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We present a method based on the maximum entropy principle that can re-weight an ensemble of

protein structures based on data from residual dipolar couplings (RDCs). The RDCs of intrinsically

disordered proteins (IDPs) provide information on the secondary structure elements present in an

ensemble; however even two sets of RDCs are not enough to fully determine the distribution of
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conformations, and the force field used to generate the structures has a pervasive influence on the
refined ensemble. Two physics-based coarse-grained force fields, Profasi and Campari, are able to
predict the secondary structure elements present in an IDP, but even after including the RDC data, the

re-weighted ensembles differ between both force fields. Thus the spread of IDP ensembles highlights
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Introduction

Intrinsically disordered proteins (IDPs) are an emerging family
of proteins characterized by their ability to adopt a vast number
of configurations in solution. Their role in cell signalling,
transcription and aggregation turns them into key proteins in
cancer and neurodegenerative diseases."” One would expect
many of them to be drug targets; however very few studies have
addressed the interaction of IDPs with small molecules.?
One reason for this is the difficulty in both generating and
characterizing the ensemble of configurations that turn an IDP
functional.* A common mechanism of IDPs is a folding transi-
tion upon binding partner proteins.” The amount of secondary
structure elements in the unbound IDPs governs the kinetics
of this binding process,® thus the need to understand IDP
secondary structure elements in solution. These regions are also
called MoRFs”® and many studies aim at their identification.

A very suitable technique to characterize the secondary struc-
ture at a residue level is the NMR residual dipolar couplings
(RDCs),’ a technique that has been thoroughly developed by
Blackledge'® ™ and Forman-Kay'*"” groups, among others. In
an isotropic medium, such as liquid water, dipolar couplings
average out to zero. But if the medium has some preferential
directions, then there is a partial alignment of the molecules and
a residual coupling can be measured.
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the need for better force fields. We distribute our algorithm in an open-source Python code.

Contrary to what is the case for folded proteins, in IDPs
the alignment tensor is essentially determined by the local
(secondary) structure.'® When the main mechanism of alignment
is steric, repulsion between the protein and the alignment
medium tends to align secondary structure elements parallel to
the medium. For this reason N-H couplings convey important
information on the secondary structure. When the alignment
medium is parallel to the field they are positive in o-helices - as
all N-H are parallel to the helix — negative in B-sheets - as N-H
are perpendicular to the sheet - and are very low for regions
without any secondary structure, where residue orientations are
random. A qualitative interpretation of RDCs can be based on
these principles, but a quantitative explanation can be achieved if
one is able to generate an ensemble of configurations that
reproduce the measured RDCs.''**>16

The generation of the ensemble that fit the RDCs is the crux of
several approximations used in this field."* A common approach
is to sample random coil regions of the Ramachandran plot with
codes such as Flexible Meccano,'®'® TraDES,'®*° or BEGR*!
and then introduce secondary structure regions and weight
them with a statistical analysis'"'” or a genetic algorithm."?
This is because the physics behind these force fields is very
simple and cannot predict secondary or tertiary structure.
These methods have proved extremely successful in interpreting
several IDP studies, but lack predictive value in terms of secondary
structure elements.

The problem of optimizing an ensemble is a case of infer-
ential structure determination,?” albeit with a much broader
probability distribution. If this distribution comes from a
simulation, we would like to modify it so that it agrees with

This journal is © the Owner Societies 2014


http://crossmark.crossref.org/dialog/?doi=10.1039/c4cp03114h&domain=pdf&date_stamp=2014-10-30
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4cp03114h
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP016047

Open Access Article. Published on 13 October 2014. Downloaded on 1/31/2026 6:39:57 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

the experimental data. Ideally, the inclusion of the experimental
data should create ensembles that agree among themselves, even
if coming from different simulation methods. Here we explore to
which extent this is true.

We present a method based on the maximum entropy
principle (MaxEnt) to fit RDC data to simulated ensembles.
Maximum entropy is a logically consistent way to fit a distribu-
tion to previously known values introducing the minimum
possible modifications.>*** It has been advocated very recently
as a powerful technique to solve structural problems® and it
has already been applied to SAXS ensemble determination.?®

We generated our ensembles from two coarse-grained force
fields, which have more accurate physical terms than TRaDES
or Flexible Meccano while remaining computationally affordable.
Coarse-grained methods allow sampling of the large conforma-
tional space essential to describe IDPs and converge RDC data.
However the simulation force-field does not influence the validity
of the presented selection procedure, which can be applied to all
types of ensembles.

