for random walk simulations in ref. 218. The results
for both the two-dimensional MSD (r*(¢)) and time averaged

MSD & for the motion on the infinite cluster are shown in
Fig. 26. Both overlap perfectly, corroborating the ergodicity of
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Fig. 25 Percolation cluster at criticality on a 250 x 250 square lattice.
Occupied sites appear blue. Data provided by Y. Meroz, corresponding to
those used in ref. 218.
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Fig. 26 MSD (thicker red curve) and time averaged MSD (thinner yellow
curve) of a random walk on the infinite critical percolation cluster shown in
Fig. 25. Both MSD and time averaged MSD perfectly overlap, i.e., diffusion
on a fractal is stationary and ergodic. The straight black line shows the
expected slope o = 0.697 to guide the eye. Data provided by Y. Meroz,
corresponding to those used in ref. 218.

10° 10’ 102

this anomalous diffusion process. The straight line in Fig. 26
indicates the expected slope to guide the eye. In ref. 219, the
non-Gaussian nature of the diffusion on the critical percolation
cluster is analysed. Fractal percolation clusters are often used
for simulations of free diffusive processes®*® as well as facili-
tated diffusion processes®*" in the crowded cytoplasm of living
biological cells. A fractal support was also diagnosed to be
superimposed onto the subdiffusive CTRW motion for the
diffusion of potassium channels in the plasma membrane of
living human cells in ref. 50. It is important to note that when
we consider the motion on all clusters the motion is a forteriori
no longer ergodic: a walker moving on a finite, disconnected
cluster cannot explore the entire phase space.>"”
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While the increments of random walk processes on fractal
structures are stationary’" and the infinite percolation cluster
simulations of ref. 218 indicate that diffusion on fractals
is ergodic, this point needs further investigation, in particular,
for different types of fractals; compare also the discussion
in ref. 222. A second open question is what happens in the
presence of a topological bias, for instance, a bias away from
the backbones®*® of a diffusion cluster. In that case at least
transient non-ergodicity would be expected.

8 Strong anomalous diffusion and
infinite densities

So far we have focused our attention on the ensemble averaged

MSD (x*(f)) and the corresponding time average d°. More
generally, one may characterise stochastic processes by their
fractional moments (|x(¢)|?) with g > 0. Strong anomalous
diffusion deals with processes, which in the long time limit
satisfy®*®

(@) ~ 1@, (97)

where 1/(g) is not a constant. For Brownian motion v(gq) = 1/2
and for FBM 1(q) = «/2 so that these processes do not exhibit
strong anomalous diffusion. For unbiased Gaussian processes
like FBM the MSD characterises the width of the PDF P(x,t)
when the particles start at the origin x = 0. For this reason, from
the starting days of the Gaussian central limit theorem the
variance of the stochastic process has attracted special attention.
Experimentally, information on (|x(¢)|?) is used to support or
dispute the Gaussian nature of an underlying diffusion process
or, more generally, the mono-scaling assumption of a set of data
(see below). When dealing with complex transport of particles,
for example tracer particles in living cells when periods of active
motion contribute to the motion, the spectrum of exponents
gv(g) may in fact exhibit non-Gaussian and strong-anomalous
statistics.***

Recent experimental studies on the active transport of
polystyrene beads in living cells exhibit a particular type of
strong anomalous diffusion. The data analysis exhibits piece-
wise linear behaviour with

uq,
W@{

ag—>b, q>q.

q<(qc
(98)

with the positive constants q., x4, a, and b. Such a behaviour is
sometimes called bi-fractal scaling, as the simplest case of
multi-fractal behaviour. More importantly this bi-linear beha-
viour is widespread and found in many models of non-linear
dynamics,?**??>* transport in optical lattices,>****' models of
transport in disordered Lévy glasses,?**>** and other stochastic
models.®¥**>23¢ The parameters g, t, a, and b are non-universal
and hence give specific information on the underlying model or
process. As emphasised by Vulpiani and coworkers®*® strong
anomalous diffusion implies the breakdown of mono-scaling
theories which predict P(x,t) ~ t "f(x/t") in terms of a scaling
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function f(-). For example, FBM, FLE, sub-diffusive decoupled
CTRW, and fractional diffusion equations,*>*® do not predict
the piecewise bi-linear scaling (98) of the moments, in other
words these popular stochastic models considered above cannot
describe the active transport found in ref. 224. In experiments
a ~ 0.8 (see discussion below).

