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Evaluation of composite schemes for CCSDT(Q)
calculations of interaction energies of
noncovalent complexes†

Lucia Demovičová,a Pavel Hobzabc and Jan Řezáč*b

Recently, it has become possible to apply higher-order coupled-cluster

methods to polyatomic systems including molecular noncovalent com-

plexes. Due to the steep scaling of the complexity of these calculations,

the size of the basis set becomes a critical factor and larger systems can

be calculated only in small basis sets. To obtain the most accurate

results, it is necessary to use composite schemes where the higher-order

terms are added to a baseline calculation for which a larger basis set can

be used. In this work, we have examined the accuracy of composite

schemes where CCSDT(Q) correction calculated in a smaller basis set is

added to CCSD(T), CCSD[T] and CCSDT calculations. As a benchmark,

we have used CCSDT(Q)/aug-cc-pVTZ interaction energies calculated in

a set of 18 small noncovalent complexes. We have found that the

differences between the studied schemes are small and that it is safe to

make the correction in a single step starting from the CCSD(T) baseline.

The basis set dependence of the correction is strongly affected by the

nature of the interaction. For dispersion-bound complexes, the correc-

tion calculated in a basis set as small as 6-31G**(0.25,0.15) improves the

results consistently. On the other hand, description of polar complexes

and especially hydrogen bonds is more difficult and the CCSDT(Q)

correction has an incorrect sign until a rather large basis set is used;

even the aug-cc-pVDZ result is not reliable in rare cases.

Introduction

Noncovalent interactions play a crucial role in various areas of
chemistry. Intermolecular interactions determine the structure
and properties of molecular assemblies and they are equally
important for the structure of large molecules. In biomolecules,

the prominent examples are the DNA double helix structure and
the secondary and tertiary structure of proteins. Since direct
experimental measurement of noncovalent interactions is difficult,
theoretical methods are often used as the main tool for their study.

Reliable interaction energies for different types of noncovalent
complexes (e.g. hydrogen-bonded or dispersion-dominated) are
only obtained if the most accurate wave-function based methods
are applied.1 Among them, the coupled-cluster theory plays a
dominant role because it offers a systematic way of improving the
results by adding higher-order excitation operators. However,
these improvements come at the cost of increasing the complex-
ity of the calculations. To achieve reliable, quantitative results for
all kinds of noncovalent interactions, it is necessary to include
the triple excitations. This can be done rigorously at the CCSDT
level2 but the steep scaling and the iterative nature of the method
limit its use only to small systems. The computational cost can be
lowered when the triples are treated in an approximate way.
The currently most employed coupled-cluster method is the
noniterative CCSD(T) approach3 (where the triples are added
perturbatively after an iterative CCSD calculation), often called
the ‘‘gold standard’’ of computational chemistry. Other compar-
able approaches are the perturbative CCSD[T]4 and approximate
iterative CCSDT-n (n = 1, 1b, 2, 3, 4)4–6 methods. The advantage of
all these approaches lies in their relatively low computational cost
while the accuracy remains acceptably high.

The approximate nature of these widely used methods
naturally raises the question on their accuracy, not only with
respect to the complete CCSDT calculations but also to methods
covering also higher-order excitations. A comparison with the most
accurate benchmarks (up to full configuration interaction) in the
smallest systems1 indicates that the inclusion of quadruples is
needed to achieve the accuracy comparable to e.g. spectroscopic
measurements. Here, the cheaper, perturbative CCSDT(Q) method7

closely reproduces full CCSDTQ8 calculations. Nevertheless,
even the CCSDT(Q) calculations are extremely demanding and
can be applied only to small systems.