Our aim of this work is three-fold. First, we develop a fitting
algorithm to adjust experimental RDCs to an ensemble of con-
formations. We implement our method in a publicly available
code so that it can be compared to others, and can be used by any
research group.”” Second, we explore the information content of
RDC data and the influence of our force field; in other words, how
much do the RDCs constrain the initial ensemble. Considerable
efforts have been made to determine how much different experi-
mental data determine the properties of the ensembles."” Here we
want to highlight the relevance of the underlying model, which is
often overlooked. And third, we test whether some coarse grained
methods can produce more accurate ensembles than random-coil-
based force fields and thus increase the prediction of RDCs.

Methods

The maximum entropy (MaxEnt) principle derives from mini-
mizing the information included in an ensemble to fit certain
observables. It was first introduced by Jaynes>® and was recently
applied as a way to constrain molecular dynamics on-the-
fly.?®2° Roux and co-workers showed that under certain circum-
stances, their results were equivalent to the more traditional
constrains with harmonic potentials, used also in molecular
dynamics,*® while Vendruscolo and co-workers showed that the
restraint strength can be related to the experimental error.**
Here we present the application of the MaxEnt to the a posteriori
re-weighting of an ensemble that has already been calculated.
We also add some modifications needed to treat RDC data.

We decided to implement an a posteriori re-weighting so that
our method could be applied to ensembles generated with any
software or force field. A second reason is that when applying
the constraints on-the-fly, one usually averages by the number
of replicas running in parallel**?* but the number of replicas
needed to converge the RDC values for IDPs is of the order of
thousands (see Results section), which means that constraint
molecular dynamics could only be run in supercomputers.
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In our a posteriori re-weighting we assume we have a set of N
structures {X;_; x} that we have previously calculated with a
Monte Carlo or molecular dynamics simulation. As such, they
have already been generated with a probability proportional to
their Boltzmann factor, which depends on each specific force
field. For a set of M observables q ={g;-1 A}, Pitera and Chodera
showed that the application of the MaxEnt principle resulted in
a reweighting of the probability of each structure j by a term:®

w/ = Z exp (/liq{) (1)

The form of the reweighting is fixed and a single parameter 4;
applied to each observable. As each structure has already been
generated with a weight according to a given ensemble
(a Boltzmann factor in NVT), w/ modifies the weight of the
structure to fit the experimental observables. ¢/ represents the
value of observable i in the structure X;. q is a matrix of
dimension M x N. The average value of observable g; for a
given reweighting is

N . .
(a1) = _w'q] (2)
J

RDCs have the peculiarity that they can only be defined up to a
proportionality constant o, because their absolute value depends
on their degree of alignment, which cannot be measured. This
has two consequences. First the weights in eqn (2) need not be
normalized, and second, one cannot define a simple convex
objective function as Pitera and Chodera did.*® If we know a
set of measured RDCs Q = {Q;}, we define the function

i) = max(yllota) - Q. ) ®)

to be minimized. ¢ is a threshold value that is determined by the
experimental precision, and there is no point in optimizing below
that threshold, so f; is constant in that region. In the case of
experimental RDCs, we chose the value of 1 Hz. The value of o can
be obtained analytically by minimizing f;(4) which gives
(@ (@

When using N-H and Co-Ha sets of RDCs a common scaling
factor was used.>* Because of the scaling, the weights need not be
normalized, but for the sake of clarity in the figures and in the
main text we scale the weights so that they add up to the number
of structures, so that a weight equal to 1 is equivalent to a
structure not being reweighted.

Because the scaling adds one degree of freedom, the set of
A ={A;} that minimize f; lies on a 1-dimensional curve. Based on
the MaxEnt principle, we seek A that minimally modifies the
ensemble. By eqn (1) these are the A as close as possible to 0.
Therefore we add a penalty term:

Al =P )

and minimize f = f; + f;. Although we are introducing a new
parameter, its value is only determined by the user-defined
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threshold ¢. If k is large, f, will dominate and will force low
A that will result in f; higher than the threshold. Once & is small
enough, f; reaches the threshold and further reduction of k
results in the same optimal A (Fig. S1, ESIt). Therefore the
selection of k is done by the algorithm. The lack of sensitivity to
k is an important difference with restrained dynamics where its
choice is highly non-trivial.>>*%*"' The minimization of fis done
with the Newton-GC method implemented in SciPy.** For that,
the analytic gradient is required. Its expression is deduced in
the Appendix.