Roughly speaking, the piecewise linear scaling of the spec-
trum g1/(g) implies that lower order moments ¢ < ¢, still follow
a diffusive, possibly anomalous process if u # 1, while the
linear increase of the spectrum gi(q) ~ g for ¢ » 1 implies a
ballistic scaling, since if x scales like ¢, {|x|?) scales with ¢7. This
implies that the process is actually a mixture of both diffusive
process x oc t" and ballistic element x oc ¢, and hence
characterising the process as an anomalous diffusion process
is in some sense misleading. In particular, we should not
universally accept the special role of the second moment,
beyond the fact that it indicates certain deviations from normal
behaviour. A typical situation occurs when P(x,t) for small
x scales diffusively (v = 1/2), however, for certain large x the
scaling becomes ballistic (v = 1). Here we focus on one
stochastic model of strong anomalous diffusion, the Lévy walk
model mentioned in Section 3.5. For more details on the
mathematical treatment of the following, see ref. 237.

Lévy walks represent a widely applicable model describing
superdiffusion.’™81:23824 1p jts simplest one dimensional ver-
sion, a particle starts at the origin at time ¢ = 0, and travels with
velocity v,, drawn from the PDF F(v). The duration of the
travelling event is t; which is drawn from the PDF (t). The
position of the particle at time 7, is x = v;7,. The process is then
renewed, until time ¢ is reached: a new velocity v, and waiting
time 1, are independently drawn from F(v) and ¥(t), and this
process is repeated. The position of the particle is then simply
x(t) = [yv(t)dt. If the PDF y(1) of the flight duration is expo-
nential and the velocity distribution Gaussian with zero mean,
we recover the famous Drude model.>**> Ergodic properties of
Lévy walks were analysed in ref. 136-138, see also Section 2.5.

We assume that the velocity PDF is symmetric—F(v) = F(—v),
such that (v) = 0—and that all moments of F(v) are finite, for
instance, a Gaussian PDF. The main ingredients of the stochastic
model are the power-law distributed waiting times (14). These can
be justified from first principles models or from observations, at
least in some systems, compare the discussions in ref. 39, 51 and
241. We here limit our discussion to the case 1 < « < 2 which in
turn implies that the average sojourn time (t) is finite, however,
its variance diverges. Rather generally, it is easy to understand
that the MSD is bounded by (x*(#)) < (v*)£>. Roughly speaking,
the ith jump in the process is given by dx; = v;7;, and due to the
assumed power-law PDF of waiting times the PDF of this
increment is a symmetric distribution (due to the symmetry
of the distribution of v) with long tails

A(0x) oo [ox| . (99)

The typical number of jumps in the process is N ~ t/(t). Hence a
hand-waving argument yields the PDF of the position of the particle
N=t/(x)
using the generalised central limit theorem. Namely, x ~ > 0x;
i=1
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with the variance of dx; being infinite, such that we expect that
the PDF of particles is given by (in dimensionless units)

1 X
P(x,1) ~ WL“'O (W)

here L, o(x) is the symmetric Lévy distribution, whose Fourier
pair is exp(—|k|*), such that the case o = 2 corresponds to a
Gaussian process. Taken seriously, this central limit theorem

implies
lq/“7
ﬂxq>N/{

o0,

(100)

g<uo
(101)
q>a.