Several published studies have reported the interaction
energies in noncovalent complexes at a level of theory beyond
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the CCSD(T). We mention the work of Pittner and Hobza,9

where hydrogen-bonded and stacked complexes were studied at
the CCSDT level; later Hopkins and Tschumper10 employed the
CCSD(TQ) method for calculations of dispersion-bound and
stacked systems. A few years ago, small model noncovalent
complexes were examined in our laboratory at the CCSDT(Q)
and CCSDTQ levels of theory in order to assess the performance
of the CCSD[T] and CCSD(T) methods.11 Later, we developed a data
set of 24 small model complexes for which we reported calculations
at the CCSDT(Q) level.12 We also examined the convergence of the
interaction energies in the coupled cluster series using the FCI,
CCSDTQP and CCSDTQ(P) data as a benchmark.1

The major restraint in all higher-order calculations (in real-
world systems such as complexes of molecules) is the limited size
of the basis set that has to be used because of the steep scaling of
the methods. A solution presents itself immediately – the inter-
action energies could be evaluated using a composite scheme
where the energies at the CCSD(T), CCSD[T] and possibly CCSDT
level are obtained using a larger basis set and the additional
contributions are calculated using smaller basis sets.

Such schemes are widely used in computational thermo-
chemistry13–17 and have also been used for noncovalent inter-
actions. Adding a higher-order correction to standard CCSD(T)/
CBS results is the most obvious solution but more complex
incremental schemes can be used as well. For example, Harding
and Klopper in 2013 studied the lithium–thiophene complex,18

improving the baseline fc-CCSD(F12)/cc-pVQZ-F12 (cc-pCVQZ-F12)
calculations with contributions of perturbative triples using
the cc-pwCVTZ (and aTZ, aug-pCVTZ) basis set, iterative triples
(a(D+d)Z and aug-pCVDZ basis sets) and perturbative quadruples
(a plain cc-pVDZ basis set). Small hydrogen bonded complexes
were studied by Boese up to the CCSDTQ level,19 decreasing
the basis set at each level (and employing extrapolation to a
complete basis set where possible).

However, the accuracy of these composite schemes has not
been studied yet in the specific context of noncovalent inter-
actions. There are also questions regarding the design of the
scheme, e.g. which steps to be included. This is complicated by
the fact that some of the calculations, including the common
starting point, CCSD(T), are approximate methods that, to
some extent, rely on error cancellation. In this work we inves-
tigate several possible incremental schemes in order to find the
one most suitable for the description of larger noncovalent
complexes. The goal is to add the contributions up to the
CCSDT(Q) level using basis sets that would make the scheme
applicable to larger systems. As a benchmark, we use full
CCSDT(Q) calculations in the largest basis set applicable to
our small model systems. For clarity, we do not include the
extrapolation to the complete basis set limit in this study as
it would be included at the lowest level, e.g. CCSD(T), not
affecting the higher-order contributions that are subject of
this study. We do not go beyond the CCSDT(Q) level for two
reasons: firstly, it has been shown that it closely reproduces
full CCSDTQ calculations and its accuracy is in most cases
sufficient. Secondly, while it would be possible to add another
incremental step, the difference between CCSDT(Q) and

CCSDTQ, in larger systems it would be limited to such a small
basis set that the uncertainty in this term would be larger than
its actual magnitude.

Computational details

In order to determine the most efficient way of including
the contributions of higher excitations within the coupled
cluster theory, we chose 18 weakly interacting model complexes.
These complexes are fairly small, allowing us to calculate the
contribution of higher excitations to the interaction energies in a
larger basis set. They cover diverse types of interactions: six of
them feature a hydrogen or a lithium bond, six are electrostati-
cally bound and six complexes are stabilized mainly by London
dispersion. The optimized structures of all the model complexes
are displayed in Fig. 1.

The geometries of the complexes were taken from earlier
studies where available. For the water dimer, the ammonia dimer,
and the methane dimer we used the CCSD(T)/CBS geometries from
ref. 20. The FH� � �F� and the neon dimer complex were optimized
at the same level. The geometry of the LiH dimer was taken from
ref. 21. The remaining complexes were optimized at the QCISD/
6-31++G(d,p) level of theory in the Gaussian0922 package.

