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It is demonstrated that pseudocontact shift (PCS), viewed as a scalar or a tensor field in three dimensions, obeys
an elliptic partial differential equation with a source term that depends on the Hessian of the unpaired electron
probability density. The equation enables straightforward PCS prediction and analysis in systems with delocalized

unpaired electrons, particularly for the nuclei located in their immediate vicinity. It is also shown that the
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Introduction

Pseudocontact shift (PCS) is an effective additional contribution to
the nuclear chemical shift that arises in open-shell chemical systems
due to partial polarization of the electron spin by the applied
magnetic field." The primary application of PCS is in structural
biology, where it provides additional distance restraints for mole-
cular geometry determination.>”* Pseudocontact shift is different from
the contact shift in that it does not require electron-nuclear overlap
and propagates instead through the dipolar coupling.

It can be verified by direct inspection that the commonly
used point electron dipole expression for the PCS* has a zero
Laplacian everywhere except the origin:
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where Ay, and Ay, are axiality and rhombicity of the electron
magnetic susceptibility tensor y and the nucleus is located at
[x, y, z] relative to the electron. This is to be expected - all classical
electromagnetic phenomena must obey Maxwell’s equations — but
the singularity at the origin also suggests the possibility of an
elliptic partial differential equation existing for the harder case of
the PCS generated by a non-point electron probability density p(7):
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in which the source term «(y, 7) is unknown and has so far
resisted all derivation attempts: a direct calculation of the
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probability density of the unpaired electron may be extracted, using a regularization procedure, from PCS data.

Laplacian of the convolution of eqn (1) with a finite unpaired
electron density comes across singular integrals that cannot be
regularized.” Yet the prize is tempting - elliptic PDEs are a
classical topic in mathematics: a simple enough equation would
generalize all PCS prediction and analysis problems, improve data
interpretation close to the unpaired electron and enable direct
measurement of spin label probability distributions in double
electron-electron resonance (DEER) experiments.® It would also be
convenient - numerical PDE solvers are standard functionality in
modern technical computing software. In this communication we
derive the equation and comment on some of its properties.

Hyperfine shift as a total energy
derivative

To facilitate subsequent mathematics, and also for the sake of
completeness, we provide in this section succinct derivations, using
the relatively modern total energy derivative formalism,” of the
classical expressions for the various components of the hyperfine
shift tensor."* For historical reasons we shall separate the Ayperfine
shift tensor ey into the contact shift tensor 6cs and the dipolar shift
tensor ops. Their isotropic parts shall be called contact shift and
pseudocontact shift, and denoted o5 and Gpcg respectively.

Placed in a magnetic field By, a point electron at the origin
with a magnetic susceptibility tensor 3y « 1 would acquire an
average magnetic moment:

He = X‘Eo/ﬂo 3)

The additional magnetic field B, generated by this dipole at
the point 7 is:
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The change in energy E for a nuclear magnetic dipole jix
located at that point would be:

Lot
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and therefore, the additional chemical shift tensor experienced

by the nucleus, measured relative to the unperturbed condi-
tions, would be:
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where the minus appears because of the relationship between
chemical shielding and chemical shift.>® The isotropic part of
this tensor is:
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For a point electron located at 7, and a point nucleus located
at 7y the final expression is:
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A neat derivation for the hyperfine shift can also be given in
terms of the hyperfine coupling tensor A. The spin Hamiltonian

opcs(in, 7e) =

for the hyperfine interaction is H = L - A - § and therefore the
corresponding energy change for the k-th nucleus in the system is:
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After using the same derivative expression for the chemical
shielding,” we obtain:
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A significant advantage of these equations over other physi-
cally equivalent formulations is that the excitation structure of
the quantum chemistry part of the problem is hidden from the
user - both the hyperfine tensor and the susceptibility tensor are
effective quantities that already incorporate all of the formidable
complexities of the electronic structure theory.” The derivations
given above are classical, but the only assumption in eqn (10) is
that y « 1 (meaning also that magnetic hyperpolarizability
terms in the electronic structure theory are negligible) and that
the electron relaxes sufficiently rapidly for eqn (3) to always
remain valid.

Eqn (8), in its various forms, has done considerable service
to the NMR community over the last forty years — naturally
occurring calcium, magnesium and other metals in biological
systems can often be substituted with lanthanides and pseudo-
contact shift then used to obtain distance restraints for
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structure determination purposes.>” The point electron dipole
assumption does, however, have its validity range - eqn (8) is
not applicable in close proximity of the metal centre, most
notably in lanthanide spin labels, and also in the cases where
the electron probability density is broadly distributed within
the molecular structure.