These hand-waving arguments provide the correct scaling of
the lower order moments, however, the results for higher order
moments, including the second moment, are obviously wrong:
the particle cannot travel faster than ballistic motion.| ||| Our
argument is flawed since we have neglected the correlation between
the jump sized and time in the problem. A more precise mathe-
matical analysis leads to the result**”

[4/“’
ﬂxq>A'{

q+1—o
11 s

qg<uo
(102)
q>oa

In terms of the parameters introduced in eqn (98), we thus
identify u = 1/, g. = o, a = 1, and b = « — 1. We see that the
process exhibits strong anomalous diffusion,>***374¢ the MSD
exhibits enhanced diffusion (x*) ~ > * which is faster than
normal but slower than ballistic, 1 < 3 —a < 2. The lower order
moments g < o exhibit Lévy scaling, ie., what we call anomalous
diffusive scaling. In contrast, the higher order moments are ballistic
in the sense that if ¢ > 1 we have gi{q) =g +1 — o — g, the ballistic
scaling. The power law tail of the Lévy PDF is cut off at x ~ ¢ since
particles cannot travel faster than the typical velocity permits,
compare ref. 133. This Lévy walk picture thus cures the diver-
gence of the moments beyond g = « of the original Lévy flight.

The fact that experimentally>** one finds a = 0.8 and there-
fore qu(q) ~ 0.8q and not qu(q) ~q shows that purely ballistic
motion between turning points is not a sufficient model to
describe the measured behaviour. At least on the stochastic
level this may imply that non-linear relations between jump
size and waiting times are important. The experimental finding
of non-ballistic scaling of large-g moments (in experiment the
largest g was 8) is an indication for the insights one can achieve
by analysis of time dependence of moments.

8.1 Infinite densities

At the heart of the mathematical theory of diffusive phenomena
stand the Gauss and Lévy central limit theorems. A piecewise
linear scaling of the moments in our example implies that
the Lévy central limit theorem is a valid approximation at the
central part of the PDF of particles but not in the tails. The fact
that we have only two scaling behaviours of the moments may
suggest that in addition to the central limit theorem there exists

Il As we required all moments of the velocity distribution F(v) to be finite,
we have a kind of light cone beyond which the particle cannot be found.
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another general method to describe the fluctuations. Such a
theory was recently obtained®’ and the problem related to
infinite densities. These are a class of non-normalised densities
that have only recently attracted attention from physicists.

According to eqn (102) the moments (|x|?) with ¢ < « are
given by the Lévy density. The higher order moments with
g > « are also calculated from a density denoted .#(-),>*”

(

X

o.¢]
7 ~ ﬂ*"“J |7|?9p(v)dp. (103)
—00
Jp(v) is called an infinite density, in the sense that it yields
the moments (|x|?) with ¢ > « but at the same time is not
normalised,

r Ip([@)dr = 0o (104)

—0o0
(see below for the physical meaning of v). The density .#(:) is
complimentary to the Lévy density. The infinite respective Lévy
densities fail to provide statistical information on the moments
q < o or g > a, but are useful for g > « respective g < «. The
identity of the observable of interest is thus crucial, e.g., (x*(£))
versus (|x(¢)|), in the sense that not only they yield different
scaling behaviours with time (strong anomalous diffusion) but
they are calculated from two different scaling functions. More
specifically, the infinite density has the small ¥ behaviour*”

Ip(v) ~ [v]" ), (105)

which is non-integrable and hence non-normalisable. Note that
this non-integrability is cured when we calculate, for example,
the second moment, since ¥’v~ '~ is integrable close to v — 0.
This is the reason why this function can give information on
the higher order moments g > a.

However, is the infinite density merely a mathematical con-
struction with which we obtain statistical information on the
moments of the process, or does it actually contain information
on the particle PDF? Since [~ P(x,7)dx =1 at all times, one
may wonder why a non-normalised solution emerges? The
infinite density and the density P(x,t) are related according to**”

Ip(v) ~ *P(x,) (106)

where v = x/t = [yv(¢')d¢’/t is the time averaged velocity. Since
% FP(x,1)dx = * — oo, the integral over the infinite density
diverges when ¢ — oo. Importantly, eqn (106) implies that if we
plot the density of particles (normalised to unity, with an initial
condition at the origin) according to £“P(x,£) versus x/t and t**P(x,t)
versus x/t"*, the data in both cases will collapse onto a master curve.
In the first way of plotting this curve will be the infinite density, and
thus we can estimate this density from numerical or experimental
data. In the second plot we get the well known Lévy density.>*” This
dual scaling is obviously related to the bi-linear behaviour of the
spectrum qi{g). Since the latter is very common we believe that
infinite densities also have some general validity. In mathematics,
infinite densities, briefly discussed here, are a subject of research
for many years, in the context of infinite ergodic theory.”*”>*° This
branch of pure mathematics is in fact related to the phenomenon
of weak ergodicity breaking discussed here.**