Our implementation converges in less than 10 seconds for the
ensembles used in this work in a 1 processor Xeon machine. This
is to be compared with the Bayesian method developed by
Stultz,***” which being their most efficient method takes about
30 minutes in an 8 processor Xeon machine with an ensemble of
299 structures. At the time of writing this paper, Das et al.*®
published an interesting paper with a full Bayesian approach
(called FitEnsemble) based on Monte Carlo sampling and imple-
mented in pyMC.* In the results section we compare our method
with theirs and we show that the full Bayesian approach does not
convey any essentially new information. At present their method
cannot deal with scale-invariant quantities such as RDCs, but we
do not see any fundamental reason why it could not be extended
to treat them and we plan to explore this possibility. That would
allow a cleaner way to introduce the uncertainty of RDCs’
prediction and the experimental error, which are cumbersome
to include in a maximum entropy formalism*® in an ad hoc
manner. As the comparison with FitEnsemble*® will show, both
of these terms are small for RDCs and the MaxEnt principle
results in a fast algorithm. The extension of generative prob-
abilistic models*>*" or maximum likelihood approaches®* to
IDPs is also an attractive alternative, but it is beyond the scope
of this work to evaluate them. The MaxEnt principle gives results
in agreement with the Sparse Ensemble Selection algorithm,**
but the latter is computationally more expensive and needs some
further development to be applicable to IDPs.**

Data

As N-H RDCs are the most discussed RDCs for IDPs we focus on
these data, but we also explore the additional information carried
by Ca-Ho RDCs. We use two kinds of data. First, we test our
method with synthetic data, as that allows comparisons with the
exact result. Then we apply the method to experimental RDCs to
see how it performs. In both cases we use a 53 residue sequence
from the nucleocapsid-binding domain of Sendai virus phospho-
protein. This protein has a crucial role in the replication and
transcription of the negative strand RNA genome.''** The
N-terminal domain of this protein is unstructured but contains
some partial secondary structure. The sequence of the simulated
fragment is FVTLHGAERLEEETNDEDVSDIERRIAMRLAERRQED-
SATHGDEGRNNGVDHE (the charges at the end of the sequence
were removed as it is part of a larger protein). This fragment
corresponds to the residue numbering 458 to 510 in ref. 11. We
have analysed only this region as it contains secondary structure
elements'"** that cannot be predicted with a simple force field
such as Flexible Meccano.
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Synthetic data

We run a parallel tempering simulation using the Profasi force
field*>*° in the Profasi code”” with 16 replicas, from 270 to 330 K.

We take T; = 325.6 K as our reference or “experimental”
ensemble. We calculated the RDCs for 8000 uncorrelated
structures with PALES®® using steric alignment, because of
the NMR setup used (see ESIT for the PALES options used).
Then, we have used the ensembles of structures at T, = 317.0 K
to fit the RDC data at Tj;.

Because we have simulated both ensembles, we know that
the weight of a given structure j with energy E; from the
Ti-ensemble at temperature T, is given by the Boltzmann

factor, namely
i 1 1
wl‘;ollzmann X CXp (_ (?1 - ?0) Ei) (6)

And this can be compared with the reweighting of our MaxEnt
algorithm based on the RDCs.

Experimental data

The experimental data for this study were obtained from the
work of Blackledge and co-workers.'" In their study they
measured N-H and Co~Ho RDCs and made a statistical analysis
to evaluate which regions of the o-helix needed to be added to
explain the observed results. When comparing with experimental
data, our residue number 1 corresponds to residue number 458
in ref. 11. In this region, 31 N-H RDCs and 25 Co-Ho RDCs were
measured. RDCs for the 11 terminal residues are not calculated
nor taken into account for the fit side to eliminate the boundary
effects in the RDCs.*>°

The most interesting part corresponds to residues 18 to 34,
because of their tendency to form partial a-helices, also known
as MoRFs.”®

These data have been simulated with two different coarse-
grained force fields: Profasi®®™*” and Campari.>® Profasi was
chosen for its focus on reproducing the folding behaviour of
proteins based on physical terms. We think that using a
physics-based force field is important to work with IDPs as
knowledge-based force fields are biased towards folded proteins.
Profasi has also been applied to IDPs.*** The choice of Campari
is justified because it was specifically designed to work with IDPs
and has been applied in several studies.’’** The Campari system
contains 9 sodium ions to neutralize the charge.

The RDCs were calculated from the PDBs with the PALES
software.*® As the alignment media, poly(ethylene glycol), is
dominated by steric interactions, we used the steric alignment
in PALES (see the ESIt for further details).

Data and code availability

The Profasi and Campari ensembles re-weighted to fit the
experimental data have been deposited in the Protein Ensemble
Database (pE-DB)*® with the code 4AAB. Because the pE-DB
does not support weighted ensembles, the deposited structures
are those structures with weights larger than 0.75 (see below).