Derivation of the elliptic PDE

The source term «(y, 7) in eqn (2) for pseudocontact shift
induced by a distributed electron is not currently known. The
most straightforward derivation is to notice that:
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and to note that the Laplacian of the reciprocal distance is:
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With these observations in place, we can conclude that:
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The convolution of this expression with a finite electron
probability density distribution p(7.) then yields (after dropping
the N subscript on the nuclear coordinate vector ry):

1 ([&p(7)
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After abbreviating the Hessian of p(7¥) in square brackets

VN opcs (P, Fe) =

(14)
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we arrive at a neat final result:
Vopcs = —(1/3)Tr[H,x] (16)

A similar derivation for the full 3 x 3 dipolar shift tensor in
eqn (6) yields:

VZO'DS = _pr (17)

If chemical shielding is considered instead of the chemical
shift, the minus sign on the right hand side disappears.
Simplicity of eqn (16) and (17) stands in sharp contrast with
the unfathomable spherical harmonic expansions'® generated
by ab initio treatments using the ligand field theory. It should
be noted that eqn (16) and (17) only apply to pseudocontact and
dipolar shift respectively. For contact shifts a convenient
description is provided by eqn (10), where the isotropic part
of the hyperfine tensor is proportional to the local spin density.

Analytical and numerical solutions

General solution strategies for eqn (16) and (17) are identical to
those of Poisson’s equation.’® The special case of the point
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electron in eqn (7) is recovered by observing that the Green’s where «(y, ) is either the right hand side of eqn (16), or each of
function of the Laplacian is: the nine matrix elements on the right hand side of eqn (17).
This is the general analytical solution for eqn (16) and for
each matrix element of eqn (17), but in practice the interpreta-
tion of multipole moments with [ > 2 is difficult. We would

and taking its convolution with the right hand side of eqn (16) argue here that numerical treatment is easier computationally

11
— 18
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for the point electron: and also more interpretable from the physical point of view
because the fundamental quantity there is the unpaired electron
orcs = e J 1 r{ > 53(’7/)4 RERG probability density p(7). Sparse matrix representations of 3D
R2n)|r =7 [orT o Laplacians with Dirichlet, Neumann or periodic boundary
1 2 1 conditions are readily available,"” and the numerical solution
=—T — 19 : . s _
5 rL‘)FT 8V\F’|x} (19) qf eqn (16) and (1?) requires a single sparse matrix-inverse
times-vector operation:
1 rort 1
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where L is a matrix representation of the 3D Laplacian with

appropriate boundary conditions'® and vec[Tr(H,y)] denotes

the index transformation that stretches [Tr(H,-x)], which is

a three-dimensional array, into a column vector. Eqn (21)

has been implemented into versions 1.5 and later of our
Spinach library.**

A practical example of pseudocontact shift field being computed

| o (I—m) /1 I+ for a lanthanide complex using eqn (16) is shown in Fig. 1. Nuclear

a(r,0,0) = —Z Z (2=0m)—= (;) P (cos0) coordinates, electron probability density and the susceptibility

' tensor have all been estimated using DFT methods in Gaussian09

(20) (see figure caption for the details of the methods used). The

conclusion from Fig. 1 is, at least for this complex, that the

i + iy = J k(. 7)r' P (cos 0)e™d accuracy of the point PCS model is very high, presumably due

R to the localized nature of the f orbitals under the relatively low

Analytical treatments of more general unpaired electron
probability density distributions may be simplified significantly
by noting that the Laplacian in eqn (16) and (17) leaves spherical
harmonics intact. General solutions of those equations therefore
simply inherit the multipolar expansion from the source term in
the same way as Poisson’s equation solutions do:">
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Fig. 1 An example of the forward problem solution and a demonstration of the mutual consistency of egn (8), (10) and (17). The red points refer to the
symmetry-unique atoms in the ligand, including carbons and protons, but excluding nitrogens that have significant contact shifts. (A) Point model versus
the elliptic PDE in eqn (16) for the PCS in the complex of europium(in) with 1,4,7,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraazacyclododecane®* using the
magnetic susceptibility tensor obtained from a DFT calculation. (B) Point model versus the PCS part of egn (10) using hyperfine tensors and the magnetic
susceptibility tensor from a DFT calculation. (C) Volumetric stereo plot of the PCS field computed using egn (16) with the electron probability density and
the susceptibility tensor obtained from a DFT calculation. (D) Stereo plot of electron spin density isosurface (at the isovalues of £0.0004) in the complex.
In all cases, the molecular geometry was optimized and the electron spin density estimated using DFT UB3LYP method?>2® in vacuum with cc-pVTZ basis
set?” on light atoms and Stuttgart ECP basis set on europium.?® CSGT DFT UB3LYP?? method with the same combination of basis sets was used to
estimate the magnetic susceptibility tensor. Simulation source code is available within the example set of Spinach library version 1.5 and later.**
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ligand field of the C,-symmetric Ng cyclen ligand, and it is mostly
the contact shift that is making PCS interpretation difficult.