This journal is © the Owner Societies 2014


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4cp03465a

Open Access Article. Published on 22 September 2014. Downloaded on 2/7/2026 1:32:06 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Perspective

=5 0 5
v

Fig. 27 Infinite density for a Gaussian velocity distribution F(v). Notice the
divergence of the density at the origin. This divergence is non-integrable,
hence these functions are non-normalisable. Still, they describe the statistical
properties of physical particles.*’

For the Lévy walk model one can obtain explicit formulae for
the infinite density in terms of the parameters of the model.>*”
It was shown that this density depends on three measurables:
F(v), o, and the anomalous diffusion constant which characterises
the width of the Lévy density.>*” In that sense the infinite density
yields statistical information not contained in the central limit
theorem, namely it contains more fingerprints of the underlying
process: the velocity distribution (which can, in principle, be
measured independently). The small v behaviour of .#(v) is not
sensitive to the shape of F(v) (provided it is symmetric) and in
that sense it is universal. For example, for a Gaussian F(v), the
infinite density is plotted in Fig. 27. We believe that further work
on infinite densities is required since only recently these have
attracted some attention in statistical physics®*23%2°172%4

9 Measurables

Normal and anomalous diffusion are key to many biological
signalling processes and a vast number of biochemical reactions in
cells, or to the spreading dynamics in inanimate complex systems.
To be able to analyse diffusion measurements in a physical
meaningful way and to make predictions for secondary pro-
cesses such as reaction rates or signalling cascades, it is
absolutely necessary to know the exact nature of the stochastic
process driving the particle motion. For instance, the first
passage behaviour is vastly different between the processes
reviewed here. In this section we describe some experimentally
relevant observables whose complementary character enables
one to attain a fair degree of certainty that a given set of data is
based on a concrete stochastic process. Analyses based on the
application of different measures are, for instance, presented in
ref. 44, 50, 68, 69, 175, 176 and 255-260. As demonstrated in the
literature,”®®®%%7> we note that there is a priori no good reason
to assume that in a complex system one of the above processes
is sufficient to adequately describe all the observed dynamic
features: sometimes it is necessary to combine at least two
of the processes, which may influence the particle motion
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simultaneously or at different time scales. When passive diffu-
sion is combined with intermittent active motion additional
challenges to the data analysis arise.”®"

MSD

The MSD is unarguably the most common way to analyse
stochastic data. Depending on the kind of measurement the
quantity to evaluate is the MSD (x*(¢)) or the time averaged MSD

<52(A)>. The latter is the typical approach to the analysis of the

time series obtained from single particle tracking. If the time

averaged MSD exhibits anomalous scaling of the form §%(4) ~

A* and 6*(4) ~ (x*(4)) we are dealing with an (asymptotically)
ergodic process, and when we want to use the data to identify
the underlying stochastic process we can even eliminate CTRW
motion and diffusion processes with time or space dependent
diffusivity as sole contributions. To be more specific, additional
complementary measures need to be evaluated.

Scatter of time averages

The statistics of the scatter of the amplitude 6*(4) of the time
averaged MSD for a set of individual trajectories at a given lag
time 4 is a useful indicator for the classification of the anomalous
diffusion process. We quantify this scatter by the distribution ¢(&)

of the dimensionless amplitude ¢ = 6%(4) / <52(A)> and by its

variance, the ergodicity breaking parameter EB = (&%) — (&)?
introduced earlier. As a general trend the fluctuations increase
for any type of motion when the lag time is taken too large in
comparison to the measurement time ¢. We note that due to the
very definition (6) of the time averaged MSD the plateau value
observed for some of the processes under confinement is twice
the value of the MSD. When the lag time approaches ¢, the time

averaged MSD &> shows a cusp to the thermal value (x*),, as
shown explicitly for the SBM model in ref. 189.