The interaction energies were calculated at the CCSD(T)
(coupled-cluster with singles, doubles and perturbative triples),
CCSD[T] (coupled-cluster with singles, doubles and perturba-
tive triples), CCSDT (coupled-cluster with singles, doubles
and triples) and the CCSDT(Q) (coupled-cluster with singles,
doubles, triples and perturbative quadruples) levels of theory,
in Dunning’s correlation consistent basis sets aug-cc-pVDZ and
aug-cc-pVTZ23 (abbreviated as aDZ and aTZ in this work)
and the 6-31G**(0.25,0.15) basis set. The 6-31G**(0.25,0.15)
basis set is a modified version of the 6-31G** basis set where
the exponents of the polarization functions of second-period
elements and hydrogens are changed to 0.25 and 0.15, respec-
tively. For the lithium atom we maintain the original value of
the exponent, 0.20. This basis set is known to perform well for
calculations of weakly interacting systems, as has been shown
in several studies involving hydrogen-bonded and stacked
complexes.24–26 For the validation of the CCSDT(Q)/aTZ bench-
mark, CCSDT(Q)/aQZ calculations were carried out for the
smallest systems and the correlation energy was extrapolated
to the complete basis set limit.27

The Boys and Bernardi28 counterpoise correction was
used to remove the basis set superposition error. All electrons
were correlated in all calculations (it improves the interaction
energies even when polarized-core basis sets are not used).
Spherical d-functions were used. The calculations were performed
using the CFOUR29 quantum chemistry software package, coupled
with the MRCC30 program by M. Kállay.

The error of the composite calculations in comparison with
the benchmark is evaluated as a mean unsigned error (MUE).
To make it possible to compare the results obtained for
different complexes in which the magnitude of the interaction
correlation energy varies, this error is furthermore expressed in
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relative terms, in percent of the absolute value of the interaction
correlation energy (this quantity is denoted as relative error).
The average relative error is reported for the whole set of model
systems and for distinct groups of complexes.

Results and discussion

In all of the following tables, we report only the contribution of
correlation to the interaction energy (correlation interaction
energy) instead of the complete interaction energies. The
analysis of our data and relative errors is thus independent of
the total interaction energies, which enables us to focus on the
differences at various correlation levels.

The starting point for our composite schemes is a CCSD(T),
CCSD[T] or CCSDT calculation in the aTZ basis set. In practical
applications, extrapolation to the complete basis set limit will be
used at this level; in this work, it is omitted for clarity as it does not
make any difference in the discussion of higher-order contributions.

The benchmark for our composite calculations are then
CCSDT(Q)/aTZ calculations. To test the quality of this bench-
mark, the three smallest model complexes were calculated also
in a larger basis set, aQZ, and extrapolated to the CBS limit. The
results, plotted in Fig. 2, indicate that the results obtained with
aTZ are not fully converged (especially in the case of LiH dimer)
but no qualitative change occurs when the basis set is enlarged
(unlike the large changes that occur in basis sets smaller than
aTZ). These calculations suggest that our benchmark is robust
enough for the purpose of testing composite schemes based on
smaller basis sets.

In the first three schemes, the correction from the baseline
method to CCSDT(Q) is done in one step and the schemes differ
only in the baseline methods:

EInt = EInt
CCSDT/aTZ + DEInt

CCSDT(Q)/small BS (1)

EInt = EInt
CCSD(T)/aTZ + DEInt

CCSDT(Q)/small BS (2)

EInt = EInt
CCSD[T]/aTZ + DEInt

CCSDT(Q)/small BS (3)

Fig. 1 Dispersion bound, electrostatically stabilized and hydrogen- and lithium-bonded complexes studied in this work.
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where DEInt
CCSDT(Q) is the higher-order correction and ‘‘small BS’’

stands for the basis set used for its evaluation. Here, the 6-
31G**(0.25,0.15) and aDZ basis sets are used. In addition to
these schemes, it is possible to calculate the correction in a
stepwise manner, calculating CCSDT in a larger (aDZ) basis set
and adding the contributions of quadruples from a CCSDT(Q)
calculation in a smaller basis set, 6-31G**(0.25,0.15):