This journal is © the Owner Societies 2014


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4cp03114h

Open Access Article. Published on 13 October 2014. Downloaded on 1/31/2026 6:39:57 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Cross-validation

We have performed two types of cross-validation. First, we use
experimental N-H RDCs as a training set and leave the experi-
mental Co—Ho as the test set. Second, we use a set of 10000
structures as a test set and use a variable number of structures in
the training set. We tried the following sizes for the training set:
{100, 250, 500, 750, 1000, 2500, 5000, 7500, 10 000}, When using
smaller sets, MaxEnt could not converge to the requested accuracy
in the training set. Note that the training set is not a subset of the
test set, and in the final case, we have a total of 20 000 structures.
We compare the error in the fit in the test set with the A = {1;} and
the scale factor coming from the training set with respect to the
error in that training set. This procedure can tell us the adequate
size of the training set and an estimation of the error.

Results and discussion
Size of the ensemble and error estimation

The number of molecules in an NMR experiment is orders of
magnitude larger than what can be simulated. How many
structures should an ensemble contain? We seek the minimum
number of structures needed so that when we add more
structures to the ensemble (sampling from the probability
distribution given by our force field) the results do not change
appreciably.®® This depends on both the property we measure
and the shape of the probability distribution of the ensemble.
For example, for several folded proteins, a single structure can
reproduce a SAXS curve or a diffraction pattern.

Fig. 1 shows the error in the test set when using different
number of structures for the training set to fit N-H RDCs with
the Campari ensemble. We can see that for training sets
smaller than several thousands, the errors in the test set remain
very large, and increase as we improve the fit in the training set.
In other words, the optimized {1;} are not transferable. This
shows us that we need training sets at least of 7000 structures

RMS error in the test set (Hz)

05 70 15 20 25 30 35
RMS error in the training set (Hz)

Fig. 1 Plot of the root mean square (RMS) error allowed when fitting the

training set with respect to the error in the test set. The test set is always of

10 000 structures whereas the training set increases from 100 to 10 000

structures. Results seem converged above 7500 structures and trying to fit

below 1 Hz results in overfitting even for the largest ensembles.
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to determine parameters that do not overfit the experimental
results until an RMS error of approximately 1 Hz. Because this
number is close to the experimental error, we consider ensemble
sizes of 7000-10 000 as adequate.

Alternatively, we can estimate the error when calculating the
mean value for an RDC: the standard error of the mean. There
is certain ambiguity in this value as RDCs can be scaled, but we
take here a fixed scale factor obtained from the fit of the 10 000
structures (o = 2.08). Fig. S2 (ESIt) agrees with our conclusion
that several thousands of structures are needed to get a mean
RDC value of the same order of the experimental error. This
result is independent of the residue we are measuring: the
convergence of all RDCs is the same. Other studies have also
found that the underlying ensembles are more heterogeneous
than what the measured mean value may suggest.”®>®

Several previous studies used a smaller ensemble size
successfully simulate IDPs. The size of the ensemble in these MD
restrained simulations depends not only on the dispersion of the
measured property but also on the other parameters used for the
restrain, namely its force constant.>**! These studies run simula-
tions in parallel and were limited by computational resources,
but formally their results are exact only when the number of
replicas tends to infinity. Other computational methods are
expensive, thus limiting the size of the ensembles.*"**17"7
Our method is efficient for thousands of structures so that we
prefer to use the full simulated ensemble.

A second important reason to limit the size of the ensembles
is to reduce the overfitting. This is an issue when the weights of
the structures are the parameters to be optimized, because new
structures introduce new parameters, with the obvious risk of
overfitting. With the MaxEnt algorithm, the number of para-
meters is fixed by the number of experimental data and not by
the number of structures in the ensemble, which again does
not prevent the use of large ensembles.

3132 1o

Synthetic data. What are the RDCs re-weighting?

In this section we analyse to which extent the MaxEnt can
recover an unknown ensemble, using some experimental data
from that ensemble.

To analyse the secondary structure (SS) content of the
ensemble, we use SS-map.’>® SS-map is a software that plots
the SS fraction of a given residue on the y axis and the length of
the SS element on the x axis, thus providing a picture of the
SS distribution of an ensemble with the information of the
cooperativity of different SS of individual residues. By plotting
both the fraction of SS and its length, it allows to distinguish,
for example, a fully formed helix of 10 residues present 50%
of the time from 2 fragments of 5 residues spanning the
same range.

The ensemble at T; represents what in a real situation would
be the unknown ensemble, from which we only know the
measured RDCs. T, is a calculated ensemble that presumably
will be similar, but does not have to reproduce the data exactly.
MaxEnt should be able to reweight the T,-ensemble so that it
fits the “measured” RDCs. Will the T, re-weighted ensemble be
more similar to the T; ensemble?