For Brownian motion the PDF ¢(&) converges to the sharp
form ¢(&) — (¢ — 1) around the ergodic value & =1 in the long
time limit ¢ — oo. At finite ¢ this J-peak broadens. Individual

trajectories exhibit erratic fluctuations of 6> as 4 — t. The
ergodicity breaking parameter tends to zero with the ratio 4/t in
the form EB ~ A/t.

For subdiffusive CTRW motion the trajectory-to-trajectory
fluctuations are asymptotic, that is, the ergodicity breaking
parameter has the finite limiting value (25) varying with o
between unity and zero. As in this process the fluctuations are
statistically given by the number of jumps performed during its
time evolution,”? the PDF ¢(¢) remains unchanged when the
process becomes confined. The distribution ¢(¢) has a finite
value at ¢ = 0 for any given 4, a strong characteristic of the weakly
non-ergodic CTRW motion. For aged CTRW processes ¢(¢) has a
discrete immobile contribution proportional to 6(¢) and a con-
tinuum part whose distribution is qualitatively similar to the
non-aged process, albeit there occurs a redistribution of this
continuous part to larger ¢ values.” The PDF ¢(¢) for noisy CTRW
processes with superimposed Ornstein-Uhlenbeck or Brownian
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noise narrows down for increasing noise strength.’® Finally, we
note that subdiffusive CTRW processes with a cutoff of the
power-law waiting time distribution exhibit an MSD with all
features of the process with a diverging waiting time scale
roughly up to the cutoff time, however, due to the lack of
extreme waiting events the scatter distribution ¢(&) appears to
be significantly more ergodic,*® compare also the discussion in
ref. 262 and 263.

For FBM and FLE motion the scatter distribution at suffi-
ciently short lag times is Gaussian and becomes somewhat
asymmetric but preserves the property ¢(0) = 0 for larger 4."®
The ergodicity breaking parameter tends to zero with the ratio
A/t.*>® For the transiently non-ergodic behaviour under con-
finement see ref. 166 and 179. In general, the scatter distribu-
tion and the ergodicity breaking parameter of both processes
are relatively similar to those of regular Brownian motion.

SBM was shown to be a weakly non-ergodic process but its
ergodicity breaking parameter tends to zero with the ratio
A/t.1891%° The PDF ¢(¢) is approximately bell-shaped albeit wider
than for the corresponding FBM with identical anomalous diffu-
sion exponent o.

For HDPs the form of the PDF ¢(¢) follows an asymmetric
Rayleigh-like or generalised Gamma distribution."®” The width
of ¢(&) for HDPs with power-law form (89) grows from the
minimal Brownian value attained for the scaling exponent ff = 0
of K(x) and diverges at the critical point f — 2. For confined
HDPs the width of ¢(&) decreases drastically for all § values,
often reaching only a minute scatter. The ergodicity breaking
parameter tends to zero as 1/¢ for fixed 4.2

We note that in some cases, in lieu of the ergodicity break-
ing parameter defined above—which represents a sufficient
condition for (non-)ergodicity—one uses the parameter §% =

<52(A)>/<x2(A)>,138 representing a necessary condition for
ergodicity.

First passage time statistics

When sufficient statistics are available one may use the first passage
time statistics to distinguish different kinds of anomalous diffusion
processes. In single particle tracking experiments the first passage
can simply be measured as the moments in time when the tracer
passes a certain distance from its original point of release. As shown
in ref. 264 the scaling of the mean first passage time obtained from
a statistical number of repeats of such an experiment with the
distance from the origin may be a good indicator for the underlying
diffusion process. Moreover, the PDF of first passage times can be a
good indicator, especially for confined systems. While subdiffusive
CTRW processes with their scale-free waiting times still exhibit a
power-law decay under confinement,*>** other processes have an
exponential form of the first passage PDF. For semi-open intervals,
we note that the dependence of the scaling exponent for the first
passage PDF on the stochastic process may either be increasing or
decreasing**** with the anomalous diffusion exponent o, and could
thus also serve as an indicator when o is varied.