EInt = EInt
CCSD(T)/aTZ + DEInt

CCSDT/aTZ + DEInt
CCSDT(Q)/6-31G**(0.25,0.15)

(4)

The correlation interaction energies of dispersion-bound com-
plexes, electrostatically stabilized, lithium and hydrogen-bonded
complexes, are summarized in Tables S1–S3 in the ESI.† There, we
present the correlation interaction energies at various levels
of theory up to the CCSDT(Q) method obtained with the use of
the 6-31G**(0.15,0.25), aDZ and aTZ basis sets, respectively.

First we look at the interaction energies obtained without
using the composite schemes. The accuracy of the correlation
interaction energies of dispersion-bound complexes obtained with
the CCSD[T] and CCSD(T) methods is very similar. When the
smallest 6-31G**(0.25,0.15) basis set is used, the CCSD[T] method
yields slightly better results. In the group of electrostatically
stabilized complexes the situation is similar, the data resulting
from the use of both methods with perturbative triples exhibit
comparable relative errors relative to the CCSDT(Q) benchmark.
Again the CCSD[T] method performs slightly better in combi-
nation with the 6-31G**(0.25,0.15) and the aDZ basis sets. This
is the behavior we discussed in our previous work on this topic.11

For hydrogen-bonded and lithium-bonded complexes, we observe
that the data obtained with 6-31G**(0.25,0.15) are closer to the
benchmark than those obtained using the aDZ basis set. Also, the
CCSD(T) method yields in this case more accurate correlation
interaction energies than CCSD[T]. Overall, all the considered
methods covering the triples yield very similar results, which
justifies the inclusion of all of them as a starting point for the
composite calculations. It should also be noted that the
CCSDT[Q] method, an alternative perturbative description of
the quadruples, yields rather bad results and is inferior even to

plain CCSDT calculations. This confirms our previous findings1

and we will not discuss this method further.
The results obtained with the composite calculations are

presented in Table 1 together with the relative errors evaluated
with respect to the CCSDT(Q)/aTZ benchmark data. The average
relative errors are listed in Table 2. The fundamental point is
whether the composite schemes using such a small basis set bring
any improvement over the baseline data, as this is often questioned
in discussions. The average relative errors of the baseline CCSD[T],
CCSD(T) and CCSDT data were thus added to Table 2 as well. For
all the schemes discussed here, the average errors with respect to
the benchmark are smaller than the errors of the baseline data
alone. This means that adding the CCSDT(Q) correction in a
basis set as small as 6-31G**(0.25,0.15) generally improves the
interaction energies towards the benchmark. However, this does
not necessarily apply for each of the complexes individually; these
cases and the trends observed are discussed below.

The average relative errors (plotted in Fig. 3) are the first tool for
assessing the accuracy of the different schemes. As expected,
the schemes using the largest basis set, aDZ, for the evaluation
of the DCCSDT(Q) contribution produce the most accurate data.
The average MUE is below 10 cal mol�1 for all three schemes, that
is, below 0.8%. It is surprising that among the three schemes, the
first one (based on the CCSDT calculations) exhibits the highest
accuracy with the average MUE error being below 3.5 cal mol�1

(0.4%). However, the applications of this scheme are limited
because obtaining accurate CCSDT energy to start with is signifi-
cantly more difficult than calculating the triples perturbatively.
Even if we assume that this baseline energy is extrapolated to CBS,
the error introduced by the limitations on the basis set size in
CCSDT calculation (in contrast to e.g. CCSD(T)) would be larger
than the improvement in the accuracy of the contribution of
quadruples. Surprisingly, scheme 3 (using the CCSD[T] baseline)
produces on average more accurate correlation interaction
energies than scheme 2 (based on the golden standard CCSD(T)
calculations), the absolute errors being 6.89 vs. 9.96 cal mol�1