Phys. Chem. Chem. Phys., 2014, 16, 26030-26039 | 26033
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To Toreweighted T4
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Fig. 2 SS-map of the Profasi ensemble at To = 317.0 K (right) and
Ty = 325.6 K (left) and the Ty MaxEnt re-weighted ensemble to fit Ty
N-H RDCs (middle). The latter ensemble has fewer long helices than the
To ensemble, but it still contains more long helices than the T; ensemble
despite reproducing the RDCs at T;.

Fig. 2 shows the SS-map of the synthetic ensembles at
temperatures 7, and T; and the re-weighted T,-ensemble to
fit T, N-H RDCs. Because T, is a lower temperature, this
ensemble presents longer helices. Fig. 3 shows that the applica-
tion of the MaxEnt principle returns a set of weights that can
reproduce the final RDCs.

The re-weighting needed to fit the data gives a set of weights
that are closer to 1 than the exact Boltzmann reweighting (see
Fig. 3). In other words, although the exact Boltzmann weights
can reproduce the RDCs of the objective T3-ensemble (see Fig. S3,
ESIY), the MaxEnt principle tells us that, based on the data, we
do not need to change the weights that much, and that a lower
modification of the ensemble is enough and consistent with
the data.

As Fig. 3 suggests, the energy distribution of the reweighted
To-ensemble is still closer to that of the T,-ensemble than to
that of the objective T;. On average the energy increases but
remains lower than the Ty-energy distribution (see Fig. S4, ESIT).
Fig. S5 (ESIf) shows that most of the structures do not get
re-weighted, and only a few do. For those that get re-weighted
there is a certain correlation between the Boltzmann re-weighting
and the re-weighting given by the N-H RDCs. Of course, if more

20 10%

H z10°

10 20 30 40 S0 60
Residue #

Fig. 3 Left: MaxEnt fit of the Profasi To = 317.0 K ensemble to the Profasi
Ty = 325.6 K average N—H RDCs (blue). The unweighted ensemble (green)
has too many long alpha-helices compared to the optimized ensemble
(red). Right: distribution of the weights after the ME optimization (blue)
compared to the exact Boltzmann weights.

1000 2000 3000 4000 5000 6000 7000 8000
Structures
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data are used, for example Co-Hoa RDCs, the reweighting will
increase, but even when doubling or tripling the number of
experimental data, the degrees of freedom of the ensemble are
much higher. We explore this in the following section.

The N-H RDCs do not give information on the energy but on
the SS content of the structures; thus we expect the re-weighting
to change the SS distribution. Fig. 2 and Fig. S6 (ESIt) reveal
that the re-weighting of the data produced goes in the expected
directions: the T, ensemble gets depleted from the long helices
that give too large RDCs. But these figures also show that the
SS-map of the resulting ensemble remains different from that
of the objective Tj-ensemble. There are still regions of long
helices much less populated in the T;-ensemble. In the following
section we will give a reason why the reweighting is not complete
and only affects some of the structures.

The results from this section suggest that the RDCs give
some information on the SS content of an ensemble, but this
information is limited and cannot fully determine the helical
propensity nor the helical lengths of an ensemble.

Application to experimental RDCs

We now focus on the reproduction of the experimental RDCs.
First we use N-H RDCs and then we include Ca-Ho RDC either
as a form of cross-validation or as a source of further structural
information. Here, we treat the temperature of the simulation
as a parameter, so that we first select the ensemble that best fits
the N-H RDCs. For Profasi, this temperature is 325.6 K, and for
Campari, the temperature is closer to the experimental one:
300.5 K. As these are the only ensembles we will use from now
on, we will refer to them as Profasi and Campari ensembles.
Previous studies showed that some force fields need higher-
than-experimental temperatures to agree with the data;’”
however this adds a parameter that limits the predictive power
of Profasi.

The Profasi ensemble fits the N-H RDCs reasonably well,
but shows a region, around residue 35, of too much alpha
helices. The MaxEnt algorithm produces a small reweighting of
this ensemble, with most of the structures retaining a weight
close to one. Therefore the SS-map of the ensemble is visually
indistinguishable from the one shown in Fig. 2.

We can use the Ca-Ho RDCs to cross-validate this refined
ensemble. The Co-Ho RDCs are very similar to the original
ones, showing that we did not incur overfitting, but differ
significantly from the experimental RDCs (Fig. S7, ESIT). This
shows that Co-Ho and N-H RDCs are not correlated, and
depend on different structural properties of the ensemble.
The lack of agreement with Ca-Ho indicates that the Profasi
ensemble does not correctly represent the real structural
ensemble.