***x Notably, this occurs for FBM.">**>
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Mean maximal excursions and higher order moments

Apart from the regular PDF P(x,t) a stochastic process may be
characterised by another, related quantity, the PDF of the
maximal excursion. This PDF measures the likelihood that at
some time ¢ after its initial release at the origin, the particle has
not travelled farther than the distance x.>*>°> This distribution
may be reconstructed from the measured single particle traces,
and then higher order moments calculated from the data. For
CTRW and FBM the scaling behaviour of the second moment
of the mean maximal excursion as well as the fourth moments
are known. It can be shown that the ratios of the regular
moments (x*)/(x*)*> and the corresponding quantities of the
mean maximal excursions obey certain inequalities.>®® The
behaviour of the other processes with respect to this method
remain to be analysed. However, we mention that the method
of the mean maximal excursion has a clear advantage over the
regular PDF as the mean maximal excursion dynamics is less
dispersed and the associated moments therefore more reliable
for finite data sets.**

Distribution of local diffusivity

An interesting tool to analyse single particle tracking data is to
measure the distribution of the local anomalous diffusion
coefficient as a function of the (lag) time from the ratio of the
MSD (time averaged MSD) versus the (lag) time to some positive
power. These distributions for a weakly non-ergodic process are
different according to whether the MSD or the time averaged
MSD is evaluated. A detailed discussion for Brownian processes
with spatially varying diffusivity and for CTRW processes can
be found in ref. 266 and 267. This method still needs to be
analysed for the other anomalous stochastic processes con-
sidered herein.

Non-Gaussianity measure

Similar to the ergodicity breaking parameter EB, the non-
Gaussianity measure G involves higher order moments. In terms
of the experimentally relevant time averaged MSD we define the
non-Gaussianity as>'’

G(A):Lx@—l,

d+2 <55655>2 (107)

in dimension d, where the fourth time averaged moment is
defined via

4 1 4 / N4 q.1
5 (4) 7J (e’ + 4) — x(¢')]*de". (108)

t—A4),
For Brownian motion G = 0, while this parameter deviates from
zero for progressively non-Gaussian diffusion. The value of G
provides a sensitive measure for the type of diffusion process
under consideration. For instance, based on G measurements
for diffusion of fluorescent nanobeads in complex crowded
fluids, the Gaussian FBM-like process was recently proposed as
a suitable mathematical model rather than a CTRW process.>
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The p-variation method

The p-variation method is based on the evaluation of the pth
power of a partial sum of increments of a given stochastic
process.”””?% 1t was applied as a measure to distinguish the
non-Gaussian subdiffusive CTRW from the Gaussian FBM
process.”””**® An attractive feature of the p-variation test is its
applicability to both unbounded and confined systems, even
when based on a single sufficiently long experimental trace.
When the recorded time traces are affected by a highly noisy
environment, the p-variation test may become inconclusive.’®

Velocity auto correlation

The experimentally accessible correlation of increments along
some time trace x(¢) can be probed in terms of the covariance**

@) = & X(x(x + &) — 2(@))(x(e) — x(0))).

Although it is based on increments of the position rather than
on the real velocity of the particle, the quantity (109) is often
referred to as the velocity auto-correlation function of the
process x(t). For free, unconfined CTRW processes this function
drops to zero algebraically as C®(t) ~ 1 — (t/¢)* and vanishes at
7 > ¢ due to the independence of successive steps.** With this
property CTRW motion is easily distinguishable from uncon-
fined FBM, the latter being characterised by a crossover to
negative values (a signature of the antipersistence) and a power-
law recovery back to zero. The autocorrelation can be successfully
used to analyse the nature of an anomalous diffusion process.'**'%”
However, for confined motion also the CTRW process exhibits
some form of antipersistence due to the reflections at the
boundaries or the rising flanks of the confining potential. In
that case the behaviour of the function C%)(r) becomes empiri-
cally indistinguishable between confined CTRW and FBM.**

(109)