(0.74% vs. 0.80%). This is a consequence of a more favorable error
compensation in CCSD[T] interaction energies obtained with small
basis sets, which we have described in our recent study.11

The schemes using the smaller 6-31G**(0.25,0.15) basis set
produce data with only slightly higher absolute errors: the
highest error is observed for scheme 2, 13.74 cal mol�1, it is
3.8 cal mol�1 higher than the error in scheme 2 using the aDZ
basis set despite the fact that the basis set is much smaller. For
example, in the case of the BeH2–LiH complex, there are 73 basis
functions in the aDZ basis set and only 43 in the 6-31G**(0.25,0.15)
basis set. Having in mind the scaling of the calculations, it is clear
that the 6-31G**(0.25,0.15) basis set is applicable to much larger
systems than aDZ. Again, the most accurate scheme is the first one
with the average error of 11.2 cal mol�1 (0.9%). The highest
absolute error is observed for scheme 3 – 20.63 cal mol�1 (2%).
Scheme 4 uses both aDZ and 6-31G**(0.15,0.26) basis sets in a
stepwise manner for the evaluation of the DCCSDT and DCCSDT(Q)
corrections. The baseline interaction correlation energy is calcu-
lated using the CCSD(T)/aTZ method and we can thus compare
it directly with the similarly constructed scheme 2. As expected,

Fig. 2 The correlation interaction energies [kcal mol�1] obtained at the
CCSDT(Q) level of theory using several basis sets.

Communication PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
A

ug
us

t 2
01

4.
 D

ow
nl

oa
de

d 
on

 7
/2

1/
20

25
 2

:1
8:

12
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4cp02617a


This journal is© the Owner Societies 2014 Phys. Chem. Chem. Phys., 2014, 16, 19115--19121 | 19119

its accuracy lies between scheme 2/aDZ and scheme
2/6-31G**(0.25,0.15), the average MUE error for all complexes
being 11.33 cal mol�1 (1.2%). However, for neutral complexes,
there is a substantial improvement and the two-step scheme
yields an average error very close to the one-step correction in
the larger basis set.

While all the composite schemes improve the correlation
interaction energies when the average is evaluated over the
whole set, inspection into the individual complexes shows that
there are cases where adding the CCSDT(Q) correction leads to a
worse result. This happens most often in the group of hydrogen-
and lithium-bonded complexes. The baseline correlation

Table 1 The correlation interaction energies [kcal mol�1] obtained using three composite schemes (the first row) and the corresponding relative errors
with respect to the CCSDT(Q) benchmark (see Tables S1–S3, ESI) in % (the second row) together with the RMS error and the maximum unsigned error for
each scheme

6-31G** as small BS ADZ as small BS 6-31G**+aDZ

1 2 3 1 2 3 4

Li2� � �H2 �0.123 �0.121 �0.117 �0.123 �0.123 �0.122 �0.122
0.291 1.446 5.018 0.163 0.276 0.423 0.404

BH3� � �H2 �0.180 �0.179 �0.179 �0.180 �0.181 �0.180 �0.181
0.203 0.644 0.854 0.154 0.047 0.190 0.002

BeH2� � �H2 �0.179 �0.178 �0.178 �0.179 �0.179 �0.178 �0.179
0.090 0.564 0.673 0.096 0.015 0.142 0.022

CH4 dimer �0.985 �0.988 �0.983 �0.987 �0.990 �0.987 �0.988
0.516 0.265 0.695 0.305 0.010 0.365 0.221

LiH� � �H2 �0.321 �0.319 �0.318 �0.321 �0.321 �0.321 �0.321
0.086 0.818 1.018 0.091 0.121 0.278 0.117

NH3 dimer �1.544 �1.550 �1.541 �1.551 �1.557 �1.550 �1.550
0.856 0.508 1.038 0.399 0.010 0.507 0.466

H2O dimer �1.153 �1.141 �1.159 �1.158 �1.155 �1.155 �1.150
0.856 1.851 0.363 0.429 0.642 0.643 1.069