As fitting one set of RDCs does not affect the other, we can
use MaxEnt to also fit Co—-Ho RDCs The resulting ensemble is
reweighted to a stronger extent and correctly fits the 56 RDCs
(Fig. S8, ESIt). However Fig. 5 shows that despite the use of
the additional 25 Ca~Ha RDCs, the fitted Profasi ensemble has
only changed its composition slightly (compare with Fig. 2).
This change went in the expected direction, increasing the long
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Fig. 4 Left: MaxEnt fit of the Profasi T; = 325.6 K ensemble to the experi-
mental N-H RDCs (blue). The unweighted ensemble (green) has a region of
too much alpha-helices compared to the optimized ensembile (red) between
residues 32 and 40. Right: distribution of the weights after the optimization.
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Fig. 5 SS-map of the MaxEnt re-weighted Profasi (left) and Campari
(right) ensembles using 31 N—H RDCs and 25 Ca—Ha RDCs. Both ensem-
bles fit the experimental RDCs to the same accuracy.

helices in the region of residues 20-27 and depleting the
ensemble from helices in the region 31-39 (Fig. S9, ESIY).
However this change was minor compared to the overall
composition of the ensemble. Thus, even the use of 56 RDC
data does not qualitatively change the Profasi ensemble and
hints that it is still far from the real ensemble. We believe that
this information can be used by developers to improve the
quality of this force field. The spread of IDPs’ energy landscape
makes them a good target to find the balance between secondary
structure populations and lengths versus random coils.

The Profasi ensemble differs from the ensemble deduced
by Blackledge and co-workers,""** which was mainly composed
of random coil regions and three long helices. Their helices
add up to 75% of the ensemble, and the longest helix has a
population of 11% and ranges from residue 20 to 35. The
robustness of their choice was checked by statistically signifi-
cant improvement compared to other helical combinations.
Despite Profasi being able to reproduce the folding of peptides
and small proteins ab initio,*>*° it does not predict the long
helical elements suggested by Blackledge and co-workers.

The introduction of the experimental data does not reweight
all the structures equally, because the weight of a structure
depends on its RDC values.
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RMS(RDC)

Fig. 6 Optimized weights for the Profasi ensemble to fit the experimental
RDCs. The x-axis represents the root-mean-square of the RDCs for each
of the 8000 structures, showing that the structures that get significantly
reweighted are the ones that have large RDCs. When using only N-H
RDCs (orange) the reweighting is smaller than when also using Co—Ha
RDCs. The dotted lines are set at w = 0.75, and define a fraction of
structures that, if removed, improve significantly the fit. See the text for
more details.

The set of RDCs forms a 31-component vector that is difficult
to compare to weight of the structures. We can compress the
information of this vector in its root-mean-square (RMS) value. If
we plot the optimized weights vs. the RMS of the RDC vector for
each structure, a clear trend appears (Fig. 6): the higher the
RMS(RDC) the more reweighted the structure is. This makes
sense, as reweighting a structure with small RDCs does not
improve the fit. In other words, MaxEnt (or any other fitting
procedure) is blind to structures that have low RDCs. Because
RDCs can be scaled, “low” or “high” RDC refers to the value with
respect to the other structures. As is well known, large RDCs
correspond to long helices, and these structures are the ones
MaxEnt finally re-weights to a larger extent.

Only 208 structures out of 8000 have a weight lower than
0.75 (see Fig. 7) when fitting N-H RDCs. Just by removing
these structures from the ensembles and letting the others
unchanged, the fit is almost as good as the optimized one in
Fig. 4 (RMSD = 1.96 Hz compared to the optimized 1.00 Hz,

5 = 10°

RDC (Hz)

_ )
Mo 1520 5 30 1 40 a5 1

Residue #

1000 2000 3000 4000 5000 6000 7000 8000
Structures

Fig. 7 Left: ME fit (red) of the Campari ensemble to the experimental
RDCs (blue). The unweighted ensemble is shown in green. Right: distribution
of the weights after the optimization.
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Fig. S10, ESIT). The SS-map of these structures (Fig. S11, ESIt)
reveals that these 208 structures are mainly long helices in the
region of residues 32-40, just where the original Profasi
ensemble gives RDCs that are too large. Thus the MaxEnt
re-weighting agrees with our biophysical intuition.

We now turn to the comparison with the Campari ensemble.
This comparison is illustrative because it allows disentangling
the fitting procedure with prior distribution of the ensemble.
Indeed, the comparison we did with Blackledge and co-workers
was comparing a different ensemble and a different fitting
procedure. This is a common practice in this field: different
groups have developed sampling force fields and fitting proce-
dures and the results contain information of both. For example,
Forman-Kay group results are based on their ENSEMBLE selection
procedure'>"” from a TRaDES force field'®?° generated structures.
The present comparison will shed light on the information RDCs
provide giving two different ensembles and the same fitting
procedure.

The temperature of the Campari force field is better defined
than that of Profasi, because the best fitting temperature
corresponds to the experimental temperature. However, the
initial ensemble has a worse agreement with the experimental
N-H RDCs and therefore it needs a larger re-weighting (Fig. 7).