10 Discussion and conclusions

Brownian diffusion with its Gaussian propagator has an appeal-
ing beauty in its universality. No matter what the exact details
of the underlying process are, the limiting behaviour is com-
pletely determined by the MSD and its linear growth with time.
Concurrently, it is ergodic, so all quantities measured as time
averages of sufficiently long single trajectories can be safely
interpreted in terms of the readily available theoretical results
in terms of ensemble averages. At the same time one could also
perceive Brownian diffusion as somewhat too restrictive: many
experimental observations are much richer and cannot be
explained by the Gaussian propagator emanating from the
central limit theorem. We note that while it may be true that
apparent anomalous diffusion may in fact be due to transient
crossovers of Brownian motion in confined geometries*”*>"*
the opposite may also be true: some diffusion processes failed
under Brownian motion may in reality be anomalous.®* One of
the reasons may be the weakly non-ergodic behaviour discussed
in this review.

Especially since more refined measurement techniques such
as space resolved fluorescence recovery after photobleaching
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measurements and, in particular, high resolution single particle
tracking have become available, anomalous diffusion has been
widely observed. Most importantly, information beyond the time
scaling of the MSD can be extracted from the data. These observa-
tions demonstrate that in different systems anomalous diffusion
has different diffusive, first passage, and ergodic characteristics.
In particular, disparities between ensembles and time averaged
observables have been reported. Accommodating the features of
anomalous diffusion and non-ergodicity poses the challenge to
come up with a pluralistic range of stochastic models for the
description of non-Brownian diffusion processes.

We here summarised the state of the art in the study of the
properties of the most popular anomalous diffusion processes.
In view of their importance in the analysis of experimental or
simulations data we paid specific attention to the time and
ensemble averaged MSDs. For ergodic processes both quantities
are identical for sufficiently long measurements and ensembles.
In the opposite case, when time and ensemble averaged MSDs
are asymptotically disparate, we speak of a weakly non-ergodic
process. The rich range of behaviours is listed in Table 1. In the
sense of the ensemble averaged MSD, the considered models
span from cubic time scaling down to ultraslow, logarithmic
time evolution. Considering the lag time dependence of the time
averaged MSD, the variation is much narrower, from quadratic
scaling to a square root dependence. In most weakly non-ergodic
cases a linear lag time dependence is observed and may be
falsely interpreted as normal diffusion.

From a statistical physics point of view the variety of
behaviours listed in Table 1 poses a number of questions, in
particular, for a classification scheme of anomalous diffusion
processes with respect to their (non-)ergodic behaviour and how
fundamental mathematical concepts have to be generalised, for
instance, the Khinchin theorem.*> Moreover, it is of principle
interest whether we can construct new processes, which break

the linear lag time scaling of 6°. At the same time there are still a
number of open questions concerning the processes reviewed
here, for instance, the exact form of the ergodicity breaking
parameter EB beyond the CTRW case. Another question is to
come up with additional methods to diagnose the underlying
stochastic process from a given, limited set of data from experi-
ments or computer simulations. In particular, Bayesian inference
methods are expected to be developed further. The latter should
also work well when the observed process in fact represents a
blend of different stochastic processes.

It will also be of interest to extend the study of the ergodic
behaviour and the features of ageing from the stochastic processes
considered here to more specific systems. The latter include, for
instance, the Lorentz gas model with its rich behaviour of cross-
overs and density effects,>*® the motion in periodically structured
environments such as elastic gels,”” or the folding dynamics of
proteins.’”®?%! Other interesting current questions concern the
understanding from a stochastic point of view of Fickian yet non-
Gaussian diffusion processes,**>%* compare also the discussion
in ref. 285. Finally we mention that similar concepts to those
summarised here could be relevant for active transport processes.
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From a more practical point of view, the discussion of the

question as to what extent anomalous diffusion may impact
biological function has just begun,3%33:217,221,286-288

Abbreviations and symbols

Symbols used in the text are summarised in Table 2.

CTRW Continuous time random walk
FBM Fractional Brownian motion
FLE Fractional Langevin equation
HDP Heterogeneous diffusion process
MSD Mean squared displacement
PDF Probability density function
SBM Scaled Brownian motion
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