BeH2� � �LiH �0.256 �0.254 �0.252 �0.256 �0.254 �0.253 �0.253
0.374 1.145 1.861 0.180 1.179 1.456 1.372

LiH dimer �0.249 �0.250 �0.247 �0.247 �0.246 �0.245 �0.248
0.705 0.488 1.721 1.716 2.163 2.299 1.152

H�� � �LiH 1.087 1.087 1.092 1.087 1.092 1.093 1.092
0.253 0.200 0.658 0.241 0.674 0.776 0.687

LiH� � �Li+ 0.287 0.289 0.289 0.286 0.288 0.288 0.289
0.043 0.736 0.834 0.067 0.586 0.584 0.696

HF dimer �0.580 �0.556 �0.597 �0.577 �0.566 �0.578 �0.569
0.115 4.290 2.901 0.649 2.479 0.469 1.945

Ne dimer �0.106 �0.105 �0.105 �0.106 �0.105 �0.106 �0.105
0.433 0.848 0.829 0.170 0.782 0.104 1.046

HCN� � �HF �1.253 �1.257 �1.268 �1.256 �1.259 �1.282 �1.256
1.198 0.874 0.006 0.955 0.681 1.146 0.923

F�� � �HF 5.002 5.158 4.944 5.067 5.168 5.046 5.103
1.309 1.770 2.470 0.024 1.964 0.447 0.680

HCN� � �Li+ 1.876 1.865 1.931 1.851 1.858 1.871 1.883
0.823 0.221 3.759 0.512 0.160 0.537 1.176

C2H2� � �Li+ 1.540 1.554 1.560 1.527 1.543 1.550 1.556
0.790 1.711 2.108 0.064 1.015 1.453 1.869

C2H2� � �H� �0.660 �0.673 �0.649 �0.705 �0.705 �0.705 �0.660
7.876 6.044 9.494 1.630 1.596 1.557 7.842

RMS error 0.022 0.026 0.039 0.005 0.024 0.010 0.019
Max. error 0.066 0.090 0.125 0.012 0.016 0.023 0.056
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interaction energies of the NH3 dimer, the H2O dimer, the LiH
dimer, the HF dimer and the HCN–HF complex calculated
without further corrections exhibit smaller errors with respect
to the CCSDT(Q) benchmark than some of the composite results.
The only scheme that consistently improves over the baseline in
all the complexes is scheme 3/aDZ. Among the rest of the
schemes, the ones that use the larger aDZ basis set perform
the best, the exceptions being scheme 1/aDZ for the LiH dimer
and scheme 2/aDZ for the HF dimer. Also the scheme 4 exhibits
only one problematic case, the H2O dimer. The schemes using
the 6-31G**(0.15,0.25) basis set for the calculation of the D(Q)
contribution yield even less reliable data.

The performance of the composite schemes in the group
of electrostatically stabilized complexes is slightly better, with
the problematic cases being the acetylene–Li+, acetylene–H�

and the LiH–Li+ complexes. There are 2 schemes that improve
the correlation interaction energies of all the complexes: 2/aDZ
and 3/6-31G**(0.25,0.15). The most problematic complex from
this point of view is the acetylene molecule interacting with the
lithium cation, where the schemes 2/6-31G**(0.15,0.25), 3/aDZ
and scheme 4 produce less accurate data with respect to the
benchmark compared to the baseline calculations alone.

The correlation interaction energies of dispersion-bound
complexes show improvement towards the benchmark data upon
applying the D(Q) correction within all the presented composite
schemes. There is only one exception – the neon dimer – where the
improvement is observed only for the 2/aDZ and 3/aDZ schemes.
Here, the problem stems from the fact that the effective size of
the basis set in an atomic complex is smaller than in molecular

ones where the mixing of basis functions on all the atoms
allows for better description of the wavefunction.

The difference between polar (hydrogen-bonded and charged)
and nonpolar (dispersion-bound) complexes is probably caused
not by the different nature of the electron correlation but by the
limitations of the description of more polarized wavefunctions
in the small basis sets.