The secondary structure of this ensemble is considerably
different from that of Profasi. It lacks the very abundant short
helices of the Profasi ensemble and contains mainly helical
fragments in the region of residues 22-32. This is, indeed, the
region that the RDCs suggest should have helical fragments,
and the region where Blackledge and co-workers deduced the
helices were. There is a quantitative difference because the
amount of helices in the Campari ensemble is lower than that
obtained by Blackledge'! (see also Fig. 4 in ref. 59). However,
it is true that both convey a similar ensemble, whereas the
Profasi one is qualitatively different. Despite the differences,
the Campari and the Profasi ensemble to fit N-H RDCs have
similar scaling factors (o = 3.97 and 3.67, respectively).

As before, the initial ensemble is similar to the optimized one,
so that because the original Profasi and the Campari ensemble
differ, the optimized ensembles still differ, even qualitatively.
Even using the same fitting procedure, the starting ensemble has
a pervasive influence in the optimized one. This is because the
MaxEnt principle minimizes the modifications to the original
ensemble, but this is a positive quality because it avoids over-
fitting or biasing the optimization procedure.

Again, we can introduce the Ca-Ho RDCs to increase the
number of experimental data. As with Profasi, the reweighting
increases, but the final ensemble is qualitatively very similar to
the original. The cross-validation with Ca-Ho RDCs shows that
the Campari predicted values are closer to the experimental
ones. In spite of being closer, the N-H RDC reweighted ensemble
does not improve the Ca-Ha (Fig. S7, ESIT) in agreement with
the results of Profasi, and suggesting that the Cou-Ho are
independent of the N-H RDCs.

Despite the difference between the Campari and Profasi
ensemble, it is worth emphasizing that both are able to
reproduce the positive N-H RDCs in the central region, and
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that the MaxEnt re-weighted ensemble does not differ signifi-
cantly from the original ones. This may seem disappointing — if
we expected them to collapse to the same final ensemble - but
it also shows that the initially generated ensembles are physi-
cally reasonable. Based on the relation between energy and
probability AE; = —RTlog(wywY), where w{ = 1/N, the energy
difference for a reweighting of 0.5 is only 0.4 kcal mol .
Unfortunately, if we want to predict secondary structure
elements we need these force fields to do better, and the RDC
data can be used to improve them. The weight distribution of
IDP structures is not peaked as with folded proteins, and thus
can be easily reweighted to fit experimental data. Therefore
agreement with experimental data does not guarantee a real
structural ensemble. If we expect insights from the simulated
ensembles we need force fields to have more predictive power.
Campari seems to be more successful in this respect.

The Campari ensemble is “simpler” to interpret, but this
does not seem to us a valid reason to favour it. In contrast, the
Profasi ensemble needs less re-weighting and thus has more
predictive power. It is true, however, that the use of an
artificially high temperature in the Profasi ensemble is intro-
ducing a parameter that the Campari force field predicts to a
good accuracy and this can also be the cause for the higher
errors of the Co-Ho in the Profasi ensemble. The Profasi
temperature was originally defined as the correct scaling para-
meter of the energy to reproduce the melting temperature of
the Trp cage peptide.*” For IDPs maybe this parameter can be
slightly scaled and it is then transferable to other sequences
or maybe rescaling some of the energy terms results in a
shifted temperature. Further systems need to be tested but
our preliminary results suggest that the higher temperature is
transferable among IDPs.

If, as before, we remove the structures that have w < 0.75
and leave the remaining unweighted, the fit of the Campari
ensemble is very good (Fig. S12, ESIT). In this case, the number
of structures removed is larger, 2074 out of 8000 (Fig. S13,
ESIt). As with the Profasi ensemble, the structures that get a
larger re-weighting are the ones that have larger RDC norm.
The consistency of the re-weighting starting from different
ensembles with different RDCs strengthens our confidence in
the validity of the MaxEnt algorithm that we present.

Ideally, one wishes to start with a large pool of structures
and let the data select the ones that agree with the ensemble.
Different initial distributions should swamp to the same
re-weighted distribution. Unfortunately, this is not the case:
not even for folded proteins!*’ RDCs do not convey enough
information to make the initial distribution irrelevant. Our
perspective is that the biophysical community has made heroic
efforts in developing experimental techniques to probe IDPs,
and then has hoped the data to speak by themselves, over-
looking the influence of the prior distribution that the force
fields produce.