Inverse problems

The most interesting possibility offered by eqn (16) and (17)
is model-free recovery of the electron probability density dis-
tribution p(r) and the susceptibility tensor y from nuclear
coordinates and pseudocontact shifts, in particular, for spin
label conformation analysis in DEER experiments. The problem
may be formulated as a minimization condition, with respect
to p = vec[p(r)] and y, for the following regularized least squares
error functional:

Q(p) = |PLT'KG — Gexpel* + 1 (p]In(p)) + Z2/L7]*

Kp = —(1/3)vec[Tr(H,x)] (22)

where P is the matrix that projects out pseudocontact shifts at
nuclear locations, Gexp is a vector of experimental PCS data and
/4, are Tikhonov regularization parameters.'> The uncommon
choice of regularization operators (maximum entropy and minimum
Laplacian norm) is dictated by two practical considerations:

1. Electron probability distribution is expected to be localized in
at least one dimension - even extended conjugated systems,
such as porphyrin and carotene radicals, have electron spin
densities that closely follow the bonding network. Maximum
entropy regularization is known to favour local solutions
unencumbered by baseline noise,"® hence the presence of
A1(p|In(p")) term in eqn (22).

2. Electron probability distribution is not infinitely sharp -
some penalty should be placed that enforces a measure of
broadening. Because electron spin densities often have
symmetric distributions in PCS systems, high multipoles
should also be discouraged in the solution. Both objec-
tives are accomplished by 2, L7 term in eqn (22).

Q(p) is non-linear with respect to g, necessitating the use
of numerical minimization methods (the memory-conserving
version of the quasi-Newton method proposed by Broyden,
Fletcher, Goldfarb and Shanno'” is used here), but good initial
guesses may be obtained by noting that, for 4; = 0, the global
minimum of Q(p) with respect to g is analytical:

ﬁmin = (ATA + j~2LTL)71ATO__’ex1::ty

A=PL 'K (23)

A synthetic example of computing the PCS field generated
by multiple paramagnetic centres and then recovering their
distribution from PCS data is given in Fig. 2. Additional
constraints on the probability density are non-negativity, fixed
integral and zero boundary conditions:

p(F) = 0; [p(F)d’ = N; p(a0)=p'(20) =0

where N is the number of unpaired electrons in the system.
Because the error functional in eqn (22) has two regularization

(24)
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Fig. 2 An example of the inverse problem solution where the electron
probability distribution is recovered from PCS data. (A) Volumetric stereo
plot of a model system with three electrons with a randomly assigned
susceptibility tensor and Gaussian probability distributions randomly posi-
tioned within a 20 x 20 x 20 Angstrom cube. (B) Volumetric stereo plot of
the PCS field obtained from the probability density cube shown in (A) using
egn (21). (C) Volumetric stereo plot of the electron probability distribution
obtained by solving the inverse problem as described in the main text.
Pseudocontact shift was sampled at 500 random points emulating nuclear
locations within the volume and fed into egn (22), which was then
minimized from a random initial guess. Simulation source code is available
within the example set of Spinach library version 1.5 and later.**

parameters, a generalization of the L-curve method'® to sur-
faces'® is used here. Better regularization methods for eqn (16)
that could improve the fidelity of the reconstruction in Fig. 2C
are undoubtedly possible, but are beyond the scope of the
present work.

Conclusions

Eqn (16) and (17) provide a simple and numerically friendly
alternative to voluminous and abstruse multipolar expansions
in situations where electron probability distributions deviate
significantly from the point electron case. Both forward (PCS
from p(r) and y) and backward (3 and p(7) from PCS) calcula-
tions are straightforward - the former is accomplished in a
single sparse matrix-inverse-times-vector operation prescribed
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by eqn (21) and the latter is an instance of Tikhonov regulariza-
tion of the well-researched source recovery problem for an
elliptic PDE* with the error functional specified in eqn (22).

Attention should also be drawn again to the simple general
connection between hyperfine shift and hyperfine coupling
provided by eqn (10) - modern electronic structure theory
packages are able to compute both hyperfine tensors and
magnetic susceptibility tensors, meaning that hyperfine shift
may be obtained essentially for free after standard magnetic
property runs in ADF,>" ORCA*? or Gaussian,>® subject only to
the electron spin relaxation time being sufficiently short for the
approximation made in eqn (3) to be valid.

The source code for all examples provided above, as well as
numerical infrastructure functions (3D finite difference opera-
tors, 3D interpolation operators, Tikhonov solvers, volumetric
scalar field visualizer, etc.), are available in versions 1.5 and
later of Spinach library.™
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