Another line can be drawn between larger systems (seven species
in a set having both interacting molecules containing more than
four valence electrons) and smaller ones. The conclusions drawn
from inspecting these groups of complexes separately are in accord
with the conclusions valid for the whole set. The schemes using the
aDZ basis set give more reliable results and should be used if
possible. From these the 1/aDZ and 3/aDZ are the most effective.

Overall, the most successful composite schemes are the ones
using the aDZ basis set for the calculation of the D(Q) correction to
the correlation interaction energies. For the dispersion-bound
complexes, the 2/aDZ and 3/aDZ schemes show the most accurate
results. In the group of electrostatically stabilized complexes it is
the 2/aDZ scheme that gives the most accurate data with respect to
the benchmark. Finally the 3/aDZ scheme describes the correlation
interaction energies of the hydrogen- and lithium-bonded
complexes with the highest accuracy.

These results suggest that in specific cases, such as dispersion-
dominated systems, it is possible to improve the interaction energies
using a higher-order correction calculated in a rather small basis set,
which opens up the possibility of applying such calculations to
somewhat larger systems. On the other hand, if general applicability
is sought, a larger basis set has to be used to avoid the deterioration
of the baseline results in some polar complexes. In light of the
findings presented here, we started to work on improving the
DCCSDT(Q) term in the A24 data set. In the original work,
the calculations were performed in the 6-31G**(0.25,0.15) basis
set; these results will be updated to at least aDZ.

Conclusions

We have examined several approaches to adding the contribution
of quadruple excitations calculated in a small basis set to CCSDT,
CCSD(T) and CCSD[T] calculations. Overall, such corrections
improve the results towards benchmark CCSDT(Q) calculations
in a large basis set. Of course, the larger the basis set, the better
the results, but even the most economic correction calculated
in the 6-31G**(0.25,0.15) basis set is beneficial. A closer look at
different classes of the complexes shows that dispersion-
dominated ones are consistently described well even when a
higher-order correction is calculated in a small basis set. On the

Table 2 Average relative errors (%) of the correlation interaction energies with respect to the CCSDT(Q)/aTZ benchmark. The errors of the baseline
CCSDT, CCSD(T) and CCSD[T] data are evaluated from calculations done in the aTZ basis set

6-31G** as small BS aDZ as small BS

Combination CCSDT CCSD(T) CCSD[T]1 2 3 1 2 3

All 0.93 1.36 2.02 0.44 0.80 0.74 1.20 1.42 3.78 4.13
Neutral 0.48 1.15 1.41 0.44 0.70 0.67 0.73 0.82 3.47 3.70
Charged 1.85 1.78 3.22 0.42 1.00 0.89 2.16 2.63 4.40 5.00

Fig. 3 Average relative errors (in %) evaluated for all the schemes for
different types of noncovalent complexes. The 6-31G** notation means
that the 6-31G**(0.25,0.15) basis set was used.
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other hand, more polar systems such as hydrogen bonds can
only be described reliably when larger basis sets are used and in
some cases, even the aDZ basis set is not sufficient. This
situation is analogous to the composite CCSD(T)/CBS calcula-
tions where it was shown that for hydrogen bonds, the CCSD(T)
contribution has to be calculated in a basis set larger than aDZ
in order to achieve improvement over uncorrected MP2 results.31

Therefore, special care must be taken and the nature of the
interaction has to be considered if a calculation of the DCCSDT(Q)
correction is attempted in larger systems where the size of the
basis set is the limiting factor.

Another important conclusion is that the choice of the
baseline method does not affect the results significantly. It is thus
possible to start with more efficient methods such as CCSD(T),
avoiding the expensive CCSDT calculation in a large basis set.
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by A. V. Mitin, C. van Wüllen, For the current version, see
http://www.cfour.de (accessed Sep 2012).

30 MRCC, a string-based quantum chemical program suite
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