Profasi and Campari can predict secondary structure elements
in IDP ensembles based only on first principles, i.e. they can go
beyond random coil force fields. But the ensembles they generate
are different, and the RDC fitting cannot make them equal, not
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Fig. 8 Comparison of the fitting of MaxEnt and FitEnsemble.*® FitEnsemble
results include the estimated error from the Bayesian procedure, but it is of
the order of the point size.

even similar. They do have an influence on the final ensemble
that can fit the RDC data. This is not to say that the RDCs are not
informative, but that the ensembles that fit the data combine the
information from the RDCs with that of the force fields. Efforts
should be made to improve both experimental methods and
force fields. Indeed, we believe that the efforts in the latter field
lag behind the experimental developments attained in the
IDP world.

Comparison with FitEnsemble

The recent publication of FitEnsemble,*® a method to reweight
calculated ensembles to experimental data, prompted us to
compare this approach with ours. The advantage of FitEnsemble
is that it is a fully Bayesian approach. It is one order of
magnitude slower than MaxEnt, but that involves times of a
bit more than a minute, which is still very competitive. The
problem is that it cannot work with scale invariant quantities
such as RDCs. Here we take the scaling factor of the optimized
ensemble with MaxEnt to compare both methods.

The agreement with both methods is very high (Fig. 8). We
also see that the uncertainty in the weights is low compared to
its dispersion. That confirms our assumption that this is not a
key parameter. We found that the resulting FitEnsemble fit
has much lower errors than the introduced experimental
uncertainty. In particular, for an uncertainty of 1 Hz, the fit
has a root-mean-square error of 0.2. Therefore we optimized
our MaxEnt to a threshold of 0.1. For the FitEnsemble, we used
a regularization strength of 3, as suggested by the authors but
we checked that values of 0.3 and 30 essentially produced the
same average results and the same dispersion.

The extension of FitEnsemble to include a scale parameter
seems to be an interesting approach. Still, questions about
the convergence of MCMC for RDC ensembles need to be
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addressed, as well as ensuring that it remains a computation-
ally affordable method.

Conclusions

We present an algorithm based on the maximum entropy
principle, which minimizes the information introduced in the
fitting of experimental data to a given ensemble. We adapted
the algorithm to work with scale invariant measures, such as
RDCs. The algorithm is implemented in an open source code
freely available.”” The advantage of our method is that it can be
used by different experimental groups using different ensembles,
as it can use any given set of structures. It can use thousands of
structures and converges in a few seconds. It also avoids the risk
of overfitting, as the number of parameters depends only on the
number of experimental data, and not on the number of struc-
tures in the ensemble. Cross-validation shows that more than
7000 structures need to be used to get errors close to the
experimental errors of 1 Hz.

It has been claimed that RDCs are one of the best probes of
IDPs’ residual secondary structure,"” but other studies have
questioned the relevance of RDCs in IDP modelling."”” Our
results, with both a synthetic and an experimental data set,
suggest that RDCs can shift the ensembles’ secondary structure
composition, but only to a limited extent. Different sets of
RDCs - N-H and Co-Ha - give complementary information and
improve the reweighting; however the vast conformational
space that IDPs can sample makes it a complex case of
inferential structure determination,?* so that even with the
large number of RDC experimental data, the amount of data
is sparse compared to the size of the ensemble.*’

Neither all-atom nor coarse-grained force fields have the preci-
sion to describe an IDP ensemble,®" as errors of 1 or 2 keal mol *
can significantly shift the populations of helices or other secondary
or tertiary structure elements. Therefore the need to use experi-
mental data to improve these ensembles is mandatory. But the
experimental data is insufficient to fully determine this ensemble,
and the pervasive influence of the force field cannot be overlooked,
if we wish to have consistent representations of IDP ensembles.

Even though both Campari and Profasi predict certain secondary
structure elements, their ensembles are qualitatively different. That
determines the composition of the MaxEnt reweighted ensembles.
The combination of Co-Ho and N-H RDCs suggests that Campari is
more suitable to describe IDPs than Profasi. We still need further
work to test other force fields, improve them, and check other
complementary sources of data that help up further select the
ensembles. One of our future goals is to include SAXS and chemical
shifts in our maximum entropy code.

Appendix

Here we derive the expression of the gradient of f; and f,,
needed for their optimization.

For the sake of simplicity we will derive the gradient of f;
piecewise. We only consider when the argument in eqn (3) is
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larger than the threshold; otherwise the gradient is the null
vector. The gradient of the average RDC is

— ) _ NS o[ STyl
gll@) == = = 2_dlqexp| D —da/k

!

The gradient of the scaling factor o is

a(o) = 2% _ sg((@) - Q) - (@) — 2(q) - Ql(a) - 2({q))
0% (@) - (@)
where s is the sign function of (q)-Q. Finally,
ofi 2

07, ~ & < +ee((@) - (1) - Q)

where x represents the outer product. The gradient for f, is
trivial:

ok,
o M”
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